To bridge the performance gap between deep learning models and tree ensemble methods in tabular data tasks, we propose GTransformer, a novel deep architecture that innovatively integrates granular computing and self-attention mechanisms. Our approach introduces a scalable granulation function set, from which diverse functions are randomly sampled to construct multi-view feature granules. These granules are aggregated into granule vectors, forming a multi-view functional granulation layer that provides comprehensive representations of tabular features from multiple perspectives. Subsequently, a Transformer encoder driven by granule sequences is employed to model deep interactions among features, with predictions generated via a hierarchical multilayer perceptron (MLP) classification head. Experiments on 12 datasets show that GTransformer achieves an average AUC of 92.9%, which is comparable to the 92.3% performance of LightGBM. Compared with the current mainstream deep model TabNet, the average AUC gain is 2.74%, with a 14.5% improvement on the Sonar dataset. GTransformer demonstrates strong robustness in scenarios with noise and missing data, especially on the Credit and HTRU2 datasets, where the accuracy decline is 24.73% and 17.03% less than that of MLP-Head respectively, further verifying its applicability in complex real-world application scenarios.
扫码关注我们
求助内容:
应助结果提醒方式:
