首页 > 最新文献

ACS Chemical Neuroscience最新文献

英文 中文
LRRK2 Inhibitors as Promising Treatment for Parkinson's Disease. LRRK2 抑制剂有望治疗帕金森病。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-02 DOI: 10.1021/acschemneuro.4c00657
Shuoyan Tan, Huanxiang Liu, Xiaojun Yao

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, with current treatments offering only temporary symptomatic relief. There is an urgent need for the development of novel therapeutic approaches. Abnormal increases in LRRK2 kinase activity have been identified in both sporadic and familial PD patients, suggesting that inhibiting LRRK2 kinase activity presents a promising avenue for the pursuit of effective PD treatment strategies. In this Viewpoint, we discuss the exciting new insights regarding the development of LRRK2 kinase inhibitors as a treatment for Parkinson's disease.

帕金森病(PD)是最常见的神经退行性疾病之一,目前的治疗方法只能暂时缓解症状。目前迫切需要开发新的治疗方法。在散发性和家族性帕金森病患者中都发现了 LRRK2 激酶活性的异常增高,这表明抑制 LRRK2 激酶活性是寻求有效帕金森病治疗策略的一个很有前景的途径。在本视点中,我们将讨论有关开发 LRRK2 激酶抑制剂治疗帕金森病的令人兴奋的新见解。
{"title":"LRRK2 Inhibitors as Promising Treatment for Parkinson's Disease.","authors":"Shuoyan Tan, Huanxiang Liu, Xiaojun Yao","doi":"10.1021/acschemneuro.4c00657","DOIUrl":"10.1021/acschemneuro.4c00657","url":null,"abstract":"<p><p>Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders, with current treatments offering only temporary symptomatic relief. There is an urgent need for the development of novel therapeutic approaches. Abnormal increases in LRRK2 kinase activity have been identified in both sporadic and familial PD patients, suggesting that inhibiting LRRK2 kinase activity presents a promising avenue for the pursuit of effective PD treatment strategies. In this Viewpoint, we discuss the exciting new insights regarding the development of LRRK2 kinase inhibitors as a treatment for Parkinson's disease.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4092-4094"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aromatic Amino Acid Hydroxylases as Off-Targets of Histone Deacetylase Inhibitors. 作为组蛋白去乙酰化酶抑制剂非靶点的芳香族氨基酸羟化酶
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-10 DOI: 10.1021/acschemneuro.4c00346
Anne Baumann, Niklas Papenkordt, Dina Robaa, Peter D Szigetvari, Anja Vogelmann, Franz Bracher, Wolfgang Sippl, Manfred Jung, Jan Haavik

The aromatic amino acid hydroxylases (AAAHs) phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylases 1 and 2 are structurally related enzymes that contain an active site iron atom and depend on tetrahydrobiopterin (BH4) as cosubstrate. Due to their important roles in synthesis of serotonin, dopamine, noradrenaline, and adrenaline and their involvement in cardiovascular, neurological, and endocrine disorders, AAAHs have been targeted by substrate analogs, iron chelators, and allosteric ligands. Phenylalanine hydroxylase is also off-target of the histone deacetylase (HDAC) inhibitor panobinostat. To systematically explore the binding of HDAC inhibitors to AAAHs, we screened a library of 307 HDAC inhibitors and structural analogs against tryptophan hydroxylase 1 using a fluorescence-based thermal stability assay, followed by activity assays. Selected hits were enzymatically tested against all four purified human AAAHs. Cellular thermal shift assay was performed for phenylalanine hydroxylase. We show that panobinostat and structurally related compounds such as TB57, which similarly to panobinostat also contains a cinnamoyl hydroxamate, bind to human AAAHs and inhibit these enzymes with high selectivity within the class (panobinostat inhibition (IC50): phenylalanine hydroxylase (18 nM) > tyrosine hydroxylase (450 nM) > tryptophan hydroxylase 1 (1960 nM). This study shows that panobinostat and related hydroxamic acid type HDAC inhibitors inhibit all AAAHs at therapeutically relevant concentrations. Our results warrant further investigations of the off-target relevance of HDAC inhibitors intended for clinical use and provide directions for new dual HDAC/AAAH and selective AAAH inhibitors. These findings may also provide a new mechanistic link between regulation of histone modification, AAAH function, and monoaminergic neurotransmission.

芳香族氨基酸羟化酶(AAAHs)苯丙氨酸羟化酶、酪氨酸羟化酶和色氨酸羟化酶 1 和 2 是结构相关的酶,含有一个活性位点铁原子,依赖四氢生物蝶呤(BH4)作为共底物。由于 AAAHs 在合成血清素、多巴胺、去甲肾上腺素和肾上腺素中的重要作用,以及它们在心血管、神经和内分泌疾病中的参与作用,它们已成为底物类似物、铁螯合剂和异位配体的靶标。苯丙氨酸羟化酶也是组蛋白去乙酰化酶(HDAC)抑制剂帕诺比诺司他的非靶标。为了系统地探索 HDAC 抑制剂与 AAAHs 的结合,我们使用基于荧光的热稳定性测定法筛选了 307 种 HDAC 抑制剂和结构类似物库,以测定色氨酸羟化酶 1 的活性。针对所有四种纯化的人类 AAAHs 对选定的抑制剂进行了酶学测试。对苯丙氨酸羟化酶进行了细胞热转移测定。我们的研究表明,帕诺比诺司他和结构相关的化合物(如 TB57,与帕诺比诺司他类似,也含有肉桂酰羟酰胺)能与人类 AAAHs 结合并抑制这些酶,在同类化合物中具有很高的选择性(帕诺比诺司他抑制作用(IC50):苯丙氨酸羟化酶(18 nM)>酪氨酸羟化酶(450 nM)>色氨酸羟化酶 1(1960 nM))。这项研究表明,帕诺比诺司他和相关的羟肟酸型 HDAC 抑制剂在治疗相关浓度下可抑制所有 AAAHs。我们的研究结果值得进一步研究用于临床的 HDAC 抑制剂的脱靶相关性,并为新的 HDAC/AAAH 双重抑制剂和选择性 AAAH 抑制剂提供了方向。这些发现还可能为组蛋白修饰调控、AAAH 功能和单胺类神经递质之间提供了新的机制联系。
{"title":"Aromatic Amino Acid Hydroxylases as Off-Targets of Histone Deacetylase Inhibitors.","authors":"Anne Baumann, Niklas Papenkordt, Dina Robaa, Peter D Szigetvari, Anja Vogelmann, Franz Bracher, Wolfgang Sippl, Manfred Jung, Jan Haavik","doi":"10.1021/acschemneuro.4c00346","DOIUrl":"10.1021/acschemneuro.4c00346","url":null,"abstract":"<p><p>The aromatic amino acid hydroxylases (AAAHs) phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylases 1 and 2 are structurally related enzymes that contain an active site iron atom and depend on tetrahydrobiopterin (BH<sub>4</sub>) as cosubstrate. Due to their important roles in synthesis of serotonin, dopamine, noradrenaline, and adrenaline and their involvement in cardiovascular, neurological, and endocrine disorders, AAAHs have been targeted by substrate analogs, iron chelators, and allosteric ligands. Phenylalanine hydroxylase is also off-target of the histone deacetylase (HDAC) inhibitor panobinostat. To systematically explore the binding of HDAC inhibitors to AAAHs, we screened a library of 307 HDAC inhibitors and structural analogs against tryptophan hydroxylase 1 using a fluorescence-based thermal stability assay, followed by activity assays. Selected hits were enzymatically tested against all four purified human AAAHs. Cellular thermal shift assay was performed for phenylalanine hydroxylase. We show that panobinostat and structurally related compounds such as TB57, which similarly to panobinostat also contains a cinnamoyl hydroxamate, bind to human AAAHs and inhibit these enzymes with high selectivity within the class (panobinostat inhibition (IC<sub>50</sub>): phenylalanine hydroxylase (18 nM) > tyrosine hydroxylase (450 nM) > tryptophan hydroxylase 1 (1960 nM). This study shows that panobinostat and related hydroxamic acid type HDAC inhibitors inhibit all AAAHs at therapeutically relevant concentrations. Our results warrant further investigations of the off-target relevance of HDAC inhibitors intended for clinical use and provide directions for new dual HDAC/AAAH and selective AAAH inhibitors. These findings may also provide a new mechanistic link between regulation of histone modification, AAAH function, and monoaminergic neurotransmission.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4143-4155"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dexmedetomidine Attenuates Neuroinflammation-Mediated Hippocampal Neurogenesis Impairment in Sepsis-Associated Encephalopathy Mice through Central α2A-Adrenoceptor. 右美托咪定通过中枢α2A-肾上腺素受体减轻脓毒症相关脑病小鼠神经炎症介导的海马神经发生障碍
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-08 DOI: 10.1021/acschemneuro.4c00486
Xinlong Zhang, Yue Feng, Yi Zhong, Rui Ding, Yaoyi Guo, Fan Jiang, Yan Xing, Hongwei Shi, Hongguang Bao, Yanna Si

Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.

败血症相关脑病(SAE)是败血症的常见并发症之一,与较高的重症监护病房死亡率、住院时间延长和长期认知能力下降有关。脓毒症可诱发神经炎症,从而对海马神经发生产生负面影响。右美托咪定已被证明可防止 SAE。然而,其潜在机制仍不清楚。在本研究中,我们在神经干细胞(NSCs)培养中加入了脂多糖(LPS)刺激的星形胶质细胞条件培养基(LPS-CM),并在有或没有α2-肾上腺素受体拮抗剂育亨宾或α2A-肾上腺素受体拮抗剂BRL-44408的情况下对NSCs进行右美托咪定预处理。LPS-CM损害了NSCs的神经发生,表现为增殖减少、胶质细胞生成增强和活力下降。右美托咪定以剂量依赖的方式减轻了 LPS-CM 诱导的神经发生损伤。育亨宾和 BRL-44408 逆转了右美托咪定的作用。我们通过盲肠结扎和穿孔(CLP)建立了小鼠 SAE 模型。CLP诱发星形胶质细胞相关神经炎症和海马神经发生缺陷,并伴有学习和记忆力下降,右美托咪定可逆转这些症状。右美托咪定的作用被 BRL-44408 阻断。总之,我们的研究结果支持了右美托咪定可预防SAE的结论,这可能是通过星形胶质细胞α2A肾上腺素受体抑制神经炎症,并通过NSCsα2A肾上腺素受体减轻神经炎症诱导的海马神经元生成缺陷。
{"title":"Dexmedetomidine Attenuates Neuroinflammation-Mediated Hippocampal Neurogenesis Impairment in Sepsis-Associated Encephalopathy Mice through Central α2A-Adrenoceptor.","authors":"Xinlong Zhang, Yue Feng, Yi Zhong, Rui Ding, Yaoyi Guo, Fan Jiang, Yan Xing, Hongwei Shi, Hongguang Bao, Yanna Si","doi":"10.1021/acschemneuro.4c00486","DOIUrl":"10.1021/acschemneuro.4c00486","url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE), one of the common complications of sepsis, is associated with higher ICU mortality, prolonged hospitalization, and long-term cognitive decline. Sepsis can induce neuroinflammation, which negatively affects hippocampal neurogenesis. Dexmedetomidine has been shown to protect against SAE. However, the potential mechanism remains unclear. In this study, we added lipopolysaccharide (LPS)-stimulated astrocytes-conditioned media (LPS-CM) to neural stem cells (NSCs) culture, which were pretreated with dexmedetomidine in the presence or absence of the α2-adrenoceptor antagonist yohimbine or the α2A-adrenoceptor antagonist BRL-44408. LPS-CM impaired the neurogenesis of NSCs, characterized by decreased proliferation, enhanced gliogenesis, and declined viability. Dexmedetomidine alleviated LPS-CM-induced impairment of neurogenesis in a dose-dependent manner. Yohimbine, as well as BRL-44408, reversed the effects of dexmedetomidine. We established a mouse model of SAE via cecal ligation and perforation (CLP). CLP-induced astrocyte-related neuroinflammation and hippocampal neurogenesis deficits, accompanied by learning and memory decline, which were reversed by dexmedetomidine. The effect of dexmedetomidine was blocked by BRL-44408. Collectively, our findings support the conclusion that dexmedetomidine can protect against SAE, likely mediated by the combination of inhibiting neuroinflammation via the astrocytic α2A-adrenoceptor with attenuating neuroinflammation-induced hippocampal neurogenesis deficits via NSCs α2A-adrenoceptor.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4185-4201"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists. 多巴胺受体与配体相互作用的结构洞察:从激动剂到拮抗剂
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-01 DOI: 10.1021/acschemneuro.4c00295
Emmanuel D Barbosa, Yuanyuan Ma, Heather E Clift, Linda J Olson, Lan Zhu, Wei Liu

This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigated the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket. Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.

本研究以 D1R 和 D5R 亚型为重点,探讨了多巴胺受体与配体相互作用的复杂性。我们利用分子建模技术研究了泛拮抗剂罗替戈汀的结合,揭示了正交结合口袋的普遍结合模式。此外,我们还分析了 SKF83566 和 SCH23390 与拮抗剂-受体复合物的稳定性。通过计算模拟和热稳定性试验来研究特定突变对配体-受体相互作用的影响,我们深入了解了结合的稳定性。我们的研究还深入探讨了拮抗剂在非活性状态下与 D1R 和 D5R 结合的结构和能量方面。这些发现加深了我们对多巴胺受体药理学的理解,为中枢神经系统疾病的药物开发带来了希望,为这一领域未来的研究和创新打开了大门。
{"title":"Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists.","authors":"Emmanuel D Barbosa, Yuanyuan Ma, Heather E Clift, Linda J Olson, Lan Zhu, Wei Liu","doi":"10.1021/acschemneuro.4c00295","DOIUrl":"10.1021/acschemneuro.4c00295","url":null,"abstract":"<p><p>This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigated the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket. Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4123-4131"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand. KAC-50.1 作为一种潜在的 α-Synuclein PET 放射配体的鉴定以及体外和体内特性分析。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 Epub Date: 2024-11-11 DOI: 10.1021/acschemneuro.4c00493
Dinahlee Saturnino Guarino, Patricia Miranda Azpiazu, Dan Sunnemark, Charles S Elmore, Jonas Bergare, Markus Artelsmair, Gunnar Nordvall, Anton Forsberg Morén, Zhisheng Jia, Miguel Cortes-Gonzalez, Robert H Mach, Kyle C Wilcox, Sjoerd Finnema, Magnus Schou, Andrea Varrone

The accumulation of aggregated α-synuclein (α-syn) is a pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Here within, we report the in vitro characterization targeting site 2 of α-syn fibrils and in vivo evaluation of NHPs of KAC-50.1 as a potential α-syn positron emission tomography (PET) radioligand. Preclinical studies were performed using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. These experiments were followed by PET imaging in cynomolgus monkeys using [11C]KAC-50.1. [3H]KAC-50.1 displayed a KD of 35 nM toward site 2 in recombinant α-syn fibrils. Specific binding of [3H]KAC-50.1 was observed in brain tissues with abundant α-syn pathology but also in AD, PSP, and CBD cases, indicating binding to amyloid β (Aβ) and tau pathology. PET studies showed a rapid entrance of [11C]KAC-50.1 into the brain and relatively rapid washout from cortical brain regions, with slower washout in subcortical regions. [3H]KAC-50.1 is a ligand that binds to fibrillar α-syn but shows limited selectivity for α-syn versus Aβ and tau fibrils. PET studies in NHPs indicate that [11C]KAC-50.1, despite reversible kinetic properties, displays retention in white matter. Altogether, the in vitro and in vivo properties do not support further development of [11C]KAC-50.1 as a PET imaging agent.

聚集的α-突触核蛋白(α-syn)的积累是帕金森病(PD)和其他突触核蛋白病的病理标志。在此,我们报告了针对α-syn纤维蛋白第2位点的体外表征,以及对KAC-50.1作为潜在的α-syn正电子发射断层扫描(PET)放射性配体的NHP体内评估。临床前研究采用死后脑成像技术、放射性配体结合和生化研究等多维方法进行。在这些实验之后,使用[11C]KAC-50.1对猕猴进行了 PET 成像。[3H]KAC-50.1与重组α-syn纤维的第2位点的KD值为35 nM。[3H]KAC-50.1与大量α-syn病变的脑组织以及AD、PSP和CBD病例中的[3H]KAC-50.1都有特异性结合,表明它与淀粉样β(Aβ)和tau病变结合。PET 研究显示,[11C]KAC-50.1 能快速进入大脑,并相对快速地从大脑皮层区域冲出,在皮层下区域的冲出速度较慢。[3H]KAC-50.1是一种能与纤维状α-syn结合的配体,但相对于Aβ和tau纤维而言,它对α-syn的选择性有限。在 NHPs 中进行的 PET 研究表明,尽管[11C]KAC-50.1 具有可逆的动力学特性,但它仍能在白质中保留。总之,体外和体内特性不支持将[11C]KAC-50.1进一步开发为 PET 成像剂。
{"title":"Identification and In Vitro and In Vivo Characterization of KAC-50.1 as a Potential α-Synuclein PET Radioligand.","authors":"Dinahlee Saturnino Guarino, Patricia Miranda Azpiazu, Dan Sunnemark, Charles S Elmore, Jonas Bergare, Markus Artelsmair, Gunnar Nordvall, Anton Forsberg Morén, Zhisheng Jia, Miguel Cortes-Gonzalez, Robert H Mach, Kyle C Wilcox, Sjoerd Finnema, Magnus Schou, Andrea Varrone","doi":"10.1021/acschemneuro.4c00493","DOIUrl":"10.1021/acschemneuro.4c00493","url":null,"abstract":"<p><p>The accumulation of aggregated α-synuclein (α-syn) is a pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Here within, we report the in vitro characterization targeting site 2 of α-syn fibrils and in vivo evaluation of NHPs of KAC-50.1 as a potential α-syn positron emission tomography (PET) radioligand. Preclinical studies were performed using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. These experiments were followed by PET imaging in cynomolgus monkeys using [<sup>11</sup>C]KAC-50.1. [3H]KAC-50.1 displayed a KD of 35 nM toward site 2 in recombinant α-syn fibrils. Specific binding of [3H]KAC-50.1 was observed in brain tissues with abundant α-syn pathology but also in AD, PSP, and CBD cases, indicating binding to amyloid β (Aβ) and tau pathology. PET studies showed a rapid entrance of [<sup>11</sup>C]KAC-50.1 into the brain and relatively rapid washout from cortical brain regions, with slower washout in subcortical regions. [3H]KAC-50.1 is a ligand that binds to fibrillar α-syn but shows limited selectivity for α-syn versus Aβ and tau fibrils. PET studies in NHPs indicate that [<sup>11</sup>C]KAC-50.1, despite reversible kinetic properties, displays retention in white matter. Altogether, the in vitro and in vivo properties do not support further development of [<sup>11</sup>C]KAC-50.1 as a PET imaging agent.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4210-4219"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Interactions of Aβ Peptides Implicated in Alzheimer's Disease Shape Amyloid Oligomer Structures and Aggregation. 与阿尔茨海默病有关的 Aβ 肽的交叉相互作用会形成淀粉样蛋白寡聚体结构和聚集。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1021/acschemneuro.4c00492
Tanja Habeck, Silvana Smilla Zurmühl, António J Figueira, Edvaldo Vasconcelos Soares Maciel, Cláudio M Gomes, Frederik Lermyte

A defining hallmark of Alzheimer's disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. In vivo, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their in vivo proteotoxic interplay.

阿尔茨海默病(AD)的一个明显特征是淀粉样β(Aβ)肽的突触聚集。在体内,Aβ的产生导致了多种变体的混合,其中Aβ40、Aβ42和Aβ43大量存在于AD大脑中,它们的相对丰度被认为在疾病的发生和发展中起着作用。然而,Aβ40、Aβ42和Aβ43异质异构化的发生以及随后对Aβ聚集的影响仍然难以捉摸,本文对此进行了研究。我们首先利用硫黄素-T(ThT)监测的聚集试验和原生质谱耦合离子迁移率分析(IM-MS)表明,所有 Aβ 肽都具有聚集能力,并能自组装成具有不同构象群的同源异构体,其中 Aβ40 的构象群比更长的变体更为明显。然后对 Aβ 变体的二元混合物进行了 ThT 试验,结果表明 Aβ42 和 Aβ43 的聚集与 Aβ40 无关,但能显著加快 Aβ40 的纤化。据观察,Aβ42 和 Aβ43 同时聚集并相互加速纤维的形成,这可能涉及异质异构化。因此,原生质谱分析表明,所有变体之间都存在成对的寡聚,并形成了异二聚体和异三聚体。有趣的是,IM-MS 显示,与同源低聚物相比,含有较长 Aβ 变体的异源低聚物富含较低碰撞截面的构象。这表明,Aβ42 和 Aβ43 能够重塑低聚物结构,使其达到更高的压实水平。总之,我们的研究结果为AD中涉及的Aβ变体的异质寡聚化提供了一个机理描述,有助于合理解释它们在体内的蛋白毒性相互作用。
{"title":"Cross-Interactions of Aβ Peptides Implicated in Alzheimer's Disease Shape Amyloid Oligomer Structures and Aggregation.","authors":"Tanja Habeck, Silvana Smilla Zurmühl, António J Figueira, Edvaldo Vasconcelos Soares Maciel, Cláudio M Gomes, Frederik Lermyte","doi":"10.1021/acschemneuro.4c00492","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00492","url":null,"abstract":"<p><p>A defining hallmark of Alzheimer's disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. <i>In vivo</i>, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their <i>in vivo</i> proteotoxic interplay.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathological Mutations D169G and P112H Electrostatically Aggravate the Amyloidogenicity of the Functional Domain of TDP-43. 病理突变 D169G 和 P112H 会静电加剧 TDP-43 功能域的淀粉样形成。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-18 DOI: 10.1021/acschemneuro.4c00372
Meenakshi Pillai, Anjali D Patil, Atanu Das, Santosh Kumar Jha

Aggregation of TDP-43 is linked to the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Notably, electrostatic point mutations such as D169G and P112H, located within the highly conserved functional tandem RNA recognition motif (RRM) domains of the TDP-43 protein (TDP-43tRRM), have been identified in diseased patients as well. In this study, we address how the electrostatic mutations alter both the native state stability and aggregation propensity of TDP-43tRRM. The mutants D169G and P112H show increased chemical stability compared to the TDP-43tRRM at physiological pH. However, at low pH, both the mutants undergo a conformational change to form amyloid-like fibrils, though with variable rates─the P112H mutant being substantially faster than the other two sequences (TDP-43tRRM and D169G mutant) showing comparable rates. Moreover, among the three sequences, only the P112H mutant undergoes a strong ionic strength-dependent aggregability trend. These observations signify the substantial contribution of the excess charge of the P112H mutant to its unique aggregation process. Complementary simulated observables with atomistic resolution assign the experimentally observed sequence-, pH-, and ionic strength-dependent aggregability pattern to the degree of thermal lability of the mutation site-containing RRM1 domain and its extent of dynamical anticorrelation with the RRM2 domain whose combination eventually dictate the extent of generation of aggregation-prone partially unfolded conformational ensembles. Our choice of a specific charge-modulated pathogenic mutation-based experiment-simulation-combination approach unravels the otherwise hidden residue-wise contribution to the individual steps of this extremely complicated multistep aggregation process.

TDP-43 的聚集与包括肌萎缩性脊髓侧索硬化症(ALS)在内的多种神经退行性疾病的发病机制有关。值得注意的是,位于 TDP-43 蛋白(TDP-43tRRM)高度保守的功能串联 RNA 识别基序(RRM)域内的 D169G 和 P112H 等静电点突变也已在患病患者中发现。在本研究中,我们探讨了静电突变如何改变 TDP-43tRRM 的原生态稳定性和聚集倾向。与生理 pH 值下的 TDP-43tRRM 相比,突变体 D169G 和 P112H 显示出更高的化学稳定性。然而,在低 pH 值条件下,两种突变体都会发生构象变化,形成淀粉样纤维,但速度各不相同--P112H 突变体的速度大大快于其他两种序列(TDP-43tRRM 和 D169G 突变体),两者的速度相当。此外,在这三个序列中,只有 P112H 突变体出现了强烈的离子强度依赖性聚集趋势。这些观察结果表明,P112H 突变体的过量电荷对其独特的聚集过程做出了重大贡献。具有原子分辨率的互补模拟观测结果将实验观察到的序列、pH 值和离子强度依赖性聚集模式归因于含有突变位点的 RRM1 结构域的热稳定性程度及其与 RRM2 结构域的动态反相关程度,两者的结合最终决定了易发生聚集的部分展开构象组合的生成程度。我们选择了一种基于实验-模拟-组合方法的特定电荷调制致病突变,从而揭示了这一极其复杂的多步聚集过程中各个步骤中隐藏的残基贡献。
{"title":"Pathological Mutations D169G and P112H Electrostatically Aggravate the Amyloidogenicity of the Functional Domain of TDP-43.","authors":"Meenakshi Pillai, Anjali D Patil, Atanu Das, Santosh Kumar Jha","doi":"10.1021/acschemneuro.4c00372","DOIUrl":"10.1021/acschemneuro.4c00372","url":null,"abstract":"<p><p>Aggregation of TDP-43 is linked to the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Notably, electrostatic point mutations such as D169G and P112H, located within the highly conserved functional tandem RNA recognition motif (RRM) domains of the TDP-43 protein (TDP-43<sup>tRRM</sup>), have been identified in diseased patients as well. In this study, we address how the electrostatic mutations alter both the native state stability and aggregation propensity of TDP-43<sup>tRRM</sup>. The mutants D169G and P112H show increased chemical stability compared to the TDP-43<sup>tRRM</sup> at physiological pH. However, at low pH, both the mutants undergo a conformational change to form amyloid-like fibrils, though with variable rates─the P112H mutant being substantially faster than the other two sequences (TDP-43<sup>tRRM</sup> and D169G mutant) showing comparable rates. Moreover, among the three sequences, only the P112H mutant undergoes a strong ionic strength-dependent aggregability trend. These observations signify the substantial contribution of the excess charge of the P112H mutant to its unique aggregation process. Complementary simulated observables with atomistic resolution assign the experimentally observed sequence-, pH-, and ionic strength-dependent aggregability pattern to the degree of thermal lability of the mutation site-containing RRM1 domain and its extent of dynamical anticorrelation with the RRM2 domain whose combination eventually dictate the extent of generation of aggregation-prone partially unfolded conformational ensembles. Our choice of a specific charge-modulated pathogenic mutation-based experiment-simulation-combination approach unravels the otherwise hidden residue-wise contribution to the individual steps of this extremely complicated multistep aggregation process.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations. 无序蛋白质构象探索的新前沿:自动编码器与分子模拟的整合。
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-18 DOI: 10.1021/acschemneuro.4c00670
Jiyuan Zeng, Zhongyuan Yang, Yiming Tang, Guanghong Wei

Intrinsically disordered proteins (IDPs) are closely associated with a number of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Due to the highly dynamic nature of IDPs, their structural determination and conformational exploration pose significant challenges for both experimental and computational research. Recently, the integration of machine learning with molecular dynamics (MD) simulations has emerged as a promising methodology for efficiently exploring the conformation spaces of IDPs. In this viewpoint, we briefly review recently developed autoencoder-based models designed to enhance the conformational exploration of IDPs through embedding and latent sampling. We highlight the capability of autoencoders in expanding the conformations sampled by MD simulations and discuss their limitations due to the non-Gaussian latent space distribution and the limited conformational diversity of training conformations. Potential strategies to overcome these limitations are also discussed.

本征无序蛋白(IDPs)与阿尔茨海默病和帕金森病等多种神经退行性疾病密切相关。由于 IDPs 的高度动态性,其结构确定和构象探索对实验和计算研究都提出了巨大挑战。最近,机器学习与分子动力学(MD)模拟的整合已成为高效探索 IDPs 构象空间的一种有前途的方法。在本文中,我们简要回顾了最近开发的基于自动编码器的模型,这些模型旨在通过嵌入和潜在采样加强对 IDP 的构象探索。我们强调了自动编码器在扩展 MD 模拟采样的构象方面的能力,并讨论了由于非高斯潜空间分布和训练构象的有限构象多样性而导致的自动编码器的局限性。我们还讨论了克服这些局限性的潜在策略。
{"title":"Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations.","authors":"Jiyuan Zeng, Zhongyuan Yang, Yiming Tang, Guanghong Wei","doi":"10.1021/acschemneuro.4c00670","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00670","url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs) are closely associated with a number of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Due to the highly dynamic nature of IDPs, their structural determination and conformational exploration pose significant challenges for both experimental and computational research. Recently, the integration of machine learning with molecular dynamics (MD) simulations has emerged as a promising methodology for efficiently exploring the conformation spaces of IDPs. In this viewpoint, we briefly review recently developed autoencoder-based models designed to enhance the conformational exploration of IDPs through embedding and latent sampling. We highlight the capability of autoencoders in expanding the conformations sampled by MD simulations and discuss their limitations due to the non-Gaussian latent space distribution and the limited conformational diversity of training conformations. Potential strategies to overcome these limitations are also discussed.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain. 解密全长 TDP-43 的单体和二聚体构象景观以及 C 端结构域的影响
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-16 DOI: 10.1021/acschemneuro.4c00557
Vaishnavi Tammara, Abhilasha A Doke, Santosh Kumar Jha, Atanu Das

The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.

TAR DNA 结合蛋白 43 kDa(TDP-43)在细胞中的异常聚集导致了多种致命神经退行性疾病的发病机制。目前,由于缺乏全长 TDP-43 的详细结构信息,因此无法设计出可行的治疗策略。为了全面了解这样一个微妙的相空间,我们采用了一种多尺度模拟方法,发现了许多关键特征,大致可归纳为两类:(1) 与状态无关的特征,包括固有的链可折叠性、由末端结构域决定的崎岖多态景观、高β-片倾向性、由基于骨架的链内氢键和静电力保持的结构完整性、C-末端结构域在链内跨域界面中的突出地位以及疏水和亲水(带电和极性)残基在跨域界面中的平等参与;(2) 二聚化调制特征,包括较慢的塌缩动力学、受限的多态性景观、侧链在链间氢键中的主导地位、N 端结构域出现在二聚体界面中,以及亲水(特别是极性)残基在链间同域和跨域界面中的突出地位。在我们的研究中,鲜为人知的 C 端结构域是最关键的结构决定性结构域,它在孤立状态下通过背骨架内氢键的稳定而形成具有高 β 片倾向的紧凑构象,而在整合状态下这些特征则相对较弱。通过补充性光谱方法对我们的模拟观测值进行多次验证,确保了计算预测的 TDP-43 聚集景观特征的稳健性。
{"title":"Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain.","authors":"Vaishnavi Tammara, Abhilasha A Doke, Santosh Kumar Jha, Atanu Das","doi":"10.1021/acschemneuro.4c00557","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00557","url":null,"abstract":"<p><p>The aberrant aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in cells leads to the pathogenesis of multiple fatal neurodegenerative diseases. Decoding the proposed initial transition between its functional dimeric and aggregation-prone monomeric states can potentially design a viable therapeutic strategy, which is presently limited by the lack of structural detail of the full-length TDP-43. To achieve a complete understanding of such a delicate phase space, we employed a multiscale simulation approach that unearths numerous crucial features, broadly summarized in two categories: (1) state-independent features that involve inherent chain collapsibility, rugged polymorphic landscape dictated by the terminal domains, high β-sheet propensity, structural integrity preserved by backbone-based intrachain hydrogen bonds and electrostatic forces, the prominence of the C-terminal domain in the intrachain cross-domain interfaces, and equal participation of hydrophobic and hydrophilic (charged and polar) residues in cross-domain interfaces; and (2) dimerization-modulated characteristics that encompass slower collapsing dynamics, restricted polymorphic landscape, the dominance of side chains in interchain hydrogen bonds, the appearance of the N-terminal domain in the dimer interface, and the prominence of hydrophilic (specifically polar) residues in interchain homo- and cross-domain interfaces. In our work, the ill-known C-terminal domain appears as the most crucial structure-dictating domain, which preferably populates a compact conformation with a high β-sheet propensity in its isolated state stabilized by intrabackbone hydrogen bonds, and these signatures are comparatively faded in its integrated form. Validation of our simulated observables by a complementary spectroscopic approach on multiple counts ensures the robustness of the computationally predicted features of the TDP-43 aggregation landscape.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity. 发现第一类具有良好神经营养活性的 TSPO/碳酸酐酶双重调节剂
IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-15 DOI: 10.1021/acschemneuro.4c00477
Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani

In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative 3 as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.

在寻找治疗神经退行性疾病的潜在新疗法时,线粒体 18 kDa 转运蛋白(TSPO)和脑碳酸酐酶(CA)同工酶被视为潜在靶点。根据我们近年来开发的一类高亲和性和选择性 TSPO 配体和一类 CA 激活剂的结构,我们开发了一个小型的 2-苯基吲哚基 TSPO/CA 双调制剂库,它能够在低微摩尔/亚微摩尔范围内结合 TSPO 并激活 CA VII。计算研究证实了与这两个靶点的相互作用。通过对人类小胶质细胞 C20 进行生物学研究,发现衍生物 3 是一种很有前景的先导化合物,值得在未来进行优化,因为它(i)没有细胞毒性,(ii)能够刺激 TSPO 的类固醇生成功能并激活 CA VII,(iii)能够有效上调脑源性神经营养因子的基因表达。
{"title":"Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity.","authors":"Valeria Poggetti, Elisa Angeloni, Lorenzo Germelli, Benito Natale, Muhammad Waqas, Giuliana Sarno, Andrea Angeli, Simona Daniele, Silvia Salerno, Elisabetta Barresi, Sandro Cosconati, Sabrina Castellano, Eleonora Da Pozzo, Barbara Costa, Claudiu T Supuran, Federico Da Settimo, Sabrina Taliani","doi":"10.1021/acschemneuro.4c00477","DOIUrl":"https://doi.org/10.1021/acschemneuro.4c00477","url":null,"abstract":"<p><p>In searching for putative new therapeutic strategies to treat neurodegenerative diseases, the mitochondrial 18 kDa translocator protein (TSPO) and cerebral isoforms of carbonic anhydrase (CA) were exploited as potential targets. Based on the structures of a class of highly affine and selective TSPO ligands and a class of CA activators, both developed by us in recent years, a small library of 2-phenylindole-based dual TSPO/CA modulators was developed, able to bind TSPO and activate CA VII in the low micromolar/submicromolar range. The interaction with the two targets was corroborated by computational studies. Biological investigation on human microglia C20 cells identified derivative <b>3</b> as a promising lead compound worthy of future optimization due to its (i) lack of cytotoxicity, (ii) ability to stimulate TSPO steroidogenic function and activate CA VII, and (iii) ability to effectively upregulate gene expression of the brain-derived neurotrophic factor.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Chemical Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1