The aim of this study was to compare nonrandom associations between physically adjacent single methylation polymorphism loci among rheumatoid arthritis (RA) and normal subjects for investigating RA-risk methylation haplotypes (meplotype). With 354 ACPA-positive RA patients and 335 normal controls selected from a case–control study based on Swedish population, we conducted the first RA epigenome-wide meplotype association study using our software EWAS2.0, mainly including (i) converted the β value to methylation genotype (menotype) data, (ii) identified methylation disequilibrium (MD) block, (iii) calculated frequent of each meplotypes in MD block and performed case–control association test and (iv) screened for RA-risk meplotypes by odd ratio (OR) and p-values. Ultimately, 545 meplotypes on 334 MD blocks were identified significantly associated with RA (p-value < .05). These meplotypes were mapped to 329 candidate genes related to RA. Subsequently, combined with gene optimization, eight RA-risk meplotypes were identified on three risk genes: HLA-DRB1, HLA-DRB5 and HLA-DQB1. Our results reported the relationship between DNA methylation pattern on HLA-DQB1 and the risk of RA for the first time, demonstrating the co-demethylation of ‘cg22984282’ and ‘cg13423887’ on HLA-DQB1 gene (meplotype UU, p-value = 2.90E − 6, OR = 1.68, 95% CI = [1.35, 2.10]) may increase the risk of RA. Our results demonstrates the potential of methylation haplotype analysis to identify RA-related genes from a new perspective and its applicability to the study of other disease.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease. Chronic HCV infection is also an important cause of hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCV has the capacity to evade immune surveillance by altering the host immune response. Moreover, variations in immune-related genes can lead to differential susceptibility to HCV infection as well as interfere on the susceptibility to the development of hepatic fibrosis, cirrhosis and HCC. The human leucocyte antigen G (HLA-G) gene codes for an immunomodulatory protein known to be expressed in the maternal–foetal interface and in immune-privileged tissues. The HLA-G 3′ untranslated region (3′UTR) is important for mRNA stability, and variants in this region are known to impact gene expression. Studies, mainly focusing in a 14 bp insertion/deletion polymorphism, have correlated HLA-G 3′UTR with susceptibility to viral infections, but other polymorphic variants in the HLA-G 3′UTR might also affect HCV infection as they are inherited as haplotypes. The present study evaluated HLA-G 3′UTR polymorphisms and performed linkage disequilibrium test and haplotype assembly in 286 HCV infected patients who have developed fibrosis, cirrhosis or HCC, as well as in 129 healthy control subjects. Haplotypes UTR-1, UTR-2 and UTR-3 were the most observed in HCV+ patients, in the frequencies of 0.276, 0.255 and 0.121, respectively. No statistically significant difference was observed between HCV+ and control subjects, even when patients were grouped according to outcome (HCC, cirrhosis or fibrosis). Despite that, some trends in the results were observed, and therefore, we cannot rule out the possibility that variants associated to high HLA-G expression can be involved in HCV infection susceptibility.
This study provides the first immunogenetic preliminary evidence that specific human leucocyte antigen (HLA) class I and class II alleles and haplotypes may be relevant for BRCA1 c.5263_5264insC driven oncogenesis. Observed HLA associations might have practical implications for establishment of predictive markers for the response to immunotherapies in malignancies driven by this germ-line mutation.
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is involved in the regulation of immune responses mediated by T cells. This study aimed to explore the correlation between CTLA-4 gene polymorphisms and the risk of gastric cancer (GC) in the Bai minority population of southwestern China. A total of 422 GC patients and 397 healthy controls (HC) were included in this case–control study. Four single nucleotide polymorphism sites of CTLA-4 gene (rs231775, rs733618, rs16840252 and rs3087243) were selected and analysed. The results showed a significant difference in the rs733618 loci between GC and HC groups. The frequency of the rs733618 polymorphism ‘TC’ genotype was significantly lower in GC group compared to the HC group [odds ratio (OR), 95% confidence interval (CI): .47 (.35–.63), p < .001]. GC cases with dominant genetic model ‘TC + CC’ had a 47% reduced risk of GC [OR, 95%CI: .53 (.40–.71), p < .001]. Subgroup analyses revealed that the rs733618 ‘TC + CC’ genotype was associated with a lower risk of GC in male patients [OR, 95%CI: .42 (.31–.58), p < .001], those aged ≤60 years old [OR, 95%CI: .27 (.18–.42), p < .001], non-drinkers [OR, 95%CI: .21 (.13–.33), p < .001], non-smokers [OR, 95%CI: .38 (.25–.57), p < .001] and individuals without Helicobacter pylori infection [OR, 95%CI: .16 (.10–.26), p < .001]. Further multivariated analyses indicated that individuals with the ‘TC + CC’ rs733618 genotype who were aged ≤60 years old [OR, 95%CI: .42 (.29–.83), p = .032] and had no H. pylori infection [OR, 95%CI: .35 (.28–.76), p = .018] were found to have a protective effect against GC. Additionally, soluble CTLA-4 were significantly lower in GC patients with ‘TC’ and ‘TC + CC’ genotypes (all p < .05). Our findings suggest that the rs733618 polymorphism of CTLA-4 gene may play a critical role in the prevention of GC.
The association between HLA loci and haematological malignancy has been reported in certain populations. However, there are limited data for HLA loci at a high-resolution level with haematological malignancy in China. In this study, a total of 1115 patients with haematological malignancies (including 490 AML, 410 acute lymphoblastic leukaemia (ALL), 122 myelodysplastic syndrome [MDS] and 93 non-Hodgkin's lymphoma [NHL]) and 1836 healthy individuals as a control group in the Han population of Zhejiang Province, China, were genotyped for HLA-A, HLA-C, HLA-B, HLA-DRB1 and HLA-DQB1 loci at high resolution. The possible association between HLA alleles and haplotypes and haematologic malignancy was analysed. The allele frequencies (AFs) of HLA-A*02:05, HLA-A*02:06, HLA-A*32:01, HLA-B*35:03, HLA-B*54:01, HLA-B*55:07, HLA-DRB1*04:05, HLA-DRB1*15:01, HLA-DQB1*04:01 and HLA-DQB1*06:02 in the MDS patients were much higher than those in the control group (P < 0.05), while the AFs of HLA-C*07:02, HLA-DRB1*03:01, HLA-DRB1*14:54, HLA-DQB1*02:01 and HLA-DQB1*05:03 were obviously lower than those in the control group (p < .05). Interestingly, the differences in these HLA alleles in patients with MDS were not significant after applying Bonferroni correction (Pc > .05), except for HLA-A*02:06 (Pc < .01). There were 13, 6 and 10 HLA alleles with uncorrected significant differences (p < .05) among patients with AML, ALL and NHL, respectively, compared with those in the control group, but the differences in these HLA alleles were not significant after correction (Pc > .05). Compared to those of the control group, there were some haplotypes over 1.00% frequency in patients with AML, MDS and NHL patients with uncorrected significant differences (p < .05). However, none of them showed a significant difference after correction as well (Pc > .05). The study reveals that HLA-A*02:06 may lead to susceptibility to MDS, but none of the HLA alleles were associated with AML, ALL or NHL after correction. These data will help to further understand the role of HLA loci in the pathogenesis of haematological malignancy in China.
Gynaecological tumours that threaten the health of women, especially when advanced and recurrent, have remained mostly intractable to existing treatments. Therefore, new therapeutic targets are urgently needed. Human leukocyte antigen-G (HLA-G) is a nonclassical major histocompatibility complex class I molecule typically expressed in foetuses for protection against destruction by the maternal immune system. HLA-G is also expressed under pathological conditions, such as in solid tumours, and may participate in tumour development and serve as a novel immune checkpoint in cancer. Furthermore, it is expressed in most gynaecological tumours. Therefore, inhibiting HLA-G and its receptors to block the immune escape pathway could represent a new strategy in cancer immunotherapy. To the best of our knowledge, this review is the first to summarize recent research findings on HLA-G in gynaecological oncology. We highlight the fact that HLA-G is expressed in gynaecological tumour tissues, wherein it inactivates immune effectors involved in tumour progression. Further studies on HLA-G in gynaecological oncology are needed to incorporate HLA-G into the design and evaluation of immunotherapy for malignant gynaecological diseases.
The inducible T-cell costimulator (ICOS) may play an important role in adaptive immunity by regulating the interaction between T cells and antigen-presenting cells. Disruption of this molecule can lead to autoimmune diseases, in particular systemic lupus erythematosus (SLE). In this study, we aimed to explore the possible association between ICOS gene polymorphisms and SLE as well as their influence on disease susceptibility and clinical outcomes. A further objective was to assess the potential impact of these polymorphisms on RNA expression. A case–control study, including 151 patients with SLE, and 291 unrelated healthy controls (HC) matched in gender, and geographical origin, was performed to genotype two polymorphisms located in the ICOS gene: rs11889031 (−693 G/A) and rs10932029 (IVS1 + 173 T/C); using the polymerase chain reaction (PCR)-restriction fragment length polymorphism method. The different genotypes were validated by direct sequencing. The expression level of ICOS mRNA was assessed by quantitative PCR in peripheral blood mononuclear cells of SLE patients and HC. The results were analysed using Shesis and spss.20. Our results revealed a significant association between ICOS gene rs11889031 > CC genotype and SLE disease (codominant genetic model 1, (C/C vs. C/T), p = .001, odds ratio [OR] = 2.18 IC [1.36–3.49]); codominant genetic model 2, (C/C vs. T/T) p = .007, OR = 15.29 IC [1.97–118.5]); dominant genetic model, (C/C vs. C/T + T/T) p = .0001, OR = 2.44 IC [1.53–3.9]). Besides, there was a marginal association between rs11889031 > TT genotype and T allele with a protective role from SLE (recessive genetic model, p = .016, OR = 0.08 IC [0.01–0.63] and p = 7.6904E − 05, OR = 0.43 IC = [0.28–0.66], respectively). Moreover, statistical analysis indicated that the rs11889031 > CC genotype was linked with clinical and serological manifestations of SLE, including blood pressure, and anti-SSA antibodies production in SLE patients. However, the ICOS gene rs10932029 polymorphism was not associated with susceptibility to SLE. On the other side, we did not note any effect of the two selected polymorphisms on the level of ICOS mRNA gene expression. The study showed a significant predisposing association of the ICOS rs11889031 > CC genotype with SLE, in contrast to a protective effect of rs11889031 > TT genotype in Tunisian patients. Our results suggest that ICOS rs11889031 may act as a risk factor for SLE and could be used as a genetic susceptibility biomarker.