Pub Date : 2024-01-20DOI: 10.1016/j.ijforecast.2023.12.005
Forecast combination improves upon the component forecasts. Most often, combination approaches are restricted to the linear setting only. However, theory shows that if the component forecasts are neutrally dispersed—a requirement for probabilistic calibration—linear forecast combination will only increase dispersion and thus lead to miscalibration. Furthermore, the accuracy of the component forecasts may vary over time and the combination weights should vary accordingly, necessitating updates as time progresses. In this paper, we develop an online version of the beta-transformed linear pool, which theoretically can transform the probabilistic forecasts such that they are neutrally dispersed. We show that, in the case of stationary synthetic time series, the performance of the developed method converges to that of the optimal combination in hindsight. Moreover, in the case of nonstationary real-world time series from a wind farm in mid-west France, the developed model outperforms the optimal combination in hindsight.
{"title":"CRPS-based online learning for nonlinear probabilistic forecast combination","authors":"","doi":"10.1016/j.ijforecast.2023.12.005","DOIUrl":"10.1016/j.ijforecast.2023.12.005","url":null,"abstract":"<div><p>Forecast combination improves upon the component forecasts. Most often, combination approaches are restricted to the linear setting only. However, theory shows that if the component forecasts are neutrally dispersed—a requirement for probabilistic calibration—linear forecast combination will only increase dispersion and thus lead to miscalibration. Furthermore, the accuracy of the component forecasts may vary over time and the combination weights should vary accordingly, necessitating updates as time progresses. In this paper, we develop an online version of the beta-transformed linear pool, which theoretically can transform the probabilistic forecasts such that they are neutrally dispersed. We show that, in the case of stationary synthetic time series, the performance of the developed method converges to that of the optimal combination in hindsight. Moreover, in the case of nonstationary real-world time series from a wind farm in mid-west France, the developed model outperforms the optimal combination in hindsight.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1449-1466"},"PeriodicalIF":6.9,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1016/j.ijforecast.2023.12.006
Seasonal demand forecasting is critical for effective supply chain management. However, conventional forecasting methods face difficulties accurately estimating seasonal variations, owing to time-varying demand trends and limited data availability. In this paper, we propose a Fourier time-varying grey model (FTGM) to tackle this issue. The FTGM builds upon grey models, which are effective with limited data, and leverages Fourier functions to approximate time-varying parameters that allow it to represent seasonal variations. A data-driven selection algorithm adaptively determines the appropriate Fourier order of the FTGM without prior knowledge of data characteristics. Using the well-known M5 competition data, we compare our model with state-of-the-art forecasting methods taken from grey models, statistical methods, and architectures of neural network-based methods. The experimental results show that the FTGM outperforms popular seasonal forecasting methods in terms of standard accuracy metrics, providing a competitive alternative for seasonal demand forecasting in retail companies.
{"title":"Forecasting seasonal demand for retail: A Fourier time-varying grey model","authors":"","doi":"10.1016/j.ijforecast.2023.12.006","DOIUrl":"10.1016/j.ijforecast.2023.12.006","url":null,"abstract":"<div><p><span>Seasonal demand forecasting is critical for effective supply chain management. However, conventional forecasting methods </span>face difficulties accurately estimating seasonal variations, owing to time-varying demand trends and limited data availability. In this paper, we propose a Fourier time-varying grey model (FTGM) to tackle this issue. The FTGM builds upon grey models, which are effective with limited data, and leverages Fourier functions to approximate time-varying parameters that allow it to represent seasonal variations. A data-driven selection algorithm adaptively determines the appropriate Fourier order of the FTGM without prior knowledge of data characteristics. Using the well-known M5 competition data, we compare our model with state-of-the-art forecasting methods taken from grey models, statistical methods, and architectures of neural network-based methods. The experimental results show that the FTGM outperforms popular seasonal forecasting methods in terms of standard accuracy metrics, providing a competitive alternative for seasonal demand forecasting in retail companies.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1467-1485"},"PeriodicalIF":6.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1016/j.ijforecast.2023.12.004
Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.
{"title":"Properties of the reconciled distributions for Gaussian and count forecasts","authors":"","doi":"10.1016/j.ijforecast.2023.12.004","DOIUrl":"10.1016/j.ijforecast.2023.12.004","url":null,"abstract":"<div><p>Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1438-1448"},"PeriodicalIF":6.9,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300136X/pdfft?md5=9e8e80067e02ac1e611fc1ae1e5aec76&pid=1-s2.0-S016920702300136X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139496821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1016/j.ijforecast.2023.12.001
{"title":"Acknowledgement to reviewers","authors":"","doi":"10.1016/j.ijforecast.2023.12.001","DOIUrl":"10.1016/j.ijforecast.2023.12.001","url":null,"abstract":"","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 2","pages":"Pages 855-857"},"PeriodicalIF":7.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1016/j.ijforecast.2023.11.007
Global container ship movements may reliably predict trade flows. First, this paper provides the methodology to construct maritime shipping time series from a dataset comprising millions of container vessel positions annually. Second, to forecast monthly goods trade using these time series, this study outlines the use of the least absolute shrinkage and selection operator (LASSO) in combination with a partial least squares process (PLS). An expanding window, out-of-sample exercise demonstrates that constructed forecasts outperform benchmark models for the vast majority of 76 countries and regions. The performance holds true for unilateral and bilateral trade flows, for trade of developed and developing countries, for real and nominal trade, as well as for time periods of economic crisis such as the COVID-19 pandemic. The resulting forecasts of trade flows precede official statistics by several months and may facilitate quantification of supply chain disruptions and trade wars.
{"title":"Thinking outside the container: A sparse partial least squares approach to forecasting trade flows","authors":"","doi":"10.1016/j.ijforecast.2023.11.007","DOIUrl":"10.1016/j.ijforecast.2023.11.007","url":null,"abstract":"<div><p>Global container ship movements may reliably predict trade flows. First, this paper provides the methodology to construct maritime shipping time series from a dataset comprising millions of container vessel positions annually. Second, to forecast monthly goods trade using these time series, this study outlines the use of the least absolute shrinkage and selection operator (LASSO) in combination with a partial least squares process (PLS). An expanding window, out-of-sample exercise demonstrates that constructed forecasts outperform benchmark models for the vast majority of 76 countries and regions. The performance holds true for unilateral and bilateral trade flows, for trade of developed and developing countries, for real and nominal trade, as well as for time periods of economic crisis such as the COVID-19 pandemic. The resulting forecasts of trade flows precede official statistics by several months and may facilitate quantification of supply chain disruptions and trade wars.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1336-1358"},"PeriodicalIF":6.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300122X/pdfft?md5=fa38013c58ded3f31d0c99997def111f&pid=1-s2.0-S016920702300122X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.1016/j.ijforecast.2023.11.003
The existing literature provides mixed results on the usefulness of implied volatility for managing risky assets, while evidence for expected shortfall predictions is almost nonexistent. Given its forward-looking nature, implied volatility might be more valuable than backward-looking measures of realized price fluctuations. Conversely, the volatility risk premium embedded in implied volatility leads to overestimating the observed price variation. This paper explores the benefits of augmenting econometric models used in forecasting the expected shortfall, a risk measured endorsed in the Basel III Accord, with information on implied volatility obtained from EUR/USD option contracts. The day-ahead forecasts are obtained from several classes of econometric models: historical simulation, EGARCH, quantile regression-based HAR, joint VaR and ES model, and combination forecasts. We verify whether the resulting expected shortfall forecasts are well-specified and test the models’ accuracy. Our results provide evidence that the information provided by forward-looking implied volatility is more valuable than that in backward-looking realized measures. These results hold across multiple model specifications, are stable over time, hold under alternative loss functions, and are more pronounced during periods of higher market uncertainty when risk modeling matters most.
关于隐含波动率对管理风险资产的作用,现有文献提供的结果不一,而关于预期亏空 预测的证据几乎不存在。鉴于隐含波动率的前瞻性,它可能比已实现价格波动的后向衡量更有价值。相反,隐含波动率中蕴含的波动风险溢价会导致高估观察到的价格变化。本文探讨了利用从欧元/美元期权合约中获取的隐含波动率信息来增强用于预测预期缺口(《巴塞尔协议 III》认可的风险度量)的计量经济学模型的益处。日前预测从几类计量经济学模型中获得:历史模拟、EGARCH、基于量化回归的 HAR、VaR 和 ES 联合模型以及组合预测。我们验证了由此得出的预期亏空预测是否规范,并测试了模型的准确性。我们的研究结果证明,前瞻性隐含波动率提供的信息比后瞻性已实现波动率提供的信息更有价值。这些结果在多个模型规格中都成立,随着时间的推移而稳定,在其他损失函数下也成立,而且在市场不确定性较高、风险建模最重要的时期更为明显。
{"title":"Forecasting day-ahead expected shortfall on the EUR/USD exchange rate: The (I)relevance of implied volatility","authors":"","doi":"10.1016/j.ijforecast.2023.11.003","DOIUrl":"10.1016/j.ijforecast.2023.11.003","url":null,"abstract":"<div><p><span><span>The existing literature provides mixed results on the usefulness of implied volatility for managing risky assets, while evidence for expected shortfall predictions is almost nonexistent. Given its forward-looking nature, implied volatility might be more valuable than backward-looking measures of realized price fluctuations. Conversely, the volatility risk premium embedded in implied volatility leads to overestimating the observed price variation. This paper explores the benefits of augmenting econometric models used in forecasting the expected shortfall, a risk measured endorsed in the Basel III Accord, with information on implied volatility obtained from EUR/USD </span>option contracts<span>. The day-ahead forecasts are obtained from several classes of econometric models: historical simulation, EGARCH, </span></span>quantile regression-based HAR, joint VaR and ES model, and combination forecasts. We verify whether the resulting expected shortfall forecasts are well-specified and test the models’ accuracy. Our results provide evidence that the information provided by forward-looking implied volatility is more valuable than that in backward-looking realized measures. These results hold across multiple model specifications, are stable over time, hold under alternative loss functions, and are more pronounced during periods of higher market uncertainty when risk modeling matters most.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1275-1301"},"PeriodicalIF":6.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.1016/j.ijforecast.2023.12.003
The South Australia region of the Australian National Electricity Market (NEM) displays some of the highest levels of price volatility observed in modern electricity markets. This paper outlines an approach to probabilistic forecasting under these extreme conditions, including spike filtration and several post-processing steps. We propose using quantile regression as an ensemble tool for probabilistic forecasting, with our combined forecasts achieving superior results compared to all constituent models. Within our ensemble framework, we demonstrate that averaging models with varying training-length periods leads to a more adaptive model and increased prediction accuracy. The applicability of the final model is evaluated by comparing our median forecasts with the point forecasts available from the Australian NEM operator, with our model outperforming these NEM forecasts by a significant margin.
澳大利亚国家电力市场 (NEM) 的南澳大利亚地区是现代电力市场中价格波动水平最高的地区之一。本文概述了在这些极端条件下进行概率预测的方法,包括尖峰过滤和几个后处理步骤。我们建议使用量化回归作为概率预测的集合工具,与所有组成模型相比,我们的组合预测结果更优。在我们的集合框架内,我们证明了将不同训练长度周期的模型平均化,可以获得适应性更强的模型,并提高预测准确性。通过比较我们的中值预测和澳大利亚 NEM 运营商提供的点预测,我们对最终模型的适用性进行了评估,我们的模型明显优于这些 NEM 预测。
{"title":"A probabilistic forecast methodology for volatile electricity prices in the Australian National Electricity Market","authors":"","doi":"10.1016/j.ijforecast.2023.12.003","DOIUrl":"10.1016/j.ijforecast.2023.12.003","url":null,"abstract":"<div><p>The South Australia region of the Australian National Electricity Market (NEM) displays some of the highest levels of price volatility observed in modern electricity markets. This paper outlines an approach to probabilistic forecasting under these extreme conditions, including spike filtration and several post-processing steps. We propose using quantile regression as an ensemble tool for probabilistic forecasting, with our combined forecasts achieving superior results compared to all constituent models. Within our ensemble framework, we demonstrate that averaging models with varying training-length periods leads to a more adaptive model and increased prediction accuracy. The applicability of the final model is evaluated by comparing our median forecasts with the point forecasts available from the Australian NEM operator, with our model outperforming these NEM forecasts by a significant margin.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1421-1437"},"PeriodicalIF":6.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001358/pdfft?md5=ade3ae549bbe5d6169dda529d773ee26&pid=1-s2.0-S0169207023001358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-29DOI: 10.1016/j.ijforecast.2023.10.010
George Athanasopoulos , Rob J. Hyndman , Nikolaos Kourentzes , Anastasios Panagiotelis
Collections of time series formed via aggregation are prevalent in many fields. These are commonly referred to as hierarchical time series and may be constructed cross-sectionally across different variables, temporally by aggregating a single series at different frequencies, or even generalised beyond aggregation as time series that respect linear constraints. When forecasting such time series, a desirable condition is for forecasts to be coherent: to respect the constraints. The past decades have seen substantial growth in this field with the development of reconciliation methods that ensure coherent forecasts and improve forecast accuracy. This paper serves as a comprehensive review of forecast reconciliation and an entry point for researchers and practitioners dealing with hierarchical time series. The scope of the article includes perspectives on forecast reconciliation from machine learning, Bayesian statistics and probabilistic forecasting, as well as applications in economics, energy, tourism, retail demand and demography.
{"title":"Forecast reconciliation: A review","authors":"George Athanasopoulos , Rob J. Hyndman , Nikolaos Kourentzes , Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2023.10.010","DOIUrl":"10.1016/j.ijforecast.2023.10.010","url":null,"abstract":"<div><p>Collections of time series formed via aggregation are prevalent in many fields. These are commonly referred to as hierarchical time series and may be constructed cross-sectionally across different variables, temporally by aggregating a single series at different frequencies, or even generalised beyond aggregation as time series that respect linear constraints. When forecasting such time series, a desirable condition is for forecasts to be coherent: to respect the constraints. The past decades have seen substantial growth in this field with the development of reconciliation methods that ensure coherent forecasts and improve forecast accuracy. This paper serves as a comprehensive review of forecast reconciliation and an entry point for researchers and practitioners dealing with hierarchical time series. The scope of the article includes perspectives on forecast reconciliation from machine learning, Bayesian statistics and probabilistic forecasting, as well as applications in economics, energy, tourism, retail demand and demography.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 2","pages":"Pages 430-456"},"PeriodicalIF":7.9,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001097/pdfft?md5=22d99799cd25ab98a5a7ae5145f1d7e2&pid=1-s2.0-S0169207023001097-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}