首页 > 最新文献

International journal of molecular medicine最新文献

英文 中文
SPP1 promotes the polarization of M2 macrophages through the Jak2/Stat3 signaling pathway and accelerates the progression of idiopathic pulmonary fibrosis. SPP1 通过 Jak2/Stat3 信号通路促进 M2 巨噬细胞的极化,并加速特发性肺纤维化的进展。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.3892/ijmm.2024.5413
Xuelian Yang, Ziqin Liu, Jiawei Zhou, Jianqiang Guo, Tao Han, Yafeng Liu, Yunyun Li, Ying Bai, Yingru Xing, Jing Wu, Dong Hu

Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T‑cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression in vitro inhibited the secretion of fibrosis‑related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage‑induced epithelial‑to‑mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors in vivo enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both in vitro and in vivo. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression in vivo can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.

特发性肺纤维化(IPF)是一种致命的肺部疾病,需要进一步研究以了解其发病机制。本研究表明,分泌型磷蛋白1(SPP1)在IPF患者的肺组织中异常高表达,并与巨噬细胞和T细胞活性呈显著正相关。细胞定位研究显示,SPP1 主要在巨噬细胞而非 T 细胞中过度表达。从功能上讲,体外敲除 SPP1 的表达可抑制纤维化相关因子的分泌和巨噬细胞的 M2 极化。此外,在上皮细胞和成纤维细胞中,敲低 SPP1 的表达可抑制巨噬细胞诱导的上皮-间质转化。在体内使用 SPP1 抑制剂可增强肺功能并改善肺纤维化。从机理上讲,SPP1似乎通过调节体外和体内的JAK/STAT3信号通路来促进巨噬细胞M2极化。综上所述,本研究发现 SPP1 通过 JAK2/STAT3 信号通路促进巨噬细胞 M2 极化,从而加速 IPF 的进展。抑制 SPP1 在体内的表达可有效缓解 IPF 的发展,这表明巨噬细胞中的 SPP1 可能是 IPF 的潜在治疗靶点。
{"title":"SPP1 promotes the polarization of M2 macrophages through the Jak2/Stat3 signaling pathway and accelerates the progression of idiopathic pulmonary fibrosis.","authors":"Xuelian Yang, Ziqin Liu, Jiawei Zhou, Jianqiang Guo, Tao Han, Yafeng Liu, Yunyun Li, Ying Bai, Yingru Xing, Jing Wu, Dong Hu","doi":"10.3892/ijmm.2024.5413","DOIUrl":"10.3892/ijmm.2024.5413","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T‑cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression <i>in vitro</i> inhibited the secretion of fibrosis‑related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage‑induced epithelial‑to‑mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors <i>in vivo</i> enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both <i>in vitro</i> and <i>in vivo</i>. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression <i>in vivo</i> can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 4","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luteolin enhances drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in paclitaxel‑resistant esophageal squamous cell carcinoma. 木犀草素通过下调紫杉醇耐药食管鳞癌的FAK/PI3K/AKT通路增强药物化疗敏感性
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.3892/ijmm.2024.5401
Zhenzhen Yang, Hongtao Liu, Yinsen Song, Na Gao, Pan Gao, Yiran Hui, Yueheng Li, Tianli Fan

Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem‑like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti‑tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)‑resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit‑8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT‑related proteins and stem cell markers after sphere formation. Parental cells and drug‑resistant cells were screened by high‑throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) in vitro in PTX‑resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug‑resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX‑resistant ESCC cells but did not show significant toxicity in vivo. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX‑resistant ESCC and could be a promising agent for the treatment of PTX‑resistant ESCC cancers.

耐药性是肿瘤化疗失败的一个关键因素。它能增强癌细胞的干样细胞特性,促进肿瘤转移和复发。叶黄素是一种天然类黄酮,具有很强的抗肿瘤作用。然而,叶黄素保护紫杉醇(PTX)耐药癌细胞的机制仍有待阐明。叶黄素对 EC1/PTX 和 EC1 细胞增殖的抑制作用是通过细胞计数试剂盒-8 检测的。集落形成和流式细胞术检测用于评估细胞的克隆生成能力、细胞周期和细胞凋亡。伤口愈合和 Transwell 侵袭试验用于研究木犀草素对 EC1/PTX 细胞迁移和侵袭的影响。用 Western 印迹法检测球形成后 EMT 相关蛋白和干细胞标记物的蛋白水平。通过高通量测序筛选亲代细胞和耐药细胞,检测RNA和不同基因的差异表达。用ELISA和Western印迹法验证筛选出的PI3K/Akt信号通路,并通过分子对接法探索其中的关键蛋白。血红素和伊红染色以及TUNEL染色用于观察裸鼠肿瘤异种移植的形态和凋亡情况。本研究发现,在体外实验中,叶黄素可抑制对PTX耐药的食管鳞状细胞癌(ESCC)细胞的肿瘤耐药性(抑制增殖、诱导细胞周期停滞和凋亡、阻碍迁移侵袭、EMT和干细胞球化)。此外,叶黄素还能增强耐药 ESCC 细胞对 PTX 的药物敏感性并促进其凋亡。从机理上讲,叶黄素可通过与焦点粘附激酶(FAK)、Src和AKT的活性位点结合来抑制PI3K/AKT信号通路。值得注意的是,叶黄素降低了耐 PTX ESCC 细胞的致瘤潜能,但在体内并未显示出明显的毒性。叶黄素通过下调PTX耐药ESCC细胞的FAK/PI3K/AKT通路增强了药物的化疗敏感性,可能是治疗PTX耐药ESCC癌症的一种有前途的药物。
{"title":"Luteolin enhances drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in paclitaxel‑resistant esophageal squamous cell carcinoma.","authors":"Zhenzhen Yang, Hongtao Liu, Yinsen Song, Na Gao, Pan Gao, Yiran Hui, Yueheng Li, Tianli Fan","doi":"10.3892/ijmm.2024.5401","DOIUrl":"10.3892/ijmm.2024.5401","url":null,"abstract":"<p><p>Drug resistance is a key factor underlying the failure of tumor chemotherapy. It enhances the stem‑like cell properties of cancer cells, tumor metastasis and relapse. Luteolin is a natural flavonoid with strong anti‑tumor effects. However, the mechanism(s) by which luteolin protects against paclitaxel (PTX)‑resistant cancer cell remains to be elucidated. The inhibitory effect of luteolin on the proliferation of EC1/PTX and EC1 cells was detected by cell counting kit‑8 assay. Colony formation and flow cytometry assays were used to assess clonogenic capacity, cell cycle and apoptosis. Wound healing and Transwell invasion tests were used to investigate the effects of luteolin on the migration and invasion of EC1/PTX cells. Western blotting was used to detect the protein levels of EMT‑related proteins and stem cell markers after sphere formation. Parental cells and drug‑resistant cells were screened by high‑throughput sequencing to detect the differential expression of RNA and differential genes. ELISA and western blotting were used to verify the screened PI3K/Akt signaling pathway, key proteins of which were explored by molecular docking. Hematoxylin and eosin staining and TUNEL staining were used to observe tumor xenografts on morphology and apoptosis in nude mice. The present study found that luteolin inhibited tumor resistance (inhibited proliferation, induced cell cycle arrest and apoptosis and hindered migration invasion, EMT and stem cell spherification) <i>in</i> <i>vitro</i> in PTX‑resistant esophageal squamous cell carcinoma (ESCC) cells. In addition, luteolin enhanced drug sensitivity and promoted the apoptosis of drug‑resistant ESCC cells in combination with PTX. Mechanistically, luteolin may inhibit the PI3K/AKT signaling pathway by binding to the active sites of focal adhesion kinase (FAK), Src and AKT. Notably, luteolin lowered the tumorigenic potential of PTX‑resistant ESCC cells but did not show significant toxicity <i>in</i> <i>vivo</i>. Luteolin enhanced drug chemosensitivity by downregulating the FAK/PI3K/AKT pathway in PTX‑resistant ESCC and could be a promising agent for the treatment of PTX‑resistant ESCC cancers.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of autophagy and ferroptosis in the development of endometriotic cysts (Review). 自噬和铁变态在子宫内膜异位囊肿发展中的作用(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.3892/ijmm.2024.5402
Hiroshi Kobayashi, Shogo Imanaka, Chiharu Yoshimoto, Sho Matsubara, Hiroshi Shigetomi

It is considered that the etiology of endometriosis is retrograde menstruation of endometrial tissue. Although shed endometrial cells are constantly exposed to a challenging environment with iron overload, oxidative stress and hypoxia, a few cells are able to survive and continue to proliferate and invade. Ferroptosis, an iron‑dependent form of non‑apoptotic cell death, is known to play a major role in the development and course of endometriosis. However, few papers have concentrated on the dynamic interaction between autophagy and ferroptosis throughout the progression of diseases. The present review summarized the current understanding of the mechanisms underlying autophagy and ferroptosis in endometriosis and discuss their role in disease development and progression. For the present narrative review electronic databases including PubMed and Google Scholar were searched for literature published up to the October 31, 2023. Autophagy and ferroptosis may be activated at early stages in endometriosis development. On the other hand, excessive activation of intrinsic pathways (e.g., estrogen and mechanistic target of rapamycin) may promote disease progression through autophagy inhibition. Furthermore, suppression of ferroptosis may cause further progression of endometriotic lesions. In conclusion, the autophagy and ferroptosis pathways may play a dual role in disease initiation and progression. The present review discussed the temporal transition of non‑apoptotic cell death regulation during disease progression from retrograde endometrium to early lesions to established lesions.

子宫内膜异位症的病因被认为是子宫内膜组织的逆行月经。虽然脱落的子宫内膜细胞不断暴露在铁超载、氧化应激和缺氧的挑战性环境中,但仍有少数细胞能够存活下来,并继续增殖和入侵。铁凋亡是一种铁依赖的非凋亡性细胞死亡形式,已知在子宫内膜异位症的发展和病程中起着重要作用。然而,很少有论文集中研究自噬和铁凋亡在疾病进展过程中的动态相互作用。本综述总结了目前对子宫内膜异位症中自噬和铁吞噬机制的理解,并讨论了它们在疾病发展和进程中的作用。本综述在电子数据库(包括PubMed和谷歌学术)中检索了截至2023年10月31日发表的文献。在子宫内膜异位症发展的早期阶段,自噬和铁变态反应可能会被激活。另一方面,内在途径(如雌激素和雷帕霉素机理靶点)的过度激活可能会通过抑制自噬促进疾病进展。此外,抑制铁变态反应可能会导致子宫内膜异位症病变进一步恶化。总之,自噬和铁蛋白沉积途径可能在疾病的发生和发展中扮演着双重角色。本综述讨论了从逆行性子宫内膜到早期病变再到成熟病变的疾病进展过程中,非凋亡性细胞死亡调控的时间过渡。
{"title":"Role of autophagy and ferroptosis in the development of endometriotic cysts (Review).","authors":"Hiroshi Kobayashi, Shogo Imanaka, Chiharu Yoshimoto, Sho Matsubara, Hiroshi Shigetomi","doi":"10.3892/ijmm.2024.5402","DOIUrl":"10.3892/ijmm.2024.5402","url":null,"abstract":"<p><p>It is considered that the etiology of endometriosis is retrograde menstruation of endometrial tissue. Although shed endometrial cells are constantly exposed to a challenging environment with iron overload, oxidative stress and hypoxia, a few cells are able to survive and continue to proliferate and invade. Ferroptosis, an iron‑dependent form of non‑apoptotic cell death, is known to play a major role in the development and course of endometriosis. However, few papers have concentrated on the dynamic interaction between autophagy and ferroptosis throughout the progression of diseases. The present review summarized the current understanding of the mechanisms underlying autophagy and ferroptosis in endometriosis and discuss their role in disease development and progression. For the present narrative review electronic databases including PubMed and Google Scholar were searched for literature published up to the October 31, 2023. Autophagy and ferroptosis may be activated at early stages in endometriosis development. On the other hand, excessive activation of intrinsic pathways (e.g., estrogen and mechanistic target of rapamycin) may promote disease progression through autophagy inhibition. Furthermore, suppression of ferroptosis may cause further progression of endometriotic lesions. In conclusion, the autophagy and ferroptosis pathways may play a dual role in disease initiation and progression. The present review discussed the temporal transition of non‑apoptotic cell death regulation during disease progression from retrograde endometrium to early lesions to established lesions.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triptonide protects retinal cells from oxidative damage via activation of Nrf2 signaling. 曲普奈德通过激活 Nrf2 信号来保护视网膜细胞免受氧化损伤。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.3892/ijmm.2024.5400
Jinjing Li, Jiajun Li, Yuan Cao, Jin Yuan, Yaming Shen, Linyi Lei, Keran Li

Age‑related macular degeneration (AMD) is an ocular disease that threatens the visual function of older adults worldwide. Key pathological processes involved in AMD include oxidative stress, inflammation and choroidal vascular dysfunction. Retinal pigment epithelial cells and Müller cells are most susceptible to oxidative stress. Traditional herbal medicines are increasingly being investigated in the field of personalized medicine in ophthalmology. Triptonide (Tn) is a diterpene tricyclic oxide, the main active ingredient in the extract from the Chinese herbal medicinal plant Tripterygium wilfordii, and is considered an effective immunosuppressant and anti‑inflammatory drug. The present study investigated the potential beneficial role of Tn in retinal oxidative damage in order to achieve personalized treatment for early AMD. An oxidative stress model of retinal cells induced by H2O2 and a retinal injury model of mice induced by light and N‑Methyl‑D‑aspartic acid were constructed. In vitro, JC‑1 staining, flow cytometry and apoptosis assay confirmed that low concentrations of Tn effectively protected retinal cells from oxidative damage, and reverse transcription‑quantitative PCR and western blotting analyses revealed that Tn reduced the expression of retinal oxidative stress‑related genes and inflammatory factors, which may depend on the PI3K/AKT/mTOR‑induced Nrf2 signaling pathway. In vivo, by retinal immunohistochemistry, hematoxylin and eosin staining and electroretinogram assay, it was found that retinal function and structure improved and choroidal neovascularization was significantly inhibited after Tn pretreatment. These results suggested that Tn is an efficient Nrf2 activator, which can be expected to become a new intervention for diseases such as AMD, to inhibit retinal oxidative stress damage and pathological neovascularization.

老年性黄斑变性(AMD)是一种威胁全球老年人视觉功能的眼部疾病。老年黄斑变性的主要病理过程包括氧化应激、炎症和脉络膜血管功能障碍。视网膜色素上皮细胞和 Müller 细胞最容易受到氧化应激的影响。在眼科个性化医疗领域,对传统草药的研究日益增多。雷公藤内酯(Tn)是一种二萜三环氧化物,是中药植物雷公藤提取物的主要活性成分,被认为是一种有效的免疫抑制剂和抗炎药物。本研究调查了 Tn 在视网膜氧化损伤中的潜在有益作用,以实现早期 AMD 的个性化治疗。本研究构建了由 H2O2 诱导的视网膜细胞氧化应激模型以及由光和 N-甲基-D-天冬氨酸诱导的小鼠视网膜损伤模型。在体外,JC-1染色、流式细胞术和细胞凋亡检测证实,低浓度Tn能有效保护视网膜细胞免受氧化损伤,逆转录-定量PCR和Western印迹分析表明,Tn能降低视网膜氧化应激相关基因和炎症因子的表达,这可能依赖于PI3K/AKT/mTOR诱导的Nrf2信号通路。在体内,通过视网膜免疫组化、苏木精和伊红染色以及视网膜电图检测发现,Tn预处理后视网膜功能和结构得到改善,脉络膜新生血管明显受到抑制。这些结果表明,Tn是一种高效的Nrf2激活剂,有望成为治疗AMD等疾病的一种新的干预手段,以抑制视网膜氧化应激损伤和病理性新生血管形成。
{"title":"Triptonide protects retinal cells from oxidative damage via activation of Nrf2 signaling.","authors":"Jinjing Li, Jiajun Li, Yuan Cao, Jin Yuan, Yaming Shen, Linyi Lei, Keran Li","doi":"10.3892/ijmm.2024.5400","DOIUrl":"10.3892/ijmm.2024.5400","url":null,"abstract":"<p><p>Age‑related macular degeneration (AMD) is an ocular disease that threatens the visual function of older adults worldwide. Key pathological processes involved in AMD include oxidative stress, inflammation and choroidal vascular dysfunction. Retinal pigment epithelial cells and Müller cells are most susceptible to oxidative stress. Traditional herbal medicines are increasingly being investigated in the field of personalized medicine in ophthalmology. Triptonide (Tn) is a diterpene tricyclic oxide, the main active ingredient in the extract from the Chinese herbal medicinal plant <i>Tripterygium wilfordii</i>, and is considered an effective immunosuppressant and anti‑inflammatory drug. The present study investigated the potential beneficial role of Tn in retinal oxidative damage in order to achieve personalized treatment for early AMD. An oxidative stress model of retinal cells induced by H<sub>2</sub>O<sub>2</sub> and a retinal injury model of mice induced by light and N‑Methyl‑D‑aspartic acid were constructed. <i>In vitro</i>, JC‑1 staining, flow cytometry and apoptosis assay confirmed that low concentrations of Tn effectively protected retinal cells from oxidative damage, and reverse transcription‑quantitative PCR and western blotting analyses revealed that Tn reduced the expression of retinal oxidative stress‑related genes and inflammatory factors, which may depend on the PI3K/AKT/mTOR‑induced Nrf2 signaling pathway. <i>In vivo</i>, by retinal immunohistochemistry, hematoxylin and eosin staining and electroretinogram assay, it was found that retinal function and structure improved and choroidal neovascularization was significantly inhibited after Tn pretreatment. These results suggested that Tn is an efficient Nrf2 activator, which can be expected to become a new intervention for diseases such as AMD, to inhibit retinal oxidative stress damage and pathological neovascularization.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). 细胞凋亡:细胞凋亡调控及其在心血管疾病中的潜在作用(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5398
Xinyu Gao, Cuixue Ma, Shan Liang, Meihong Chen, Yuan He, Wei Lei

PANoptosis, a complex form of proinflammatory programmed cell death, including apoptosis, pyroptosis and necroptosis, has been an emerging concept in recent years that has been widely reported in cancer, infectious diseases and neurological disorders. Cardiovascular diseases (CVDs) are an important global health problem, posing a serious threat to individuals' lives. An increasing body of research shows that inflammation has a pivotal role in CVDs, which provides an important theoretical basis for PANoptosis to promote the progression of CVDs. To date, only sporadic studies on PANoptosis in CVDs have been reported and its role in the field of CVDs has not been fully explored. Elucidating the various modes of cardiomyocyte death, the specific molecular mechanisms and the links among the various modes of death under various stressful stimuli is of notable clinical significance for a deeper understanding of the pathophysiology of CVDs. The present review summarizes the molecular mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis and their prospects in the field of CVDs.

细胞凋亡是一种复杂的促炎性程序性细胞死亡,包括细胞凋亡、热凋亡和坏死,是近年来新兴的概念,在癌症、传染病和神经系统疾病中被广泛报道。心血管疾病(CVDs)是一个重要的全球性健康问题,严重威胁着人们的生命。越来越多的研究表明,炎症在心血管疾病中起着举足轻重的作用,这为泛凋亡促进心血管疾病的进展提供了重要的理论依据。迄今为止,有关 PANoptosis 在心血管疾病中的作用的研究仅有零星报道,其在心血管疾病领域的作用尚未得到充分探讨。阐明心肌细胞死亡的各种模式、具体的分子机制以及在各种应激刺激下各种死亡模式之间的联系,对于深入了解心血管疾病的病理生理学具有显著的临床意义。本综述总结了细胞凋亡、热凋亡、坏死和泛凋亡的分子机制及其在心血管疾病领域的应用前景。
{"title":"PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review).","authors":"Xinyu Gao, Cuixue Ma, Shan Liang, Meihong Chen, Yuan He, Wei Lei","doi":"10.3892/ijmm.2024.5398","DOIUrl":"10.3892/ijmm.2024.5398","url":null,"abstract":"<p><p>PANoptosis, a complex form of proinflammatory programmed cell death, including apoptosis, pyroptosis and necroptosis, has been an emerging concept in recent years that has been widely reported in cancer, infectious diseases and neurological disorders. Cardiovascular diseases (CVDs) are an important global health problem, posing a serious threat to individuals' lives. An increasing body of research shows that inflammation has a pivotal role in CVDs, which provides an important theoretical basis for PANoptosis to promote the progression of CVDs. To date, only sporadic studies on PANoptosis in CVDs have been reported and its role in the field of CVDs has not been fully explored. Elucidating the various modes of cardiomyocyte death, the specific molecular mechanisms and the links among the various modes of death under various stressful stimuli is of notable clinical significance for a deeper understanding of the pathophysiology of CVDs. The present review summarizes the molecular mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis and their prospects in the field of CVDs.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salusin‑α alleviates lipid metabolism disorders via regulation of the downstream lipogenesis genes through the LKB1/AMPK pathway. Salusin-α 通过 LKB1/AMPK 通路调节下游脂肪生成基因,从而缓解脂质代谢紊乱。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-09-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5397
Jintong Pan, Chao Yang, Aohong Xu, Huan Zhang, Ye Fan, Rong Zeng, Lin Chen, Xiang Liu, Yuxue Wang

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin‑α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin‑α on lipid metabolism, Salusin‑α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi‑quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin‑α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin‑α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein‑1c, fatty acid synthase and acetyl‑CoA carboxylase. The addition of Compound C abrogated the Salusin‑α‑mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin‑α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin‑α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.

脂质代谢紊乱是导致多种慢性代谢性疾病的主要原因,严重影响公众健康。Salusin-α是一种血管活性肽,已被证明可减轻脂质代谢紊乱,但其作用机制尚未见报道。为了研究 Salusin-α 对脂质代谢的影响和潜在机制,我们使用慢病毒载体过表达或敲除 Salusin-α。慢病毒转染 HepG2 细胞后,游离脂肪酸(FFA)诱导肝细胞脂肪变性。使用油红 O 染色法和测量几种生化指标来评估脂质积累的程度。随后,生物信息学分析了可能与脂质代谢紊乱有关的信号通路。最后,利用半定量 PCR 和 Western 印迹技术验证了肝脏激酶 B1 (LKB1)/AMPK 通路的参与。化合物 C 是一种 AMPK 抑制剂,用于进一步证实这一机制的参与。结果表明,Salusin-α 能显著减少脂质积累、炎症和氧化应激。此外,Salusin-α 还能提高 LKB1 和 AMPK 的水平,抑制固醇调节元件结合蛋白-1c、脂肪酸合成酶和乙酰-CoA 羧化酶的表达。化合物 C 的添加削弱了 Salusin-α 介导的 AMPK 对下游信号分子的调节作用。总之,过量表达 Salusin-α 激活了 LKB1/AMPK 通路,进而抑制了 HepG2 细胞的脂质积累。这揭示了 Salusin-α 改善脂质代谢紊乱的潜在机制,同时也确定了一个潜在的治疗靶点。
{"title":"Salusin‑α alleviates lipid metabolism disorders via regulation of the downstream lipogenesis genes through the LKB1/AMPK pathway.","authors":"Jintong Pan, Chao Yang, Aohong Xu, Huan Zhang, Ye Fan, Rong Zeng, Lin Chen, Xiang Liu, Yuxue Wang","doi":"10.3892/ijmm.2024.5397","DOIUrl":"10.3892/ijmm.2024.5397","url":null,"abstract":"<p><p>Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin‑α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin‑α on lipid metabolism, Salusin‑α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi‑quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin‑α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin‑α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein‑1c, fatty acid synthase and acetyl‑CoA carboxylase. The addition of Compound C abrogated the Salusin‑α‑mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin‑α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin‑α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Corrigendum] All‑trans retinoic acid alters the expression of the tight junction proteins Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis. [更正] 全反式维甲酸会改变表皮中紧密连接蛋白 Claudin-1 和 -4 以及表皮屏障功能相关基因的表达。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.3892/ijmm.2024.5399
Jing Li, Qianying Li, Songmei Geng

Following the publication of the above article, the authors contacted the Editorial Office to explain that they had identified a pair of duplicate images in the control (Vehicle) group of mouse images in Fig. 1A on p. 1792. Specifically, the same image (corresponding correctly to the 'Day 5' experiment) was inadvertently chosen to represent the cutaneous manifestations of mice in the Vehicle group on 'Day 3' and 'Day 5' in Fig. 1A. This error arose as a consequence of repetitive application and duplication procedures within the image set, resulting in the inadvertent reuse of the same photo. Additionally, due to minimal alterations observed in the skin condition of mice from the control group following treatment, each mouse exhibited a similar appearance; this similarity further contributed to the delayed identification of this error during the paper revision stage. Consequently, this duplication of the same image was made as a result of insufficient scrutiny. The revised version of Fig. 1, showing the correct image for the 'Day 3' experiment in Fig. 1A, is shown on the next page. The authors can confirm that the error associated with the assembly of this figure did not have any significant impact on either the results or the conclusions reported in this study, and all the authors agree with the publication of this Corrigendum. The authors are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 43: 1789‑1805, 2019; DOI: 10.3892/ijmm.2019.4098].

上述文章发表后,作者联系了编辑部,解释说他们在第 1792 页图 1A 的对照组(车辆)小鼠图像中发现了一对重复的图像。具体来说,在图 1A 的 "第 3 天 "和 "第 5 天",他们无意中选择了同一张图片(正确对应 "第 5 天 "实验)来表示对照组小鼠的皮肤表现。造成这一错误的原因是在图像集中重复应用和复制程序,导致无意中重复使用了同一张照片。此外,由于对照组小鼠在治疗后皮肤状况的变化极小,因此每只小鼠的外观都很相似;这种相似性进一步导致了在论文修改阶段对这一错误的延迟识别。因此,对同一图像的重复是由于审查不充分造成的。图 1 的修订版显示了图 1A 中 "第 3 天 "实验的正确图像,见下一页。作者可以确认,与该图组装相关的错误不会对本研究报告的结果或结论产生任何重大影响,所有作者均同意发表本更正。作者感谢《国际分子医学杂志》的编辑让他们有机会发表此文;此外,他们对给该杂志读者带来的不便表示歉意。[国际分子医学杂志 43:1789-1805, 2019; DOI: 10.3892/ijmm.2019.4098].
{"title":"[Corrigendum] All‑<i>trans</i> retinoic acid alters the expression of the tight junction proteins Claudin‑1 and ‑4 and epidermal barrier function‑associated genes in the epidermis.","authors":"Jing Li, Qianying Li, Songmei Geng","doi":"10.3892/ijmm.2024.5399","DOIUrl":"10.3892/ijmm.2024.5399","url":null,"abstract":"<p><p>Following the publication of the above article, the authors contacted the Editorial Office to explain that they had identified a pair of duplicate images in the control (Vehicle) group of mouse images in Fig. 1A on p. 1792. Specifically, the same image (corresponding correctly to the 'Day 5' experiment) was inadvertently chosen to represent the cutaneous manifestations of mice in the Vehicle group on 'Day 3' and 'Day 5' in Fig. 1A. This error arose as a consequence of repetitive application and duplication procedures within the image set, resulting in the inadvertent reuse of the same photo. Additionally, due to minimal alterations observed in the skin condition of mice from the control group following treatment, each mouse exhibited a similar appearance; this similarity further contributed to the delayed identification of this error during the paper revision stage. Consequently, this duplication of the same image was made as a result of insufficient scrutiny. The revised version of Fig. 1, showing the correct image for the 'Day 3' experiment in Fig. 1A, is shown on the next page. The authors can confirm that the error associated with the assembly of this figure did not have any significant impact on either the results or the conclusions reported in this study, and all the authors agree with the publication of this Corrigendum. The authors are grateful to the Editor of <i>International Journal of Molecular Medicine</i> for allowing them the opportunity to publish this; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 43: 1789‑1805, 2019; DOI: 10.3892/ijmm.2019.4098].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 3","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer. 用花生凝集素修饰的脂质体提高顺铂在非小细胞肺癌中的给药疗效
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5394
Ben Yang, Rongguan Kou, Hui Wang, Anping Wang, Lili Wang, Sipeng Sun, Mengqi Shi, Shouzhen Zhao, Yubing Wang, Yi Wang, Jingliang Wu, Fei Wu, Fan Yang, Meihua Qu, Wenjing Yu, Zhiqin Gao

Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.

在全球范围内,非小细胞肺癌(NSCLC)是人类健康的重大威胁,占肺癌病例的 80% 以上。顺铂(CDDP)是临床治疗中的常用药物,一直是研究的重点,目的是通过脂质体包封减轻其剧毒性。然而,药物负载效率降低和非特异性释放等挑战已成为障碍。本研究旨在通过预先制备 CDDP,并通过加入花生凝集素(PNA)作为配体来修饰脂质体表面[CDDP-负载 PNA 修饰脂质体(CDDP-PNA-Lip)],从而提高 CDDP 在脂质体中的包封效率。这一策略旨在加强 CDDP 向肿瘤组织的输送,从而减少相关的副作用。体外研究阐明了 CDDP-PNA-Lip 对 MUC1 高表达的 NSCLC 细胞株的增殖和迁移的影响。此外,还通过异种移植肿瘤实验评估了 PNA 修饰增强脂质体靶向抗肿瘤功效的能力。结果表明,在体外摄取实验中,与游离 RhB 相比,负载 PNA 修饰的罗丹明 B(RhB)脂质体被细胞摄取的效率要高出约 50%。此外,与游离 CDDP 相比,CDDP-PNA-Lip 在体内抑制肿瘤的效果提高了 2.65 倍。这些研究结果表明,将 CDDP 包封在配体修饰的脂质体中可显著提高其肿瘤靶向能力,为临床药物开发提供了宝贵的启示。
{"title":"Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer.","authors":"Ben Yang, Rongguan Kou, Hui Wang, Anping Wang, Lili Wang, Sipeng Sun, Mengqi Shi, Shouzhen Zhao, Yubing Wang, Yi Wang, Jingliang Wu, Fei Wu, Fan Yang, Meihua Qu, Wenjing Yu, Zhiqin Gao","doi":"10.3892/ijmm.2024.5394","DOIUrl":"10.3892/ijmm.2024.5394","url":null,"abstract":"<p><p>Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through <i>in vitro</i> studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression <i>in vivo</i> compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 2","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review). 长非编码 RNA 在食管鳞状细胞癌中的作用(综述)。
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI: 10.3892/ijmm.2024.5396
Qihang Yan, Wingshing Wong, Li Gong, Jie Yang, Dachuan Liang, Kok-Yong Chin, Shuqin Dai, Junye Wang

Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.

食管鳞状细胞癌(ESCC)是消化道常见的致命恶性肿瘤。最近的研究发现,长非编码 RNA(lncRNA)是食管鳞癌发病机制中的关键调控因子。这些lncRNA通常超过200个核苷酸,通过各种机制调节基因表达,包括竞争性内源性RNA(ceRNA)途径和RNA与蛋白质的相互作用。目前的研究回顾了lncRNA在ESCC中的多方面作用,强调了它们在增殖、迁移、侵袭、上皮-间质转化、细胞周期进展、放疗和化疗抗性、糖酵解、凋亡、血管生成、自噬、肿瘤生长、转移和癌症干细胞维持等过程中的参与。具体的 lncRNAs,如 HLA 复合物 P5、LINC00963 和 NFAT 非编码抑制因子,已被证明可通过调节 AKT 信号转导和 microRNA 相互作用等通路,增强对放疗和化疗的抵抗力,从而促进细胞在治疗压力下的存活和增殖。此外,序列相似性83家族成员A反义RNA 1、锌指NFX1型含1反义RNA 1和牛磺酸上调基因1等lncRNA也被认为通过ceRNA机制增强了ESCC细胞的侵袭和增殖能力,而与RNA结合蛋白的相互作用则进一步影响了癌细胞的行为。综合分析强调了lncRNA作为ESCC预后生物标志物和治疗靶点的潜力,为今后重点阐明lncRNA在ESCC治疗中的详细分子机制和临床应用提出了研究方向。
{"title":"Roles of long non‑coding RNAs in esophageal cell squamous carcinoma (Review).","authors":"Qihang Yan, Wingshing Wong, Li Gong, Jie Yang, Dachuan Liang, Kok-Yong Chin, Shuqin Dai, Junye Wang","doi":"10.3892/ijmm.2024.5396","DOIUrl":"10.3892/ijmm.2024.5396","url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non‑coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA‑protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial‑mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non‑coding repressor of NFAT have been shown to enhance resistance to radio‑ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1‑type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA‑binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 2","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic impacts of GNE‑477‑loaded H2O2 stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma. GNE-477负载的H2O2刺激响应十二烷酸-苯硼酸酯-葡聚糖聚合物胶束对骨肉瘤的治疗影响
IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-08-01 Epub Date: 2024-06-28 DOI: 10.3892/ijmm.2024.5393
Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu

Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer‑associated death in young people. GNE‑477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H2O2 stimulus‑responsive dodecanoic acid (DA)‑phenylborate ester‑dextran (DA‑B‑DEX) polymeric micelle delivery system for GNE‑477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE‑477 loaded DA‑B‑DEX (GNE‑477@DBD) tumor‑targeting drug delivery system was established and the release of GNE‑477 was measured. The cellular uptake of GNE‑477@DBD by three OS cell lines (MG‑63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA‑B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H2O2, the DA‑B‑DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE‑477@DBD by cells with sustained release of GNE‑477. The in vitro experiments, including MTT assay, flow cytometry, western blotting and RT‑qPCR, demonstrated that GNE‑477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. In vivo, through the observation of mice tumor growth and the results of H&E staining, the GNE‑477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H2O2‑responsive DA‑B‑DEX presents a promising delivery system for hydrophobic anti‑tumor drugs for OS therapy.

骨肉瘤(Osteosarcoma,OS)是一种高度恶性的原发性骨肿瘤,是年轻人死于癌症的主要原因。GNE-477属于第二代mTOR抑制剂,在治疗骨肉瘤方面具有广阔的前景,但剂量耐受性和药物毒性限制了其开发和利用。本研究旨在为GNE-477制备一种新型的H2O2刺激响应型十二烷酸(DA)-苯硼酸酯-右旋糖酐(DA-B-DEX)聚合物胶束给药系统,并评估其疗效。聚合物胶束的特征包括形态、大小和临界胶束浓度。建立了GNE-477负载DA-B-DEX(GNE-477@DBD)肿瘤靶向给药系统,并测定了GNE-477的释放量。利用荧光示踪技术分析了三种 OS 细胞系(MG-63、U2OS 和 143B 细胞)对 GNE-477@DBD 的细胞吸收。羟化 DA-B 成功接枝到葡聚糖上,接枝率为 3%,适合形成两亲胶束。暴露于 H2O2 后,DA-B-DEX 胶束破裂并迅速释放药物,从而增加细胞对 GNE-477@DBD 的吸收,并持续释放 GNE-477。MTT 试验、流式细胞术、Western 印迹和 RT-qPCR 等体外实验表明,GNE-477@DBD 可抑制肿瘤细胞活力,使细胞周期停滞在 G1 期,诱导细胞凋亡,阻断 PI3K/Akt/mTOR 级联反应。在体内,通过观察小鼠肿瘤生长和 H&E 染色结果,GNE-477@DBD 组比游离药物组表现出更积极的治疗效果,对其他器官几乎没有不良影响。总之,H2O2-响应DA-B-DEX为疏水性抗肿瘤药物的OS治疗提供了一种前景广阔的递送系统。
{"title":"Therapeutic impacts of GNE‑477‑loaded H<sub>2</sub>O<sub>2</sub> stimulus‑responsive dodecanoic acid‑phenylborate ester‑dextran polymeric micelles on osteosarcoma.","authors":"Songmu Pan, Zhuan Zou, Xiaofeng Zhou, Jiyong Wei, Huijiang Liu, Zhongyi Su, Gui Liao, Guangyu Huang, Zonggui Huang, Yi Xu, Minan Lu, Ronghe Gu","doi":"10.3892/ijmm.2024.5393","DOIUrl":"10.3892/ijmm.2024.5393","url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant primary bone neoplasm that is the leading cause of cancer‑associated death in young people. GNE‑477 belongs to the second generation of mTOR inhibitors and possesses promising potential in the treatment of OS but dose tolerance and drug toxicity limit its development and utilization. The present study aimed to prepare a novel H<sub>2</sub>O<sub>2</sub> stimulus‑responsive dodecanoic acid (DA)‑phenylborate ester‑dextran (DA‑B‑DEX) polymeric micelle delivery system for GNE‑477 and evaluate its efficacy. The polymer micelles were characterized by morphology, size and critical micelle concentration. The GNE‑477 loaded DA‑B‑DEX (GNE‑477@DBD) tumor‑targeting drug delivery system was established and the release of GNE‑477 was measured. The cellular uptake of GNE‑477@DBD by three OS cell lines (MG‑63, U2OS and 143B cells) was analyzed utilizing a fluorescent tracer technique. The hydroxylated DA‑B was successfully grafted onto dextran at a grafting rate of 3%, suitable for forming amphiphilic micelles. Following exposure to H<sub>2</sub>O<sub>2</sub>, the DA‑B‑DEX micelles ruptured and released the drug rapidly, leading to increased uptake of GNE‑477@DBD by cells with sustained release of GNE‑477. The <i>in vitro</i> experiments, including MTT assay, flow cytometry, western blotting and RT‑qPCR, demonstrated that GNE‑477@DBD inhibited tumor cell viability, arrested cell cycle in G1 phase, induced apoptosis and blocked the PI3K/Akt/mTOR cascade response. <i>In vivo</i>, through the observation of mice tumor growth and the results of H&E staining, the GNE‑477@DBD group exhibited more positive therapeutic outcomes than the free drug group with almost no adverse effects on other organs. In conclusion, H<sub>2</sub>O<sub>2</sub>‑responsive DA‑B‑DEX presents a promising delivery system for hydrophobic anti‑tumor drugs for OS therapy.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 2","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International journal of molecular medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1