Pub Date : 2024-06-01Epub Date: 2024-05-17DOI: 10.3892/ijmm.2024.5381
Shan Chong, Guangyan Mu, Xinan Cen, Qian Xiang, Yimin Cui
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
{"title":"Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review).","authors":"Shan Chong, Guangyan Mu, Xinan Cen, Qian Xiang, Yimin Cui","doi":"10.3892/ijmm.2024.5381","DOIUrl":"10.3892/ijmm.2024.5381","url":null,"abstract":"<p><p>Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-08DOI: 10.3892/ijmm.2024.5365
Wanlu Ye, Nan Xiang, Qing Wang, Yanming Lu
Circular RNA (circRNA), a type of non‑coding RNA, plays a regulatory role in biological processes. The special loop structure of circRNA makes it highly stable and specific in diseased tissues and cells, especially in tumors. Competing endogenous RNAs (ceRNAs) compete for the binding of microRNA (miRNA) at specific binding sites and thus regulate gene expression. ceRNAs play an important role in various diseases and are currently recognized as the most prominent mechanism of action of circRNAs. circRNAs can modulate the proliferation, migration, invasion and apoptosis of tumor cells through the ceRNA mechanism. With further research, circRNAs may serve as novel markers and therapeutic targets for ovarian cancer (OC). In the present review, the research progress of circRNAs as ceRNAs in OC was summarized, focusing on the effects of the circRNA/miRNA/mRNA axis on the biological functions of OC cells through mediating pivotal signaling pathways. The role of circRNAs in the diagnosis, prognostic assessment and treatment of OC was also discussed in the present review.
{"title":"Role of circular RNA as competing endogenous RNA in ovarian cancer (Review).","authors":"Wanlu Ye, Nan Xiang, Qing Wang, Yanming Lu","doi":"10.3892/ijmm.2024.5365","DOIUrl":"10.3892/ijmm.2024.5365","url":null,"abstract":"<p><p>Circular RNA (circRNA), a type of non‑coding RNA, plays a regulatory role in biological processes. The special loop structure of circRNA makes it highly stable and specific in diseased tissues and cells, especially in tumors. Competing endogenous RNAs (ceRNAs) compete for the binding of microRNA (miRNA) at specific binding sites and thus regulate gene expression. ceRNAs play an important role in various diseases and are currently recognized as the most prominent mechanism of action of circRNAs. circRNAs can modulate the proliferation, migration, invasion and apoptosis of tumor cells through the ceRNA mechanism. With further research, circRNAs may serve as novel markers and therapeutic targets for ovarian cancer (OC). In the present review, the research progress of circRNAs as ceRNAs in OC was summarized, focusing on the effects of the circRNA/miRNA/mRNA axis on the biological functions of OC cells through mediating pivotal signaling pathways. The role of circRNAs in the diagnosis, prognostic assessment and treatment of OC was also discussed in the present review.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
{"title":"Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review).","authors":"Maximo Berto Martinez Benitez, Yussel Pérez Navarro, Elisa Azuara-Liceaga, Angeles Tecalco Cruz, Jesús Valdés Flores, Lilia Lopez-Canovas","doi":"10.3892/ijmm.2024.5368","DOIUrl":"10.3892/ijmm.2024.5368","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-29DOI: 10.3892/ijmm.2024.5369
Haoran Li, Biao Li, Yanlin Zheng
Macrophages form a crucial component of the innate immune system, and their activation is indispensable for various aspects of immune and inflammatory processes, tissue repair, and maintenance of the balance of the body's state. Macrophages are found in all ocular tissues, spanning from the front surface, including the cornea, to the posterior pole, represented by the choroid/sclera. The neural retina is also populated by specialised resident macrophages called microglia. The plasticity of microglia/macrophages allows them to adopt different activation states in response to changes in the tissue microenvironment. When exposed to various factors, microglia/macrophages polarise into distinct phenotypes, each exhibiting unique characteristics and roles. Furthermore, extensive research has indicated a close association between microglia/macrophage polarisation and the development and reversal of various intraocular diseases. The present article provides a review of the recent findings on the association between microglia/macrophage polarisation and ocular pathological processes (including autoimmune uveitis, optic neuritis, sympathetic ophthalmia, retinitis pigmentosa, glaucoma, proliferative vitreoretinopathy, subretinal fibrosis, uveal melanoma, ischaemic optic neuropathy, retinopathy of prematurity and choroidal neovascularization). The paradoxical role of microglia/macrophage polarisation in retinopathy of prematurity is also discussed. Several studies have shown that microglia/macrophages are involved in the pathology of ocular diseases. However, it is required to further explore the relevant mechanisms and regulatory processes. The relationship between the functional diversity displayed by microglia/macrophage polarisation and intraocular diseases may provide a new direction for the treatment of intraocular diseases.
{"title":"Role of microglia/macrophage polarisation in intraocular diseases (Review).","authors":"Haoran Li, Biao Li, Yanlin Zheng","doi":"10.3892/ijmm.2024.5369","DOIUrl":"10.3892/ijmm.2024.5369","url":null,"abstract":"<p><p>Macrophages form a crucial component of the innate immune system, and their activation is indispensable for various aspects of immune and inflammatory processes, tissue repair, and maintenance of the balance of the body's state. Macrophages are found in all ocular tissues, spanning from the front surface, including the cornea, to the posterior pole, represented by the choroid/sclera. The neural retina is also populated by specialised resident macrophages called microglia. The plasticity of microglia/macrophages allows them to adopt different activation states in response to changes in the tissue microenvironment. When exposed to various factors, microglia/macrophages polarise into distinct phenotypes, each exhibiting unique characteristics and roles. Furthermore, extensive research has indicated a close association between microglia/macrophage polarisation and the development and reversal of various intraocular diseases. The present article provides a review of the recent findings on the association between microglia/macrophage polarisation and ocular pathological processes (including autoimmune uveitis, optic neuritis, sympathetic ophthalmia, retinitis pigmentosa, glaucoma, proliferative vitreoretinopathy, subretinal fibrosis, uveal melanoma, ischaemic optic neuropathy, retinopathy of prematurity and choroidal neovascularization). The paradoxical role of microglia/macrophage polarisation in retinopathy of prematurity is also discussed. Several studies have shown that microglia/macrophages are involved in the pathology of ocular diseases. However, it is required to further explore the relevant mechanisms and regulatory processes. The relationship between the functional diversity displayed by microglia/macrophage polarisation and intraocular diseases may provide a new direction for the treatment of intraocular diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998719/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-15DOI: 10.3892/ijmm.2024.5366
Giuseppe Gattuso, Alessandro Lavoro, Rosario Caltabiano, Gabriele Madonna, Mariaelena Capone, Paolo Antonio Ascierto, Luca Falzone, Massimo Libra, Saverio Candido
DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high‑throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation‑Sensitive Restriction Enzyme‑droplet digital PCR (MSRE‑ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high‑sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the Solute Carrier Family 22 Member 17 in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE‑ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE‑ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.
DNA 甲基化是一种表观遗传修饰,在介导基因表达精细调控的多个细胞过程中发挥着关键作用。在包括癌症在内的多种病症中都能观察到异常的 DNA 甲基化。由于这些 DNA 修饰会转移到细胞后代中,并在一段时间内保持稳定,因此 DNA 甲基化状态分析被提议用于癌症的诊断和预后。目前,DNA 亚硫酸氢盐转换是高通量分析 DNA 甲基化改变的金标准方法。然而,亚硫酸氢盐处理会导致 DNA 断裂,影响下游分析的质量。在这一领域,必须找到新方法来克服传统方法的局限性。本研究开发了甲基化敏感限制酶-液滴数字 PCR(MSRE-ddPCR)检测法,将 MSRE 检测法与高灵敏度 ddPCR 结合起来,并使用外源甲基化序列作为对照,作为分析短基因组区域 DNA 甲基化的新型灵敏方法。我们对黑色素瘤细胞系DNA样本、黑色素瘤患者和健康对照者的组织和血清样本中溶质运载家族22成员17的甲基化热点进行了设置和验证实验。与标准的 MSRE 方法相比,MSRE-ddPCR 方法更适合分析低量 DNA 样本(最多 0.651 ng)中的 DNA 甲基化(methDNA),灵敏度更高。这些发现表明,MSRE-ddPCR 有可能应用于临床,为分析不同肿瘤中的其他甲基 DNA 热点铺平了道路。
{"title":"Methylation‑sensitive restriction enzyme‑droplet digital PCR assay for the one‑step highly sensitive analysis of DNA methylation hotspots.","authors":"Giuseppe Gattuso, Alessandro Lavoro, Rosario Caltabiano, Gabriele Madonna, Mariaelena Capone, Paolo Antonio Ascierto, Luca Falzone, Massimo Libra, Saverio Candido","doi":"10.3892/ijmm.2024.5366","DOIUrl":"10.3892/ijmm.2024.5366","url":null,"abstract":"<p><p>DNA methylation is an epigenetic modification that plays a key role in several cellular processes mediating the fine regulation of gene expression. Aberrant DNA methylation is observed in a wide range of pathologies, including cancer. Since these DNA modifications are transferred to the cell progenies and are stable over the time, the analysis of DNA methylation status has been proposed for diagnostic and prognostic purposes in cancer. Currently, DNA bisulfite conversion is the gold standard method for the high‑throughput analysis of DNA methylation alterations. However, bisulfite treatment induces DNA fragmentation affecting its quality for the downstream analyses. In this field, it is mandatory to identify novel methods to overcome the limits of conventional approaches. In the present study, the Methylation‑Sensitive Restriction Enzyme‑droplet digital PCR (MSRE‑ddPCR) assay was developed as a novel sensitive method for the analysis of DNA methylation of short genomic regions, combining the MSRE assay with the high‑sensitivity ddPCR and using an exogenous methylation sequence as control. Setup and validation experiments were performed analyzing a methylation hotspot of the <i>Solute Carrier Family 22 Member 17</i> in DNA samples derived from melanoma cell lines as well as from tissues and serum samples obtained from patients with melanoma and healthy controls. Compared with the standard MSRE approaches, the MSRE‑ddPCR assay is more appropriate for the analysis of DNA methylation (methDNA) in samples with low amounts of DNA (up to 0.651 ng) showing a greater sensitivity. These findings suggested the potential clinical application of MSRE‑ddPCR paving the way to the analysis of other methDNA hotspots in different tumors.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-03-22DOI: 10.3892/ijmm.2024.5367
Shi-Feng Kan, Jian Wang, Guan-Xing Sun
Following the publication of this paper, the authors realized that they had made an error in assembling the data shown in Fig. 6B on p. 2455, and requested the publication of a corrigendum to rectify this error. However, following an independent investigation of the data published in this paper made by the Editorial Office, it was noted that one set of the immunofluorescence assay images shown in Fig. 4A appeared to be strikingly similar to data appearing in different form in a paper published previously in the journal BMC Medicine by different authors at different research institutes [Jing Y‑Y, Han Z‑P, Sun K, Zhang S‑S, Hou J, Liu Y, Li R, Gao L, Zhao X, Zhao Q‑D et al: Tanshinone IIA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK‑Mff signaling pathways. BMC Medicine 10: 98, 2012]. Owing to the fact that the abovementioned data in Fig. 4A had already been published prior to its submission to International Journal of Molecular Medicine, the Editor has chosen to decline the authors' request to publish a corrigendum, and decided that this paper should be retracted from the Journal instead. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 42: 2447‑2458, 2018; DOI: 10.3892/ijmm.2018.3860].
本文发表后,作者意识到他们在汇编第 2455 页图 6B 所示数据时出现了错误,并要求发表更正以纠正这一错误。然而,编辑部对本文发表的数据进行独立调查后发现,图 4A 中显示的一组免疫荧光检测图像与图 6B 中显示的图像惊人地相似。不同研究机构的不同作者之前在《BMC 医学》杂志上发表的一篇论文中以不同形式出现的数据[Jing Y-Y, Han Z-P, Sun K, Zhang S-S, Hou J, Liu Y, Li R, Gao L, Zhao X, Zhao Q-D et al: Tanshinone IIA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK-Mff signaling pathways.BMC Medicine 10: 98, 2012]。由于图 4A 中的上述数据在提交给《国际分子医学杂志》之前已经发表,编辑拒绝了作者发表更正的请求,并决定将该论文从《国际分子医学杂志》上撤下来。在与作者取得联系后,他们接受了撤稿的决定。对于给读者带来的不便,编辑深表歉意。[International Journal of Molecular Medicine 42: 2447-2458, 2018; DOI: 10.3892/ijmm.2018.3860]。
{"title":"[Retracted] Sulforaphane regulates apoptosis‑ and proliferation‑related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer.","authors":"Shi-Feng Kan, Jian Wang, Guan-Xing Sun","doi":"10.3892/ijmm.2024.5367","DOIUrl":"10.3892/ijmm.2024.5367","url":null,"abstract":"<p><p>Following the publication of this paper, the authors realized that they had made an error in assembling the data shown in Fig. 6B on p. 2455, and requested the publication of a corrigendum to rectify this error. However, following an independent investigation of the data published in this paper made by the Editorial Office, it was noted that one set of the immunofluorescence assay images shown in Fig. 4A appeared to be strikingly similar to data appearing in different form in a paper published previously in the journal <i>BMC Medicine</i> by different authors at different research institutes [Jing Y‑Y, Han Z‑P, Sun K, Zhang S‑S, Hou J, Liu Y, Li R, Gao L, Zhao X, Zhao Q‑D et al: Tanshinone IIA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK‑Mff signaling pathways. BMC Medicine 10: 98, 2012]. Owing to the fact that the abovementioned data in Fig. 4A had already been published prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has chosen to decline the authors' request to publish a corrigendum, and decided that this paper should be retracted from the Journal instead. After having been in contact with the authors, they accepted the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 42: 2447‑2458, 2018; DOI: 10.3892/ijmm.2018.3860].</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"53 5","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Figs. 2C and 4B were strikingly similar to data appearing in different form in a paper by different authors at a different research institute that had already been submitted for publication. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 46: 2078‑2088, 2020; DOI: 10.3892/ijmm.2020.4749].
{"title":"[Retracted] MicroRNA‑202 inhibits endometrial stromal cell migration and invasion by suppressing the K‑Ras/Raf1/MEK/ERK signaling pathway.","authors":"Di Zhang, Ling Wang, Hua-Lei Guo, Zi-Wei Zhang, Chong Wang, Ri-Cheng Chian, Zhi-Fen Zhang","doi":"10.3892/ijmm.2024.5375","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5375","url":null,"abstract":"Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the Transwell invasion assay data shown in Figs. 2C and 4B were strikingly similar to data appearing in different form in a paper by different authors at a different research institute that had already been submitted for publication. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to <i>International Journal of Molecular Medicine</i>, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 46: 2078‑2088, 2020; DOI: 10.3892/ijmm.2020.4749].","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"1 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcela Lizano, Adela Carrillo-García, Erick De La Cruz-Hernández, Leonardo Josué Castro-Muñoz, Adriana Contreras-Paredes
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
{"title":"Promising predictive molecular biomarkers for cervical cancer (Review).","authors":"Marcela Lizano, Adela Carrillo-García, Erick De La Cruz-Hernández, Leonardo Josué Castro-Muñoz, Adriana Contreras-Paredes","doi":"10.3892/ijmm.2024.5374","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5374","url":null,"abstract":"Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"67 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yajing Zhan, Ankang Yin, Xiyang Su, Nan Tang, Zebin Zhang, Yi Chen, Wei Wang, Juan Wang
Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.
{"title":"Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review).","authors":"Yajing Zhan, Ankang Yin, Xiyang Su, Nan Tang, Zebin Zhang, Yi Chen, Wei Wang, Juan Wang","doi":"10.3892/ijmm.2024.5372","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5372","url":null,"abstract":"Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"299 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.
{"title":"Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review).","authors":"Pei Qin, Ye Sun, Liya Li","doi":"10.3892/ijmm.2024.5371","DOIUrl":"https://doi.org/10.3892/ijmm.2024.5371","url":null,"abstract":"Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"19 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}