首页 > 最新文献

International Journal of Nanotechnology最新文献

英文 中文
Real time crop field monitoring system using agriculture IoT systems 使用农业物联网系统的实时农田监测系统
4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.134016
Pankaj Agarwal, Deepthi Gorijavolu, G. Hanumat Sastry, Venkatadri Marriboyina, D. Vijendra Babu, G.K. Kishore
Modern agriculture system involves an automation technology (AT) which supports formers to do their activities at maximum extent. This paper proposes a wireless smart automation (WSA) influencing IoT system that supports mobile user interface for real time crop field monitoring and controlling. It reduces effect of manual interpretation for agriculture farming and field monitoring. It deploys a dedicated global server for user control accessibility anywhere around the world. Thereby, the drones are operated from smart mobile which have unique IP connectivity for secure authentication Arduino UNO microcontroller. The major advantage of the proposed system allows continuous crop field monitoring and ensures limited usage of pesticides and fertilisers. Additionally, user can monitor their farm field by using unified Android mobile app and thus, ensure delay difference between turn ON and OFF state by 2 seconds irrespective of any load conditions at any time.
现代农业系统涉及一种自动化技术(AT),它能最大限度地支持农民的生产活动。本文提出了一种无线智能自动化(WSA)影响物联网系统,该系统支持移动用户界面,用于实时农田监测和控制。减少人工解译对农业耕作和田间监测的影响。它部署了一个专用的全球服务器,以便在世界任何地方进行用户控制访问。因此,无人机由智能移动设备操作,该移动设备具有独特的IP连接,用于安全认证Arduino UNO微控制器。该系统的主要优点是可以对农田进行连续监测,并确保杀虫剂和化肥的使用有限。此外,用户可以使用统一的Android手机应用程序监控他们的农田,从而确保在任何时候,无论在任何负载情况下,打开和关闭状态的延迟差为2秒。
{"title":"Real time crop field monitoring system using agriculture IoT systems","authors":"Pankaj Agarwal, Deepthi Gorijavolu, G. Hanumat Sastry, Venkatadri Marriboyina, D. Vijendra Babu, G.K. Kishore","doi":"10.1504/ijnt.2023.134016","DOIUrl":"https://doi.org/10.1504/ijnt.2023.134016","url":null,"abstract":"Modern agriculture system involves an automation technology (AT) which supports formers to do their activities at maximum extent. This paper proposes a wireless smart automation (WSA) influencing IoT system that supports mobile user interface for real time crop field monitoring and controlling. It reduces effect of manual interpretation for agriculture farming and field monitoring. It deploys a dedicated global server for user control accessibility anywhere around the world. Thereby, the drones are operated from smart mobile which have unique IP connectivity for secure authentication Arduino UNO microcontroller. The major advantage of the proposed system allows continuous crop field monitoring and ensures limited usage of pesticides and fertilisers. Additionally, user can monitor their farm field by using unified Android mobile app and thus, ensure delay difference between turn ON and OFF state by 2 seconds irrespective of any load conditions at any time.","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dynamic programming approach for accurate content-based retrieval of ordinary and nano-scale medical images 基于内容的普通和纳米尺度医学图像精确检索的动态规划方法
IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.10056470
M. Khosravi, Yinglei Song, Junfeng Qu, Liang Qi, Jinhong Sun
{"title":"A dynamic programming approach for accurate content-based retrieval of ordinary and nano-scale medical images","authors":"M. Khosravi, Yinglei Song, Junfeng Qu, Liang Qi, Jinhong Sun","doi":"10.1504/ijnt.2023.10056470","DOIUrl":"https://doi.org/10.1504/ijnt.2023.10056470","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66786876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COVID-19 detection and tracking using smart applications with artificial intelligence 使用具有人工智能的智能应用程序检测和跟踪COVID-19
IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.10056479
Jothilakshmi Ramakrishnan, C. Nalini, V. Niveditha, G. Senthilkumar, Rajagopal Kumar
{"title":"COVID-19 detection and tracking using smart applications with artificial intelligence","authors":"Jothilakshmi Ramakrishnan, C. Nalini, V. Niveditha, G. Senthilkumar, Rajagopal Kumar","doi":"10.1504/ijnt.2023.10056479","DOIUrl":"https://doi.org/10.1504/ijnt.2023.10056479","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66787488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low power transistor level FIR filter implementation using CMOS 45 nm technology 采用CMOS 45纳米技术实现的低功耗晶体管级FIR滤波器
IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.131120
M. Balaji, N. Padmaja
{"title":"A low power transistor level FIR filter implementation using CMOS 45 nm technology","authors":"M. Balaji, N. Padmaja","doi":"10.1504/ijnt.2023.131120","DOIUrl":"https://doi.org/10.1504/ijnt.2023.131120","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66787606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combined study of improved fuzzy optimisation techniques with the analysis of the upgraded facility location centre for the Covid-19 vaccine by fuzzy clustering algorithms 改进模糊优化技术与模糊聚类算法分析新冠肺炎疫苗设施选址中心升级的结合研究
IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.10056476
Akash Kumar Bhoi, R. Jhaveri, V. Joshi, Rakesh Kumar, Gaurav Dhiman
{"title":"The combined study of improved fuzzy optimisation techniques with the analysis of the upgraded facility location centre for the Covid-19 vaccine by fuzzy clustering algorithms","authors":"Akash Kumar Bhoi, R. Jhaveri, V. Joshi, Rakesh Kumar, Gaurav Dhiman","doi":"10.1504/ijnt.2023.10056476","DOIUrl":"https://doi.org/10.1504/ijnt.2023.10056476","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66787207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi to binary class size based imbalance handling technique in wireless sensor networks 基于多到二进制类大小的无线传感器网络不平衡处理技术
4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.10059554
S. Vimal, Neha Singh, Gaurav Dhiman, Deepali Virmani
{"title":"Multi to binary class size based imbalance handling technique in wireless sensor networks","authors":"S. Vimal, Neha Singh, Gaurav Dhiman, Deepali Virmani","doi":"10.1504/ijnt.2023.10059554","DOIUrl":"https://doi.org/10.1504/ijnt.2023.10059554","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135955949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of IoT aided prevention and control platform for major public health emergencies 物联网辅助重大突发公共卫生事件防控平台设计
4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.10059568
Cunhong Li, Chunmeng Lu, Yanfang Ma
{"title":"Design of IoT aided prevention and control platform for major public health emergencies","authors":"Cunhong Li, Chunmeng Lu, Yanfang Ma","doi":"10.1504/ijnt.2023.10059568","DOIUrl":"https://doi.org/10.1504/ijnt.2023.10059568","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135956263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimisation of cache replacement policy using extreme learning machine 利用极限学习机优化缓存替换策略
4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.10059569
P.K. Singh, Swapnita Srivastava
{"title":"Optimisation of cache replacement policy using extreme learning machine","authors":"P.K. Singh, Swapnita Srivastava","doi":"10.1504/ijnt.2023.10059569","DOIUrl":"https://doi.org/10.1504/ijnt.2023.10059569","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135955953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysing behavioural and academic attributes of students using educational data mining 使用教育数据挖掘分析学生的行为和学术属性
4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.134005
Muhammad Umer, Saima Sadiq, Arif Mehmood, Imran Ashraf, Gyu Sang Choi, Sadia Din
{"title":"Analysing behavioural and academic attributes of students using educational data mining","authors":"Muhammad Umer, Saima Sadiq, Arif Mehmood, Imran Ashraf, Gyu Sang Choi, Sadia Din","doi":"10.1504/ijnt.2023.134005","DOIUrl":"https://doi.org/10.1504/ijnt.2023.134005","url":null,"abstract":"","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of brain tumour using machine learning based framework by classifying MRI images 基于机器学习框架的MRI图像分类脑肿瘤检测
4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.1504/ijnt.2023.134040
P. Nancy, G. Murugesan, Abu Sarwar Zamani, Karthikeyan Kaliyaperumal, Malik Jawarneh, Surendra Kumar Shukla, Samrat Ray, Abhishek Raghuvanshi
The fatality rate has risen in recent years due to an increase in the number of encephaloma tumours in each age group. Because of the complicated structure of tumours and the involution of noise in magnetic resonance (MR) imaging data, physical identification of tumours becomes a difficult and time-consuming operation for medical practitioners. As a result, recognising and locating the tumour's location at an early stage is crucial. Cancer tumour areas at various levels may be followed and prognosticated using medical scans, which can be utilised in concert with segmentation and relegation techniques to provide a correct diagnosis at an early time. This paper aims to develop image processing and machine learning based framework for early and accurate detection of brain tumour. This framework includes image preprocessing, image segmentation, feature extraction, and classification using the support vector machine (SVM), K-nearest neighbour (KNN), and Naïve Bayes algorithms. Image preprocessing is performed using Gaussian Elimination, image enhancement using histogram equalisation, image segmentation using k-means and feature extraction performed using PCA algorithm. For performance comparison, parameters like: accuracy, sensitivity and specificity are used. Experimental results have shown that the KNN is getting better accuracy for classification of brain tumour related images. KNN is performing admirably in terms of accuracy. In terms of specificity, both SVM and KNN perform similarly well. KNN outperforms other algorithms in terms of sensitivity. Accuracy of KNN classifier is around 98% in brain tumour image classification.
近年来,由于每个年龄组中脑瘤肿瘤的数量增加,死亡率有所上升。由于肿瘤的复杂结构和磁共振成像数据中的噪声,对医生来说,肿瘤的物理识别是一项困难且耗时的工作。因此,在早期阶段识别和定位肿瘤的位置至关重要。可以使用医学扫描跟踪和预测不同级别的癌症肿瘤区域,这可以与分割和降级技术一起使用,以便在早期提供正确的诊断。本文旨在开发基于图像处理和机器学习的框架,用于早期和准确检测脑肿瘤。该框架包括图像预处理、图像分割、特征提取以及使用支持向量机(SVM)、k近邻(KNN)和Naïve贝叶斯算法进行分类。图像预处理使用高斯消去,图像增强使用直方图均衡化,图像分割使用k-means和特征提取使用PCA算法进行。用于性能比较的参数有:准确性、灵敏度和特异性。实验结果表明,KNN对脑肿瘤相关图像的分类具有较好的准确性。KNN在准确性方面的表现令人钦佩。在特异性方面,SVM和KNN的表现相似。在灵敏度方面,KNN优于其他算法。KNN分类器在脑肿瘤图像分类中的准确率在98%左右。
{"title":"Detection of brain tumour using machine learning based framework by classifying MRI images","authors":"P. Nancy, G. Murugesan, Abu Sarwar Zamani, Karthikeyan Kaliyaperumal, Malik Jawarneh, Surendra Kumar Shukla, Samrat Ray, Abhishek Raghuvanshi","doi":"10.1504/ijnt.2023.134040","DOIUrl":"https://doi.org/10.1504/ijnt.2023.134040","url":null,"abstract":"The fatality rate has risen in recent years due to an increase in the number of encephaloma tumours in each age group. Because of the complicated structure of tumours and the involution of noise in magnetic resonance (MR) imaging data, physical identification of tumours becomes a difficult and time-consuming operation for medical practitioners. As a result, recognising and locating the tumour's location at an early stage is crucial. Cancer tumour areas at various levels may be followed and prognosticated using medical scans, which can be utilised in concert with segmentation and relegation techniques to provide a correct diagnosis at an early time. This paper aims to develop image processing and machine learning based framework for early and accurate detection of brain tumour. This framework includes image preprocessing, image segmentation, feature extraction, and classification using the support vector machine (SVM), K-nearest neighbour (KNN), and Naïve Bayes algorithms. Image preprocessing is performed using Gaussian Elimination, image enhancement using histogram equalisation, image segmentation using k-means and feature extraction performed using PCA algorithm. For performance comparison, parameters like: accuracy, sensitivity and specificity are used. Experimental results have shown that the KNN is getting better accuracy for classification of brain tumour related images. KNN is performing admirably in terms of accuracy. In terms of specificity, both SVM and KNN perform similarly well. KNN outperforms other algorithms in terms of sensitivity. Accuracy of KNN classifier is around 98% in brain tumour image classification.","PeriodicalId":14128,"journal":{"name":"International Journal of Nanotechnology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Nanotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1