Background: Increased levels of occupational stress among health professionals during the COVID-19 pandemic have been documented. Few studies have examined the effects of the pandemic on mental health professionals despite the heightened demand for their services.
Method: A multilingual, longitudinal, global survey was conducted at 3 time points during the pandemic among members of the World Health Organization's Global Clinical Practice Network. A total of 786 Global Clinical Practice Network members from 86 countries responded to surveys assessing occupational distress, well-being, and posttraumatic stress symptoms.
Results: On average, respondents' well-being deteriorated across time while their posttraumatic stress symptoms showed a modest improvement. Linear growth models indicated that being female, being younger, providing face-to-face health services to patients with COVID-19, having been a target of COVID-related violence, and living in a low- or middle-income country or a country with a higher COVID-19 death rate conveyed greater risk for poor well-being and higher level of stress symptoms over time. Growth mixed modeling identified trajectories of occupational well-being and stress symptoms. Most mental health professions demonstrated no impact to well-being; maintained moderate, nonclinical levels of stress symptoms; or showed improvements after an initial period of difficulty. However, some participant groups exhibited deteriorating well-being approaching the clinical threshold (25.8%) and persistently high and clinically significant levels of posttraumatic stress symptoms (19.6%) over time.
Conclusions: This study indicates that although most mental health professionals exhibited stable, positive well-being and low stress symptoms during the pandemic, a substantial minority of an already burdened global mental health workforce experienced persistently poor or deteriorating psychological status over the course of the pandemic.
Background: Wendan decoction (WDD) has been used as a treatment for depression in China since the Tang Dynasty. However, high-quality evidence for this is lacking. This study proposed a novel synthetic external control method to evaluate its clinical efficacy.
Methods: We searched public databases for clinical trials of WDD for major depression. The rate of change of the Hamilton Depression Scale score from baseline was used as an efficacy indicator, and a model-based meta-analysis was performed to analyze the clinical efficacy of WDD. To establish a reference standard for efficacy, the antidepressant efficacy distributions of a placebo and 19 antidepressants were virtually synthesized based on the same conditions as the clinical trial characteristics of WDD.
Results: This study included 5 clinical trials with 177 participants. WDD showed a slow onset, with a time to reach the maximum effect of 9.71 weeks. At 8 weeks, the rate of change in the Hamilton Depression Scale score from baseline was 66.4% (95% CI = 62.3%-70.3%) in the WDD group. The pure effect value of WDD, after deducting the placebo effect, was 26.9% (95%CI = 23.0%-30.9%), which was comparable with 5 types of antidepressants and significantly higher than the others.
Conclusion: The proposed external synthetic control method provides a solution to the bottleneck problem of clinical efficacy evaluation in real-world research on traditional Chinese medicine. WDD has high clinical development value for the treatment of depression, and large-scale randomized controlled trials are recommended to confirm its antidepressant effect.
Background: The clinical heterogeneity in major depressive disorder (MDD), variable treatment response, and conflicting findings limit the ability of genomics toward the discovery of evidence-based diagnosis and treatment regimen. This study attempts to curate all genetic association findings to evaluate potential variants for clinical translation.
Methods: We systematically reviewed all candidates and genome-wide association studies for both MDD susceptibility and antidepressant response, independently, using MEDLINE, particularly to identify replicated findings. These variants were evaluated for functional consequences using different in silico tools and further estimated their diagnostic predictability by calculating positive predictive values.
Results: A total of 217 significantly associated studies comprising 1200 variants across 545 genes and 128 studies including 921 variants across 412 genes were included with MDD susceptibility and antidepressant response, respectively. Although the majority of associations were confirmed by a single study, we identified 31 and 18 replicated variants (in at least 2 studies) for MDD and antidepressant response. Functional annotation of these 31 variants predicted 20% coding variants as deleterious/damaging and 80.6% variants with regulatory effect. Similarly, the response-related 18 variants revealed 25% coding variant as damaging and 88.2% with substantial regulatory potential. Finally, we could calculate the diagnostic predictability of 19 and 5 variants whose positive predictive values ranges from 0.49 to 0.66 for MDD and 0.36 to 0.66 for response.
Conclusions: The replicated variants presented in our data are promising for disease diagnosis and improved response outcomes. Although these quantitative assessment measures are solely directive of available observational evidence, robust homogenous validation studies are required to strengthen these variants for molecular diagnostic application.
Background: Diminished heart rate variability (HRV) has been observed in epilepsy, especially in epilepsy with depressive disorders. However, the underlying mechanism remains elusive.
Methods: We studied HRV, spontaneous recurrent seizures, and depression-like behaviors in different phases of pilocarpine-induced temporal lobe epilepsy (TLE) in mice. Single-cell RNA sequencing analysis was used to identify various nerve cell subsets in TLE mice with and without depression. Differentially expressed gene (DEG) analysis was performed in epilepsy, depression, and HRV central control-related brain areas.
Results: We found decreased HRV parameters in TLE mice, and alterations were positively correlated with the severity of depression-like behaviors. The severity of depression-like behaviors was correlated with the frequency of spontaneous recurrent seizure. Characteristic expression of mitochondria-related genes was significantly elevated in mice with depression in glial cells, and the enrichment analysis of those DEGs showed an enriched GABAergic synapse pathway in the HRV central control-related brain area. Furthermore, inhibitory neurons in the nucleus tractus solitarius, which is an HRV central control-related brain area, were specifically expressed in TLE mice combined with depression compared with those in mice without depression. A significantly enriched long-term depression pathway in DEGs from inhibitory neurons was found.
Conclusions: Our study reported correlations between HRV and epilepsy-depression comorbidity in different phases of TLE. More importantly, we found that HRV central control-related inhibitory neurons are involved in the development of depression in TLE, providing new insights into epilepsy comorbid with depression.
Background: Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice.
Methods: The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B.
Results: It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system.
Conclusions: Cucurbitacin B has the potential to be a novel antidepressant candidate.
Background: Although thought of as a multimodal-acting antidepressant targeting the serotonin system, more molecules are being shown to participate in the antidepressant mechanism of vortioxetine. A previous report has shown that vortioxetine administration enhanced the expression of rapamycin complex 1 (mTORC1) in neurons. It has been well demonstrated that mTORC1 participates in not only the pathogenesis of depression but also the pharmacological mechanisms of many antidepressants. Therefore, we speculate that the antidepressant mechanism of vortioxetine may require mTORC1.
Methods: Two mouse models of depression (chronic social defeat stress and chronic unpredictable mild stress) and western blotting were first used together to examine whether vortioxetine administration produced reversal effects against the chronic stress-induced downregulation in the whole mTORC1 signaling cascade in both the hippocampus and medial prefrontal cortex (mPFC). Then, LY294002, U0126, and rapamycin were used together to explore whether the antidepressant effects of vortioxetine in mouse models of depression were attenuated by pharmacological blockade of the mTORC1 system. Furthermore, lentiviral-mTORC1-short hairpin RNA-enhanced green fluorescence protein (LV-mTORC1-shRNA-EGFP) was adopted to examine if genetic blockade of mTORC1 also abolished the antidepressant actions of vortioxetine in mice.
Results: Vortioxetine administration produced significant reversal effects against the chronic stress-induced downregulation in the whole mTORC1 signaling cascade in both the hippocampus and mPFC. Both pharmacological and genetic blockade of the mTORC1 system notably attenuated the antidepressant effects of vortioxetine in mice.
Conclusions: Activation of the mTORC1 system in the hippocampus and mPFC is required for the antidepressant actions of vortioxetine in mice.
Background: Trace amine-associated receptor-1 (TAAR1) agonists have been proposed as potential antipsychotics, with ulotaront and ralmitaront having reached clinical trials. While ulotaront demonstrated efficacy in a recent Phase II trial, a corresponding study studies of ralmitaront failed to show efficacy as a monotherapy or as an adjunct to atypical antipsychotics. In addition to TAAR1 agonism, ulotaront is a partial agonist at the serotonin 1A receptor (5-HT1AR). However, little is known about ralmitaront.
Methods: We compared ulotaront and ralmitaront at TAAR1, 5-HT1AR, and dopamine D2 using luciferase complementation-based G protein recruitment, cAMP accumulation, and G protein-coupled inward rectifier potassium channel activation assays.
Results: Ralmitaront showed lower efficacy at TAAR1 in G protein recruitment, cAMP accumulation, and GIRK activation assays. Moreover, ralmitaront lacked detectable activity at 5-HT1AR and dopamine D2.
Conclusions: Compared with ulotaront, ralmitaront shows lower efficacy and slower kinetics at TAAR1 and lacks efficacy at 5-HT1AR. These data may be relevant to understanding differences in clinical profiles of these 2 compounds.
Background: Alzheimer disease (AD) and depression often cooccur, and inhibition of phosphodiesterase-4 (PDE4) has been shown to ameliorate neurodegenerative illness. Therefore, we explored whether PDE4 inhibitor rolipram might also improve the symptoms of comorbid AD and depression.
Methods: APP/PS1/tau mice (10 months old) were treated with or without daily i.p. injections of rolipram for 10 days. The animal groups were compared in behavioral tests related to learning, memory, anxiety, and depression. Neurochemical measures were conducted to explore the underlying mechanism of rolipram.
Results: Rolipram attenuated cognitive decline as well as anxiety- and depression-like behaviors. These benefits were attributed at least partly to the downregulation of amyloid-β, Amyloid precursor protein (APP), and Presenilin 1 (PS1); lower tau phosphorylation; greater neuronal survival; and normalized glial cell function following rolipram treatment. In addition, rolipram upregulated B-cell lymphoma-2 (Bcl-2) and downregulated Bcl-2-associated X protein (Bax) to reduce apoptosis; it also downregulated interleukin-1β, interleukin-6, and tumor necrosis factor-α to restrain neuroinflammation. Furthermore, rolipram increased cAMP, PKA, 26S proteasome, EPAC2, and phosphorylation of ERK1/2 while decreasing EPAC1.
Conclusions: Rolipram may mitigate cognitive deficits and depression-like behavior by reducing amyloid-β pathology, tau phosphorylation, neuroinflammation, and apoptosis. These effects may be mediated by stimulating cAMP/PKA/26S and cAMP/exchange protein directly activated by cAMP (EPAC)/ERK signaling pathways. This study suggests that PDE4 inhibitor rolipram can be an effective target for treatment of comorbid AD and depression.