Jose C Nicolau, Talia F Dalcoquio, Roberto R Giraldez, Fatima R Freitas, Andre M Nicolau, Remo H M Furtado, Thauany M Tavoni, Luciano M Baracioli, Felipe G Lima, Aline G Ferrari, Maria U P B Rondon, Rocio Salsoso, Maria J N N Alves, Flavia B B Arantes, Mayara A Santos, Leandro S Alves, Carlos E Negrao, Raul C Maranhão
High-density lipoprotein (HDL) is associated with decreased incidence of cardiovascular events, and its functionality also influences prognosis. Exercise is an important tool to improve prognosis in the post-infarction (MI) population, but the role of exercise on HDL functionality is poorly understood. Sixty-two patients with acute MI were randomized in a supervised exercise program for 12-14 weeks (exercise group-EG) or a control group (CG). The main objective of the study was to analyze the role of exercise on esterified cholesterol (EC) and unesterified cholesterol (UC) transfer to HDL. For the total population, the baseline mean rate of EC transfer to HDL was 2.53 ± 0.83 and at the end of follow-up, it was 2.74 ± 0.64 (p = 0.03). The figures for UC were, respectively, 4.08 ± 1.2 and 4.4 ± 1.06 (p = 0.02). The difference (follow-up minus baseline) for EC was 0.15 ± 0.84 for the control group and 0.27 ± 0.69 for the exercise group (p = 0.53); for UC, the figures were 0.28 ± 1.14 and 0.35 ± 0.96 (p = 0.80), respectively, for the control and exercise groups. In post-MI patients, 12-14 weeks of supervised exercise did not improve HDL functionality.
{"title":"The Role of Exercise-Based Cardiac Rehabilitation After Myocardial Infarction on Cholesterol Transfer to HDL.","authors":"Jose C Nicolau, Talia F Dalcoquio, Roberto R Giraldez, Fatima R Freitas, Andre M Nicolau, Remo H M Furtado, Thauany M Tavoni, Luciano M Baracioli, Felipe G Lima, Aline G Ferrari, Maria U P B Rondon, Rocio Salsoso, Maria J N N Alves, Flavia B B Arantes, Mayara A Santos, Leandro S Alves, Carlos E Negrao, Raul C Maranhão","doi":"10.3390/ijms26010419","DOIUrl":"10.3390/ijms26010419","url":null,"abstract":"<p><p>High-density lipoprotein (HDL) is associated with decreased incidence of cardiovascular events, and its functionality also influences prognosis. Exercise is an important tool to improve prognosis in the post-infarction (MI) population, but the role of exercise on HDL functionality is poorly understood. Sixty-two patients with acute MI were randomized in a supervised exercise program for 12-14 weeks (exercise group-EG) or a control group (CG). The main objective of the study was to analyze the role of exercise on esterified cholesterol (EC) and unesterified cholesterol (UC) transfer to HDL. For the total population, the baseline mean rate of EC transfer to HDL was 2.53 ± 0.83 and at the end of follow-up, it was 2.74 ± 0.64 (<i>p</i> = 0.03). The figures for UC were, respectively, 4.08 ± 1.2 and 4.4 ± 1.06 (<i>p</i> = 0.02). The difference (follow-up minus baseline) for EC was 0.15 ± 0.84 for the control group and 0.27 ± 0.69 for the exercise group (<i>p</i> = 0.53); for UC, the figures were 0.28 ± 1.14 and 0.35 ± 0.96 (<i>p</i> = 0.80), respectively, for the control and exercise groups. In post-MI patients, 12-14 weeks of supervised exercise did not improve HDL functionality.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation. We have shown that the IUGR model induced DNA hypomethylation in the paraventricular nucleus (PVN) in the brain, which in turn activates sympathetic activities, the renin-angiotensin system (RAS), contributing to the development of salt-sensitive hypertension. Even in adulthood, strong stress and/or exogenous steroids have been shown to induce epigenetic changes in the brain. Furthermore, DNA hypomethylation in the PVN is also observed in other hypertensive rat models, which suggests that it contributes significantly to the origins of elevated blood pressure. These findings suggest that if we can alter epigenetic changes in the brain, we can treat or prevent hypertension.
{"title":"The Fetal Environment and the Development of Hypertension-The Epigenetic Modification by Glucocorticoids.","authors":"Fumiko-Kawakami Mori, Tatsuo Shimosawa","doi":"10.3390/ijms26010420","DOIUrl":"10.3390/ijms26010420","url":null,"abstract":"<p><p>Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation. We have shown that the IUGR model induced DNA hypomethylation in the paraventricular nucleus (PVN) in the brain, which in turn activates sympathetic activities, the renin-angiotensin system (RAS), contributing to the development of salt-sensitive hypertension. Even in adulthood, strong stress and/or exogenous steroids have been shown to induce epigenetic changes in the brain. Furthermore, DNA hypomethylation in the PVN is also observed in other hypertensive rat models, which suggests that it contributes significantly to the origins of elevated blood pressure. These findings suggest that if we can alter epigenetic changes in the brain, we can treat or prevent hypertension.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan-Alejandro Norambuena, Patricia Poblete-Grant, Jorge F Beltrán, Patricio De Los Ríos-Escalante, Cristian Aranzaez-Ríos, Jorge G Farías
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on Daphnia pulex by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic). Results showed substantial differences in protein expression, with 17 proteins upregulated and 181 downregulated in Llanquihue, linked to elevated levels of copper, manganese, dissolved solids, phosphate, and nitrogen. These stressors caused metabolic damage and environmental stress in D. pulex. Our findings highlight the importance of monitoring pollution's effects on Northern Patagonian ecosystems, especially on keystone species like D. pulex, essential for ecosystem stability. This research provides fresh molecular-ecological insights into pollution's impacts, a perspective rarely addressed in this region. Understanding these effects is critical for conserving natural resources and offers pathways to study adaptive mechanisms in keystone species facing pollution. This approach also informs strategies for ecosystem management and restoration, addressing both immediate and long-term challenges in Northern Patagonian aquatic environments.
{"title":"Proteomic Profile of <i>Daphnia pulex</i> in Response to Heavy Metal Pollution in Lakes of Northern Patagonia.","authors":"Juan-Alejandro Norambuena, Patricia Poblete-Grant, Jorge F Beltrán, Patricio De Los Ríos-Escalante, Cristian Aranzaez-Ríos, Jorge G Farías","doi":"10.3390/ijms26010417","DOIUrl":"10.3390/ijms26010417","url":null,"abstract":"<p><p>Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on <i>Daphnia pulex</i> by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic). Results showed substantial differences in protein expression, with 17 proteins upregulated and 181 downregulated in Llanquihue, linked to elevated levels of copper, manganese, dissolved solids, phosphate, and nitrogen. These stressors caused metabolic damage and environmental stress in <i>D. pulex</i>. Our findings highlight the importance of monitoring pollution's effects on Northern Patagonian ecosystems, especially on keystone species like <i>D. pulex</i>, essential for ecosystem stability. This research provides fresh molecular-ecological insights into pollution's impacts, a perspective rarely addressed in this region. Understanding these effects is critical for conserving natural resources and offers pathways to study adaptive mechanisms in keystone species facing pollution. This approach also informs strategies for ecosystem management and restoration, addressing both immediate and long-term challenges in Northern Patagonian aquatic environments.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Autoimmune diseases are complex conditions characterized by immune-mediated tissue damage and chronic inflammation. Protease-activated receptor 2 (Par2) has been implicated in these diseases, exhibiting dual roles that complicate its therapeutic potential. This review examines the perplexing functions of Par2, which promotes inflammation through immune cell activation while facilitating tissue healing in damaged organs. By analyzing findings across diverse autoimmune conditions, including rheumatoid arthritis, type 1 diabetes, and inflammatory bowel disease, we highlight how the context and location of Par2 activation determine its effects. Recent studies from our laboratory have resolved some of these contradictions by distinguishing Par2's immune-mediated inflammatory roles from its tissue-reparative functions. These insights pave the way for context-specific therapeutic strategies, such as selective Par2 modulators, that can mitigate inflammation while enhancing tissue repair. However, achieving such precision in modulation remains a significant challenge, necessitating further research into Par2's signaling pathways. This review underscores Par2's complexity and its transformative potential in autoimmune disease management, offering a nuanced perspective on its duality and therapeutic implications.
{"title":"A New Strategy in Modulating the Protease-Activated Receptor 2 (Par2) in Autoimmune Diseases.","authors":"Lynn Khoon, Ron Piran","doi":"10.3390/ijms26010410","DOIUrl":"10.3390/ijms26010410","url":null,"abstract":"<p><p>Autoimmune diseases are complex conditions characterized by immune-mediated tissue damage and chronic inflammation. Protease-activated receptor 2 (Par2) has been implicated in these diseases, exhibiting dual roles that complicate its therapeutic potential. This review examines the perplexing functions of Par2, which promotes inflammation through immune cell activation while facilitating tissue healing in damaged organs. By analyzing findings across diverse autoimmune conditions, including rheumatoid arthritis, type 1 diabetes, and inflammatory bowel disease, we highlight how the context and location of Par2 activation determine its effects. Recent studies from our laboratory have resolved some of these contradictions by distinguishing Par2's immune-mediated inflammatory roles from its tissue-reparative functions. These insights pave the way for context-specific therapeutic strategies, such as selective Par2 modulators, that can mitigate inflammation while enhancing tissue repair. However, achieving such precision in modulation remains a significant challenge, necessitating further research into Par2's signaling pathways. This review underscores Par2's complexity and its transformative potential in autoimmune disease management, offering a nuanced perspective on its duality and therapeutic implications.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ksenia A Zaripova, Svetlana P Belova, Tatiana Y Kostrominova, Boris S Shenkman, Tatiana L Nemirovskaya
During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca2+ to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes. LY294002 inhibitor was used to study the role of PI3K in the ATP-dependent regulation of skeletal muscle signaling during three days of unloading. Inhibition of PI3K during soleus muscle unloading slows down the atrophic processes and prevents the accumulation of ATP and the expression of the E3 ubiquitin ligase MuRF1 and ubiquitin. It also prevents the increase in the expression of IP3 receptors and regulates the activity of Ca2+-dependent signaling pathways by reducing the mRNA expression of the Ca2+-dependent marker calcineurin (CaN) and decreasing the phosphorylation of CaMKII. It also affects the regulation of markers of anabolic signaling in unloaded muscles: IRS1 and 4E-BP. PI3K is an important mediator of skeletal muscle atrophy during unloading. Developing strategies for the localized skeletal muscle release of PI3K inhibitors might be one of the future treatments for inactivity and disease-induced muscle atrophy.
{"title":"Role of PI3 Kinases in Cell Signaling and Soleus Muscle Atrophy During Three Days of Unloading.","authors":"Ksenia A Zaripova, Svetlana P Belova, Tatiana Y Kostrominova, Boris S Shenkman, Tatiana L Nemirovskaya","doi":"10.3390/ijms26010414","DOIUrl":"10.3390/ijms26010414","url":null,"abstract":"<p><p>During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca<sup>2+</sup> to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes. LY294002 inhibitor was used to study the role of PI3K in the ATP-dependent regulation of skeletal muscle signaling during three days of unloading. Inhibition of PI3K during soleus muscle unloading slows down the atrophic processes and prevents the accumulation of ATP and the expression of the E3 ubiquitin ligase MuRF1 and ubiquitin. It also prevents the increase in the expression of IP3 receptors and regulates the activity of Ca<sup>2+</sup>-dependent signaling pathways by reducing the mRNA expression of the Ca<sup>2+</sup>-dependent marker calcineurin (CaN) and decreasing the phosphorylation of CaMKII. It also affects the regulation of markers of anabolic signaling in unloaded muscles: IRS1 and 4E-BP. PI3K is an important mediator of skeletal muscle atrophy during unloading. Developing strategies for the localized skeletal muscle release of PI3K inhibitors might be one of the future treatments for inactivity and disease-induced muscle atrophy.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naserddine Hamadi, Suhail Al-Salam, Sumaya Beegam, Nur Elena Zaaba, Ozaz Elzaki, Abderrahim Nemmar
While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis. Only R-WPS increased the number of neutrophil polymorphs and plasma cells. R-WPS also significantly increased the chemokines CXCL1, CXCL2, and CCL2 in the lung, BALF, and plasma, while O-WPS increased CXCL1 and CXCL2 in the lung and CXCL1 in the plasma. Both exposure regimens significantly increased lung injury markers, including matrix metalloproteinase-9 and myeloperoxidase. Additionally, R-WPS induced a significant increase in the cytokines IL1β, IL6, and TNFα in the lung, BALF, and plasma, while O-WPS elevated IL1β and IL6 in the lung. Oxidative stress was observed, with increased levels of thiobarbituric acid reactive substances and superoxide dismutase in both the O-WPS and R-WPS groups. Exposure to either O-WPS or R-WPS triggered genotoxicity and altered mitochondrial complex activities. R-WPS exposure also resulted in elevated expression of p-JNK/JNK, p-ERK/ERK, and p-p38/p38, while O-WPS augmented the p-ERK/ERK ratio in the lungs. Taken together, these findings indicate that both O-WPS and R-WPS contribute to lung injury and induce inflammation, oxidative stress, genotoxicity, and mitochondrial dysfunction, with R-WPS having a more pronounced effect. These effects were associated with the activation of MAPKs.
{"title":"Chronic Exposure to Two Regimens of Waterpipe Smoke Elicits Lung Injury, Genotoxicity, and Mitochondrial Impairment with the Involvement of MAPKs Activation in Mice.","authors":"Naserddine Hamadi, Suhail Al-Salam, Sumaya Beegam, Nur Elena Zaaba, Ozaz Elzaki, Abderrahim Nemmar","doi":"10.3390/ijms26010430","DOIUrl":"10.3390/ijms26010430","url":null,"abstract":"<p><p>While the pulmonary effects of regular waterpipe smoking (R-WPS) are well-defined, the impact of occasional waterpipe smoking (O-WPS) on the lungs remains less established. This study investigated the pulmonary toxicity and underlying mechanisms of O-WPS versus R-WPS following 6 months of exposure, focusing on histopathology, inflammation in the lung, bronchoalveolar lavage fluid (BALF), and plasma, as well as oxidative stress, genotoxicity, mitochondrial dysfunction, and the expression of mitogen-activated protein kinases (MAPKs) in lung homogenates. Exposure to both O-WPS and R-WPS resulted in significant histological changes, including increased numbers of alveolar macrophages and lymphocytes, as well as interstitial fibrosis. Only R-WPS increased the number of neutrophil polymorphs and plasma cells. R-WPS also significantly increased the chemokines CXCL1, CXCL2, and CCL2 in the lung, BALF, and plasma, while O-WPS increased CXCL1 and CXCL2 in the lung and CXCL1 in the plasma. Both exposure regimens significantly increased lung injury markers, including matrix metalloproteinase-9 and myeloperoxidase. Additionally, R-WPS induced a significant increase in the cytokines IL1β, IL6, and TNFα in the lung, BALF, and plasma, while O-WPS elevated IL1β and IL6 in the lung. Oxidative stress was observed, with increased levels of thiobarbituric acid reactive substances and superoxide dismutase in both the O-WPS and R-WPS groups. Exposure to either O-WPS or R-WPS triggered genotoxicity and altered mitochondrial complex activities. R-WPS exposure also resulted in elevated expression of p-JNK/JNK, p-ERK/ERK, and p-p38/p38, while O-WPS augmented the p-ERK/ERK ratio in the lungs. Taken together, these findings indicate that both O-WPS and R-WPS contribute to lung injury and induce inflammation, oxidative stress, genotoxicity, and mitochondrial dysfunction, with R-WPS having a more pronounced effect. These effects were associated with the activation of MAPKs.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taipeng Bai, Juanjuan Li, Xue Chi, Hong Li, Yanqiong Tang, Zhu Liu, Xiang Ma
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in Aeromonas veronii, a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the ssrA and smpB genes at different growth stages of the pathogen, assessed the responses of deletion strains ΔssrA and ΔsmpB to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene ssrA maintained stable expression throughout the bacterial growth period, while smpB exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the ΔssrA and ΔsmpB strains exhibited attenuated resistance to most stress conditions. However, ΔssrA independently responded to starvation, while ΔsmpB specifically showed reduced resistance to lower concentrations of Fe3+ and higher concentrations of Na+ ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation.
由ssrA基因编码的传递信使RNA (tmRNA)及其伴侣蛋白SmpB介导的反翻译系统有助于释放停滞在缺陷mRNA上的核糖体,并针对不完整的蛋白质产物进行水解。敲除不同病原体中的ssrA和smpB基因会导致不同的表型变化,表明它们既有合作功能,也有独立功能。维罗尼气单胞菌是一种威胁水产养殖和人类健康的病原体,本研究旨在阐明tmRNA与SmpB的功能关系。我们表征了ssrA和smpB基因在病原菌不同生长阶段的表达动态,评估了缺失菌株ΔssrA和ΔsmpB对各种环境胁迫和碳源补充的反应,并通过整合转录组学和表型分析确定了涉及这两个基因的基因调控网络。我们的研究结果表明,ssrA基因在细菌生长期间保持稳定表达,而smpB基因在营养缺乏的情况下表达上调。与野生型相比,ΔssrA和ΔsmpB菌株对大多数胁迫条件的抗性都有所减弱。然而,ΔssrA对饥饿有独立的反应,而ΔsmpB对较低浓度的Fe3+和较高浓度的Na+离子的抗性降低,以及对碳源β-甲基- d -葡萄糖苷的利用增加。转录组学分析支持这些表型结果,表明tmRNA和SmpB在营养缺乏条件下合作,但在营养丰富的环境下独立运作。表型实验证实,SsrA和SmpB协同调节参与铁载体合成和铁摄取系统的基因,以应对细胞外铁缺乏。本研究的发现为反翻译系统的功能提供了重要的见解,并强调了tmRNA和SmpB在反翻译之外的新作用。
{"title":"Cooperative and Independent Functionality of tmRNA and SmpB in <i>Aeromonas veronii</i>: A Multifunctional Exploration Beyond Ribosome Rescue.","authors":"Taipeng Bai, Juanjuan Li, Xue Chi, Hong Li, Yanqiong Tang, Zhu Liu, Xiang Ma","doi":"10.3390/ijms26010409","DOIUrl":"10.3390/ijms26010409","url":null,"abstract":"<p><p>The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the <i>ssrA</i> gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the <i>ssrA</i> and <i>smpB</i> genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in <i>Aeromonas veronii,</i> a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the <i>ssrA</i> and <i>smpB</i> genes at different growth stages of the pathogen, assessed the responses of deletion strains Δ<i>ssrA</i> and Δ<i>smpB</i> to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene <i>ssrA</i> maintained stable expression throughout the bacterial growth period, while <i>smpB</i> exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the Δ<i>ssrA</i> and Δ<i>smpB</i> strains exhibited attenuated resistance to most stress conditions. However, Δ<i>ssrA</i> independently responded to starvation, while Δ<i>smpB</i> specifically showed reduced resistance to lower concentrations of Fe<sup>3+</sup> and higher concentrations of Na<sup>+</sup> ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Tian et al. Genome-Wide Identification of the DnaJ Gene Family in Citrus and Functional Characterization of <i>ClDJC24</i> in Response to Citrus Huanglongbing. <i>Int. J. Mol. Sci.</i> 2024, <i>25</i>, 11967.","authors":"Yuzhen Tian, Xizi Wang, Huoqing Huang, Xin Deng, Baihong Zhang, Yixuan Meng, Libo Wu, Hang Chen, Yun Zhong, Wenli Chen","doi":"10.3390/ijms26010411","DOIUrl":"10.3390/ijms26010411","url":null,"abstract":"<p><p>In the original publication [...].</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (Vdr-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since Vdr-KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among Vdr-KO, Vdr-R270L/H301Q, and wild-type (WT) rats. While Vdr-R270L/H301Q rats exhibited normal skin formation similar to WT rats, Vdr-KO rats showed remarkable hyperkeratosis and trans-epidermal water loss in the skin. RNA sequencing and proteomic analysis revealed that the gene and protein expression patterns in Vdr-KO rats significantly differed from those in WT and Vdr-R270L/H301Q rats, with a marked decrease in the expression of factors involved in Shh, Wnt, and Bmp signaling pathways, a dramatic reduction in the expression of hair keratins, and a substantial increase in the expression of epidermal keratins. This study clearly demonstrated that non-liganded VDR is significantly involved in the differentiation, proliferation, and cell death of keratinocytes in hair follicles and the epidermis.
{"title":"Ligand-Independent Vitamin D Receptor Actions Essential for Keratinocyte Homeostasis in the Skin.","authors":"Satoko Kise, Shinichi Morita, Toshiyuki Sakaki, Hiroyuki Kimura, Seigo Kinuya, Kaori Yasuda","doi":"10.3390/ijms26010422","DOIUrl":"10.3390/ijms26010422","url":null,"abstract":"<p><p>Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (<i>Vdr</i>-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since <i>Vdr</i>-KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among <i>Vdr</i>-KO, <i>Vdr</i>-R270L/H301Q, and wild-type (WT) rats. While <i>Vdr</i>-R270L/H301Q rats exhibited normal skin formation similar to WT rats, <i>Vdr</i>-KO rats showed remarkable hyperkeratosis and trans-epidermal water loss in the skin. RNA sequencing and proteomic analysis revealed that the gene and protein expression patterns in <i>Vdr</i>-KO rats significantly differed from those in WT and <i>Vdr</i>-R270L/H301Q rats, with a marked decrease in the expression of factors involved in <i>Shh</i>, <i>Wnt</i>, and <i>Bmp</i> signaling pathways, a dramatic reduction in the expression of hair keratins, and a substantial increase in the expression of epidermal keratins. This study clearly demonstrated that non-liganded VDR is significantly involved in the differentiation, proliferation, and cell death of keratinocytes in hair follicles and the epidermis.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment. Our findings indicate that, in vitro, SUCMSCs reduce melanin content and tyrosinase activity, inhibit melanoma cell viability, proliferation, migration, and invasion, and promote melanoma cell apoptosis. Subsequent in vivo experiments confirmed that SUCMSCs effectively suppress tumor growth, and histological analysis via HE staining revealed notable differences. Additionally, transcriptome sequencing analysis indicated that the anti-tumor effects were primarily mediated through autophagy, apoptosis, and the TGF-β and NF-κB signaling pathways. The RT-qPCR validation results aligned with the transcriptome data. In summary, SUCMSCs exert anti-melanogenesis effects through the interaction of multiple signaling pathways and cytokines, demonstrating significant potential for melanoma treatment.
{"title":"Anti-Tumor Effects of Sheep Umbilical Cord Mesenchymal Stem Cells on Melanoma Cells.","authors":"Fengjiao Yue, Yuqing Zhao, Yiting Lv, Songmei Li, Weihai Wang, Yajun Li, Shujie Wang, Chunsheng Wang","doi":"10.3390/ijms26010426","DOIUrl":"10.3390/ijms26010426","url":null,"abstract":"<p><p>Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment. Our findings indicate that, in vitro, SUCMSCs reduce melanin content and tyrosinase activity, inhibit melanoma cell viability, proliferation, migration, and invasion, and promote melanoma cell apoptosis. Subsequent in vivo experiments confirmed that SUCMSCs effectively suppress tumor growth, and histological analysis via HE staining revealed notable differences. Additionally, transcriptome sequencing analysis indicated that the anti-tumor effects were primarily mediated through autophagy, apoptosis, and the TGF-β and NF-κB signaling pathways. The RT-qPCR validation results aligned with the transcriptome data. In summary, SUCMSCs exert anti-melanogenesis effects through the interaction of multiple signaling pathways and cytokines, demonstrating significant potential for melanoma treatment.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}