Ana Jeremic, Mladenko Vasiljevic, Zeljko Mikovic, Zoran Bukumiric, Petar Simic, Tamara Stanisavljevic, Tatjana Simic, Tatjana Djukic
The objective of this study was to measure the different redox biomarker levels within the follicular fluid (FF) and evaluate correlations with embryo quality using the one follicle-one oocyte/embryo approach. The prospective study included 54 women (average age 34.6 ± 3.0 years). Out of the 235 mature metaphase II cells that underwent intracytoplasmic sperm injection, fertilization was achieved in 177 cells, producing 92 Grade I embryos, 26 Grade II embryos, 39 Grade III embryos, and 20 Grade IV embryos. The activities of antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and glutathione transferase were significantly higher in the group consisting of lower-quality (Grades II-IV) embryos in comparison with top-quality (Grade I) embryos (p = 0.011; p = 0.021; p = 0.008, respectively). The concentration of oxidative stress markers, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and thiol groups was significantly increased in the group with lower-quality embryos (Grades II-IV) compared to top-quality embryos (0.027; 0.018; 0.021, respectively). Furthermore, a significant positive correlation between each oxidative marker and the activities of antioxidant enzymes was observed (p < 0.001). According to our findings, the best embryos and, consequently, better in vitro fertilization outcomes are linked to low levels of oxidative stress and low antioxidant enzyme activity.
{"title":"Oxidative Homeostasis in Follicular Fluid and Embryo Quality-A Pilot Study.","authors":"Ana Jeremic, Mladenko Vasiljevic, Zeljko Mikovic, Zoran Bukumiric, Petar Simic, Tamara Stanisavljevic, Tatjana Simic, Tatjana Djukic","doi":"10.3390/ijms26010388","DOIUrl":"10.3390/ijms26010388","url":null,"abstract":"<p><p>The objective of this study was to measure the different redox biomarker levels within the follicular fluid (FF) and evaluate correlations with embryo quality using the one follicle-one oocyte/embryo approach. The prospective study included 54 women (average age 34.6 ± 3.0 years). Out of the 235 mature metaphase II cells that underwent intracytoplasmic sperm injection, fertilization was achieved in 177 cells, producing 92 Grade I embryos, 26 Grade II embryos, 39 Grade III embryos, and 20 Grade IV embryos. The activities of antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and glutathione transferase were significantly higher in the group consisting of lower-quality (Grades II-IV) embryos in comparison with top-quality (Grade I) embryos (<i>p</i> = 0.011; <i>p</i> = 0.021; <i>p</i> = 0.008, respectively). The concentration of oxidative stress markers, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and thiol groups was significantly increased in the group with lower-quality embryos (Grades II-IV) compared to top-quality embryos (0.027; 0.018; 0.021, respectively). Furthermore, a significant positive correlation between each oxidative marker and the activities of antioxidant enzymes was observed (<i>p</i> < 0.001). According to our findings, the best embryos and, consequently, better in vitro fertilization outcomes are linked to low levels of oxidative stress and low antioxidant enzyme activity.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion. Exosomes (EXOs) have been investigated for drug delivery due to their superior carrier properties. However, their loading efficiency has been a limiting factor in widely application as drug carriers. In this study, an ultrasonic microfluidic method was employed to enhance the loading efficiency of siHSP47 into EXOs, achieving 31.1% efficiency rate. EXOs were isolated from human embryonic kidney cells (293F) and loaded with siHSP47 (EXO-siHSP47). The findings indicated that EXO-siHSP47 penetrated the collagen barrier and effectively silenced HSP47 expression in activated fibroblasts in vitro. Western blotting and immunofluorescence analyses confirmed that EXO-siHSP47 significantly reduced the secretion and deposition of extracellular matrix (ECM) proteins. Wound healing and Transwell migration assays demonstrated that EXO-siHSP47 inhibited fibroblast differentiation and migration. In conclusion, 293F-derived EXOs loaded with siHSP47 present a promising therapeutic strategy for IPF.
{"title":"Ultrasonic Microfluidic Method Used for siHSP47 Loaded in Human Embryonic Kidney Cell-Derived Exosomes for Inhibiting TGF-β1 Induced Fibroblast Differentiation and Migration.","authors":"Ranran Yuan, Zhen Mu, Houqian Zhang, Jianwei Guo, Yu Tian, Quanlin Xin, Xiaojing Zhu, Zhengya Dong, Hongbo Wang, Yanan Shi","doi":"10.3390/ijms26010382","DOIUrl":"10.3390/ijms26010382","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion. Exosomes (EXOs) have been investigated for drug delivery due to their superior carrier properties. However, their loading efficiency has been a limiting factor in widely application as drug carriers. In this study, an ultrasonic microfluidic method was employed to enhance the loading efficiency of siHSP47 into EXOs, achieving 31.1% efficiency rate. EXOs were isolated from human embryonic kidney cells (293F) and loaded with siHSP47 (EXO-siHSP47). The findings indicated that EXO-siHSP47 penetrated the collagen barrier and effectively silenced HSP47 expression in activated fibroblasts in vitro. Western blotting and immunofluorescence analyses confirmed that EXO-siHSP47 significantly reduced the secretion and deposition of extracellular matrix (ECM) proteins. Wound healing and Transwell migration assays demonstrated that EXO-siHSP47 inhibited fibroblast differentiation and migration. In conclusion, 293F-derived EXOs loaded with siHSP47 present a promising therapeutic strategy for IPF.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enterohemorrhagic Escherichia coli (EHEC) is a common pathotype of E. coli that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. E. coli O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.
{"title":"Phytochemicals Controlling Enterohemorrhagic <i>Escherichia coli</i> (EHEC) Virulence-Current Knowledge of Their Mechanisms of Action.","authors":"Patryk Strzelecki, Monika Karczewska, Agnieszka Szalewska-Pałasz, Dariusz Nowicki","doi":"10.3390/ijms26010381","DOIUrl":"10.3390/ijms26010381","url":null,"abstract":"<p><p>Enterohemorrhagic <i>Escherichia coli</i> (EHEC) is a common pathotype of <i>E. coli</i> that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains. Humans can become infected with EHEC through the consumption of contaminated food and water or through direct contact with infected animals or humans. <i>E. coli</i> O157:H7 is one of the most commonly reported causes of foodborne illnesses in developed countries. The formation of attaching and effacing (A/E) lesions on the intestinal epithelium, combined with Shiga toxin production, is a hallmark of EHEC infection and can lead to lethal hemolytic-uremic syndrome (HUS). For the phage-dependent regulation of Shiga toxin production, antibiotic treatment is contraindicated, as it may exacerbate toxin production, limiting therapeutic options to supportive care. In response to this challenge and the growing threat of antibiotic resistance, phytochemicals have emerged as promising antivirulence agents. These plant-derived compounds target bacterial virulence mechanisms without promoting resistance. Therefore, the aim of this study is to summarize the recent knowledge on the use of phytochemicals targeting EHEC. We focused on the molecular basis of their action, targeting the principal virulence determinants of EHEC.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments. Thus, hemichannels have been implicated in skeletal muscle atrophy, as observed in human biopsies and animal models of Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Dysferlinopathies, suggesting a potentially shared mechanism of muscle atrophy that has not yet been explored in FSHD. Despite various therapeutic strategies proposed to manage FSHD, no treatment or cure is currently available. This review summarizes the current understanding of the mechanisms underlying FSHD progression, with a focus on hormones, inflammation, reactive oxygen species (ROS), and mitochondrial function. Additionally, it explores the potential of targeting hemichannels as a therapeutic strategy to slow disease progression by preventing the spread of pathogenic factors between muscle cells.
{"title":"The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression.","authors":"Macarena Díaz-Ubilla, Mauricio A Retamal","doi":"10.3390/ijms26010373","DOIUrl":"10.3390/ijms26010373","url":null,"abstract":"<p><p>DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments. Thus, hemichannels have been implicated in skeletal muscle atrophy, as observed in human biopsies and animal models of Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Dysferlinopathies, suggesting a potentially shared mechanism of muscle atrophy that has not yet been explored in FSHD. Despite various therapeutic strategies proposed to manage FSHD, no treatment or cure is currently available. This review summarizes the current understanding of the mechanisms underlying FSHD progression, with a focus on hormones, inflammation, reactive oxygen species (ROS), and mitochondrial function. Additionally, it explores the potential of targeting hemichannels as a therapeutic strategy to slow disease progression by preventing the spread of pathogenic factors between muscle cells.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
{"title":"The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications.","authors":"Cheng-Yung Lee, Chang-Hao Yang","doi":"10.3390/ijms26010378","DOIUrl":"10.3390/ijms26010378","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olga Vlasova, Irina Antonova, Khamis Magomedova, Alena Osipova, Polina Shtompel, Anna Borunova, Tatiana Zabotina, Gennady Belitsky, Irina Budunova, Albert Jordan, Kirill Kirsanov, Marianna Yakubovskaya
Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4. Chromatin remodeling or multiH1 knocking-down is known to promote the upregulation of repetitive elements, ultimately triggering an interferon (IFN) response. Herein, using HeLa cells and applying fluorescent reporter assay with flow cytometry, immunofluorescence staining and quantitative RT-PCR, we studied effects of PSMs both evicting linker histones from chromatin and not influencing their location in nucleus. We found that (1) 8 PSMs, evicting linker histone H1.2 from chromatin, activated significantly the type I IFN signaling pathway and out of these compounds resveratrol, berberine, genistein, delphinidin, naringenin and curcumin also caused LINE1 expression. Fisetin and quercetin, which also induced linker histone H1.2 eviction from chromatin, significantly activated only type I IFN signaling, but not LINE1 expression; (2) curcumin, sanguinarine and kaempferol, causing significant depletion of the chromatin-bound linker histone H1.4 but not significantly influencing H1.2 presence in chromatin, activate type I IFN signaling less intensively without any changes in LINE1 expression; (3) four PSMs, which did not cause linker histone eviction, displayed neither IFN signaling activation nor enhancement of LINE1 expression. Thus, we have shown for the first time that chromatin destabilization observed by depletion of chromatin-bound linker histone H1.2 caused by anticancer DNA-binding PSMs is accompanied by enhancement of type I IFN signaling, and that LINE1 expression often impacts this activation.
{"title":"Anticancer Plant Secondary Metabolites Evicting Linker Histone H1.2 from Chromatin Activate Type I Interferon Signaling.","authors":"Olga Vlasova, Irina Antonova, Khamis Magomedova, Alena Osipova, Polina Shtompel, Anna Borunova, Tatiana Zabotina, Gennady Belitsky, Irina Budunova, Albert Jordan, Kirill Kirsanov, Marianna Yakubovskaya","doi":"10.3390/ijms26010375","DOIUrl":"10.3390/ijms26010375","url":null,"abstract":"<p><p>Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4. Chromatin remodeling or multiH1 knocking-down is known to promote the upregulation of repetitive elements, ultimately triggering an interferon (IFN) response. Herein, using HeLa cells and applying fluorescent reporter assay with flow cytometry, immunofluorescence staining and quantitative RT-PCR, we studied effects of PSMs both evicting linker histones from chromatin and not influencing their location in nucleus. We found that (1) 8 PSMs, evicting linker histone H1.2 from chromatin, activated significantly the type I IFN signaling pathway and out of these compounds resveratrol, berberine, genistein, delphinidin, naringenin and curcumin also caused <i>LINE1</i> expression. Fisetin and quercetin, which also induced linker histone H1.2 eviction from chromatin, significantly activated only type I IFN signaling, but not <i>LINE1</i> expression; (2) curcumin, sanguinarine and kaempferol, causing significant depletion of the chromatin-bound linker histone H1.4 but not significantly influencing H1.2 presence in chromatin, activate type I IFN signaling less intensively without any changes in <i>LINE1</i> expression; (3) four PSMs, which did not cause linker histone eviction, displayed neither IFN signaling activation nor enhancement of <i>LINE1</i> expression. Thus, we have shown for the first time that chromatin destabilization observed by depletion of chromatin-bound linker histone H1.2 caused by anticancer DNA-binding PSMs is accompanied by enhancement of type I IFN signaling, and that <i>LINE1</i> expression often impacts this activation.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722331/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahram Parvaneh, Vanda Miklós, Zoltán Gábor Páhi, Diána Szűcs, Tamás Monostori, Szilárd Póliska, Viktória Venglovecz, Tibor Pankotai, Lajos Kemény, Zoltán Veréb
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses. Transcriptomic analyses revealed OXP-induced transcriptional reprogramming in ASCs, with over 7000 differentially expressed genes, highlighting the pathways related to DNA damage response, cell cycle regulation, and stress-related signaling. In contrast, 5-FU elicited limited transcriptional changes, affecting only 192 genes. Cytokine proteome profiling revealed that OXP-treated ASCs significantly influenced the tumor microenvironment by promoting immune evasion (via IL-4, GM-CSF, IP-10, and GROα) and driving extracellular matrix remodeling (through EMMPRIN and DPPIV). In contrast, 5-FU induced comparatively weaker effects, primarily limited to hypoxia-related pathways. Although OXP reduced angiogenic factors, it paradoxically activated pro-survival pathways, thereby enhancing ASC-mediated tumor support. These findings underscore ASCs as modulators of chemoresistance via secretome alterations and stress adaptation. Therefore, future strategies should prioritize the precise targeting of tumor cells while also focusing on the development of personalized treatments to achieve durable therapeutic responses in PDAC.
{"title":"Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.","authors":"Shahram Parvaneh, Vanda Miklós, Zoltán Gábor Páhi, Diána Szűcs, Tamás Monostori, Szilárd Póliska, Viktória Venglovecz, Tibor Pankotai, Lajos Kemény, Zoltán Veréb","doi":"10.3390/ijms26010390","DOIUrl":"10.3390/ijms26010390","url":null,"abstract":"<p><p>Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses. Transcriptomic analyses revealed OXP-induced transcriptional reprogramming in ASCs, with over 7000 differentially expressed genes, highlighting the pathways related to DNA damage response, cell cycle regulation, and stress-related signaling. In contrast, 5-FU elicited limited transcriptional changes, affecting only 192 genes. Cytokine proteome profiling revealed that OXP-treated ASCs significantly influenced the tumor microenvironment by promoting immune evasion (via IL-4, GM-CSF, IP-10, and GROα) and driving extracellular matrix remodeling (through EMMPRIN and DPPIV). In contrast, 5-FU induced comparatively weaker effects, primarily limited to hypoxia-related pathways. Although OXP reduced angiogenic factors, it paradoxically activated pro-survival pathways, thereby enhancing ASC-mediated tumor support. These findings underscore ASCs as modulators of chemoresistance via secretome alterations and stress adaptation. Therefore, future strategies should prioritize the precise targeting of tumor cells while also focusing on the development of personalized treatments to achieve durable therapeutic responses in PDAC.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Giuliana Guerin Stabile, Noelia Perez, Horacio Emanuel Jerez, Yamila Roxana Simioni, Estefanía Butassi, Martin Daniel Mizrahi, Matias Leonardo Nobile, Ana Paula Perez, Maria Jose Morilla, Leticia Herminia Higa, Eder Lilia Romero
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea Halorubrum tebenquichense and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (Ilex paraguariensis) extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.4 µg chlorogenic acid/ YME mg as a silver reductive agent, spherical, heterogeneously sized (~80 nm diameter), -27 mV ζ potential, 90% Ag0 and λmax 420 nm BSs were obtained. We further prepared ~100-200 nm diameter, -57 mV ζ potential BS-nanoARC and ~300 nm diameter, -37 mV ζ potential [BS + BS-nanoARCs]. Freshly prepared and nebulized BS-nanoARCs reduced the release of TNF-α, IL-6 and IL-8 by LPS-irritated THP-1-macrophages and were highly anti-planktonic against S. aureus (MIC90: 13 ± 0.8 µg Ag/mL). While the nanoARCs and BS-nanoARCs were innocuous, freshly prepared [BS + BS-nanoARCs] magnified the cytotoxicity of BSs (IC50 12 µg Ag/mL vs. IC50 ~36 µg Ag/mL) on A549 cells. Such cytotoxicity remained after 30 days in the dark at 4 °C, while that of BSs was lost. Freshly prepared BSs also lost activity upon nebulization, whereas freshly prepared [BS + BS-nanoARCs] did not. However, the cytotoxicity of the [BS + BS-nanoARCs] was also lost when nebulized after 30 days of storage. Despite the harmful effects of storage and mechanical stress on the structure of the more active [BS + BS-nanoARCs], hybrid nanoARCs are promising examples of nanomedicines combining the properties of archaeolipids with antimicrobial silver nanoparticles and anti-inflammatory polyphenols that could complement oncologic therapies, reducing the usage of classical antitumoral agents, corticosteroids, and, importantly, of antibiotics, as well as their waste.
{"title":"Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.","authors":"Sofia Giuliana Guerin Stabile, Noelia Perez, Horacio Emanuel Jerez, Yamila Roxana Simioni, Estefanía Butassi, Martin Daniel Mizrahi, Matias Leonardo Nobile, Ana Paula Perez, Maria Jose Morilla, Leticia Herminia Higa, Eder Lilia Romero","doi":"10.3390/ijms26010392","DOIUrl":"10.3390/ijms26010392","url":null,"abstract":"<p><p>The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea <i>Halorubrum tebenquichense</i> and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate (<i>Ilex paraguariensis)</i> extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.4 µg chlorogenic acid/ YME mg as a silver reductive agent, spherical, heterogeneously sized (~80 nm diameter), -27 mV ζ potential, 90% Ag<sup>0</sup> and λ<sub>max</sub> 420 nm BSs were obtained. We further prepared ~100-200 nm diameter, -57 mV ζ potential BS-nanoARC and ~300 nm diameter, -37 mV ζ potential [BS + BS-nanoARCs]. Freshly prepared and nebulized BS-nanoARCs reduced the release of TNF-α, IL-6 and IL-8 by LPS-irritated THP-1-macrophages and were highly anti-planktonic against <i>S. aureus</i> (MIC<sub>90</sub>: 13 ± 0.8 µg Ag/mL). While the nanoARCs and BS-nanoARCs were innocuous, freshly prepared [BS + BS-nanoARCs] magnified the cytotoxicity of BSs (IC<sub>50</sub> 12 µg Ag/mL vs. IC<sub>50</sub> ~36 µg Ag/mL) on A549 cells. Such cytotoxicity remained after 30 days in the dark at 4 °C, while that of BSs was lost. Freshly prepared BSs also lost activity upon nebulization, whereas freshly prepared [BS + BS-nanoARCs] did not. However, the cytotoxicity of the [BS + BS-nanoARCs] was also lost when nebulized after 30 days of storage. Despite the harmful effects of storage and mechanical stress on the structure of the more active [BS + BS-nanoARCs], hybrid nanoARCs are promising examples of nanomedicines combining the properties of archaeolipids with antimicrobial silver nanoparticles and anti-inflammatory polyphenols that could complement oncologic therapies, reducing the usage of classical antitumoral agents, corticosteroids, and, importantly, of antibiotics, as well as their waste.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor G Levitsky, Vladimir V Raditsa, Anton V Tsukanov, Aleksey M Mukhin, Igor F Zhimulev, Tatyana I Merkulova
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation. We categorized the target TFs from M. musculus ChIP-seq and A. thaliana ChIP-seq/DAP-seq experiments according to the structure of their DNA-binding domains (DBDs) into classes. We studied homotypic pairs of motifs, using the same recognition model for each motif. Asymmetric and symmetric pairs consist of motifs of remote and close recognition scores. We found that asymmetric pairs of motifs predominate for all TF classes. TFs from the murine/plant 'Basic helix-loop-helix (bHLH)', 'Basic leucine zipper (bZIP)', and 'Tryptophan cluster' classes and murine 'p53 domain' and 'Rel homology region' classes showed the highest enrichment of asymmetric homotypic pairs of motifs. Pioneer TFs, despite their DBD types, have a higher significance of asymmetry within homotypic pairs of motifs compared to other TFs. Asymmetry within homotypic CEs is a promising new feature decrypting the mechanisms of gene transcription regulation.
转录因子是真核生物基因表达的主要调控因子。至少两个tf与基因组DNA的协同结合是转录调控的主要机制。在ChIP-seq实验中,对不同靶TF的多代表性基序对的共现现象进行大量分析,可以阐明TF合作的机制。我们根据M. musculus ChIP-seq和A. thaliana ChIP-seq/ ap -seq实验中的靶tf的dna结合域(DBDs)结构将其分类。我们研究了同型基序对,对每个基序使用相同的识别模型。非对称和对称对由远端和近端识别分数组成。我们发现不对称基序对在所有TF类中都占主导地位。来自鼠/植物的“碱性螺旋-环-螺旋(bHLH)”、“碱性亮氨酸拉链(bZIP)”和“色氨酸簇”类和鼠的“p53结构域”和“Rel同源区”类的tf中,不对称同型基序对的富集程度最高。尽管先驱者TFs属于DBD类型,但其同型基序对内的不对称性显著高于其他TFs。同型ce内的不对称性是揭示基因转录调控机制的一个有前景的新特征。
{"title":"Asymmetry of Motif Conservation Within Their Homotypic Pairs Distinguishes DNA-Binding Domains of Target Transcription Factors in ChIP-Seq Data.","authors":"Victor G Levitsky, Vladimir V Raditsa, Anton V Tsukanov, Aleksey M Mukhin, Igor F Zhimulev, Tatyana I Merkulova","doi":"10.3390/ijms26010386","DOIUrl":"10.3390/ijms26010386","url":null,"abstract":"<p><p>Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation. We categorized the target TFs from <i>M. musculus</i> ChIP-seq and <i>A. thaliana</i> ChIP-seq/DAP-seq experiments according to the structure of their DNA-binding domains (DBDs) into classes. We studied homotypic pairs of motifs, using the same recognition model for each motif. Asymmetric and symmetric pairs consist of motifs of remote and close recognition scores. We found that asymmetric pairs of motifs predominate for all TF classes. TFs from the murine/plant 'Basic helix-loop-helix (bHLH)', 'Basic leucine zipper (bZIP)', and 'Tryptophan cluster' classes and murine 'p53 domain' and 'Rel homology region' classes showed the highest enrichment of asymmetric homotypic pairs of motifs. Pioneer TFs, despite their DBD types, have a higher significance of asymmetry within homotypic pairs of motifs compared to other TFs. Asymmetry within homotypic CEs is a promising new feature decrypting the mechanisms of gene transcription regulation.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina Lekmine, Ouided Benslama, Bachir Bensalah, Nabil Touzout, Hamza Moussa, Hichem Tahraoui, Mohammad Shamsul Ola, Haroun Hafsa, Jie Zhang, Abdeltif Amrane
This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of Hyoscyamus muticus L. subsp. falezlez (Coss.) Maire. Using LC-ESI-MS/MS, 19 distinct phenolic compounds were identified, with chlorogenic acid being the most abundant. The ethanol extract demonstrated notable antioxidant activity, highlighting its potential for therapeutic use. Urease inhibition assays revealed a remarkable 91.35% inhibition by the H. muticus extract, with an IC50 value of 5.6 ± 1.20 μg/mL, indicating its promising role in addressing conditions linked to urease activity. Molecular docking studies further investigated the interaction between H. muticus phenolic compounds and urease, identifying hyperoside as a leading candidate, with a binding energy of -7.9 kcal/mol. Other compounds, such as rutin, luteolin, apigenin, kaempferol, hesperetin, chlorogenic acid, and rosmarinic acid, also demonstrated significant binding affinities, suggesting their potential to disrupt urease function. These findings highlight the therapeutic potential of H. muticus as a source of natural bioactive compounds, offering promising avenues for the development of novel treatments for urease-related disorders and oxidative stress.
{"title":"Bioactive Phenolics of <i>Hyoscyamus muticus</i> L. Subsp. Falezlez: A Molecular and Biochemical Approach to Antioxidant and Urease Inhibitory Activities.","authors":"Sabrina Lekmine, Ouided Benslama, Bachir Bensalah, Nabil Touzout, Hamza Moussa, Hichem Tahraoui, Mohammad Shamsul Ola, Haroun Hafsa, Jie Zhang, Abdeltif Amrane","doi":"10.3390/ijms26010370","DOIUrl":"10.3390/ijms26010370","url":null,"abstract":"<p><p>This study examines the chemical composition, antioxidant properties, and urease inhibitory effects of <i>Hyoscyamus muticus</i> L. subsp. falezlez (Coss.) Maire. Using LC-ESI-MS/MS, 19 distinct phenolic compounds were identified, with chlorogenic acid being the most abundant. The ethanol extract demonstrated notable antioxidant activity, highlighting its potential for therapeutic use. Urease inhibition assays revealed a remarkable 91.35% inhibition by the <i>H. muticus</i> extract, with an IC<sub>50</sub> value of 5.6 ± 1.20 μg/mL, indicating its promising role in addressing conditions linked to urease activity. Molecular docking studies further investigated the interaction between <i>H. muticus</i> phenolic compounds and urease, identifying hyperoside as a leading candidate, with a binding energy of -7.9 kcal/mol. Other compounds, such as rutin, luteolin, apigenin, kaempferol, hesperetin, chlorogenic acid, and rosmarinic acid, also demonstrated significant binding affinities, suggesting their potential to disrupt urease function. These findings highlight the therapeutic potential of <i>H. muticus</i> as a source of natural bioactive compounds, offering promising avenues for the development of novel treatments for urease-related disorders and oxidative stress.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}