Eda Yildizhan, Burak Veli Ulger, Murat Akkus, Dilara Akinci, Omer Basol
Wound healing is a dynamic process initiated in response to injury. There are many factors that have detrimental effects on the wound healing process. Numerous studies have been conducted for improving wound healing processes. Dexpanthenol is widely used to accelerate wound healing. Sucralfate is used for the treatment of peptic ulcers. We aimed to compare the efficacy of topical Dexpanthenol and Sucralfate in an experimental wound model in rats via histopathological examinations and immune histochemical determinations, as well, to evaluate their effects on EGF levels. Three different groups were formed: the Control Group, the Dexpanthenol Group and the Sucralfate Group. Full-thickness skin wounds were created on the back of each rat and isotonic saline was applied to the wounds of the rats in the control group, Bepanthol® cream was applied in Dexpanthenol Group and 10% Sucralfate cream was applied in Sucralfate Group, once a day. On the 7th, 14th and 21st days the wounds were measured and seven rats from each group were sacrificed and the wounds were excised for histopathological examination. Sucralfate increased wound healing rates by increasing neovascularization, fibroblast activation, reepithelialization and collagen density, as well as dexpanthenol. Our study revealed that the dexpanthenol and sucralfate groups were better than the control group in terms of their effects on wound healing, however there was no statistically significant difference among these two groups. Sucralfate improves EGF expression in skin wounds and has positive results on skin wound healing comparable to dexpanthenol.
{"title":"Comparison of topical sucralfate with dexpanthenol in rat wound model","authors":"Eda Yildizhan, Burak Veli Ulger, Murat Akkus, Dilara Akinci, Omer Basol","doi":"10.1111/iep.12441","DOIUrl":"10.1111/iep.12441","url":null,"abstract":"<p>Wound healing is a dynamic process initiated in response to injury. There are many factors that have detrimental effects on the wound healing process. Numerous studies have been conducted for improving wound healing processes. Dexpanthenol is widely used to accelerate wound healing. Sucralfate is used for the treatment of peptic ulcers. We aimed to compare the efficacy of topical Dexpanthenol and Sucralfate in an experimental wound model in rats via histopathological examinations and immune histochemical determinations, as well, to evaluate their effects on EGF levels. Three different groups were formed: the Control Group, the Dexpanthenol Group and the Sucralfate Group. Full-thickness skin wounds were created on the back of each rat and isotonic saline was applied to the wounds of the rats in the control group, Bepanthol<sup>®</sup> cream was applied in Dexpanthenol Group and 10% Sucralfate cream was applied in Sucralfate Group, once a day. On the 7th, 14th and 21st days the wounds were measured and seven rats from each group were sacrificed and the wounds were excised for histopathological examination. Sucralfate increased wound healing rates by increasing neovascularization, fibroblast activation, reepithelialization and collagen density, as well as dexpanthenol. Our study revealed that the dexpanthenol and sucralfate groups were better than the control group in terms of their effects on wound healing, however there was no statistically significant difference among these two groups. Sucralfate improves EGF expression in skin wounds and has positive results on skin wound healing comparable to dexpanthenol.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"103 4","pages":"164-170"},"PeriodicalIF":3.0,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9910390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yen-Chein Lai, Meng-Yao Lu, Wen-Chung Wang, Tai-Cheng Hou, Chen-Yun Kuo
Wilms' tumour is a solid tumour that frequently occurs in children. Genetic changes in WT1 and epigenetic aberrations that affect imprinted control region 1 in WT2 loci are implicated in its aetiology. Moreover, tumour suppressor genes are frequently silenced by methylation in this tumour. In the present study, we analysed the methylation statuses of promoter regions of 24 tumour suppressor genes using a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach in 6 Wilms' tumours. Methylation of RASSF1 was specific to all 6 Wilms' tumours and was not observed in normal tissues. Moreover, methylated HIC1 was identified in stromal-type Wilms' tumours and methylated BRCA1 was identified in epithelial-type Wilms' tumours. Unmethylated CASP8, RARB, MLH1_167, APC and CDKN2A were found only in blastemal predominant-type Wilms' tumour. Our results indicated that methylation of RASSF1 may be a vital event in the tumorigenesis of Wilms' tumour, which informs its clinical and therapeutic management. In addition, mixed-type Wilms' tumours may be classified according to epithelial, stromal and blastemal components via MS-MLPA-based approach.
{"title":"Correlations between histological characterizations and methylation statuses of tumour suppressor genes in Wilms' tumours","authors":"Yen-Chein Lai, Meng-Yao Lu, Wen-Chung Wang, Tai-Cheng Hou, Chen-Yun Kuo","doi":"10.1111/iep.12442","DOIUrl":"10.1111/iep.12442","url":null,"abstract":"<p>Wilms' tumour is a solid tumour that frequently occurs in children. Genetic changes in <i>WT1</i> and epigenetic aberrations that affect imprinted control region 1 in <i>WT2</i> loci are implicated in its aetiology. Moreover, tumour suppressor genes are frequently silenced by methylation in this tumour. In the present study, we analysed the methylation statuses of promoter regions of 24 tumour suppressor genes using a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach in 6 Wilms' tumours. Methylation of <i>RASSF1</i> was specific to all 6 Wilms' tumours and was not observed in normal tissues. Moreover, methylated <i>HIC1</i> was identified in stromal-type Wilms' tumours and methylated <i>BRCA1</i> was identified in epithelial-type Wilms' tumours. Unmethylated <i>CASP8</i>, <i>RARB</i>, <i>MLH1</i>_167, <i>APC</i> and <i>CDKN2A</i> were found only in blastemal predominant-type Wilms' tumour. Our results indicated that methylation of <i>RASSF1</i> may be a vital event in the tumorigenesis of Wilms' tumour, which informs its clinical and therapeutic management. In addition, mixed-type Wilms' tumours may be classified according to epithelial, stromal and blastemal components via MS-MLPA-based approach.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"103 3","pages":"121-128"},"PeriodicalIF":3.0,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9548330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emerging evidences have shown that long noncoding RNA (lncRNA) plays an important role in the immune escape of cancer cells. Our previous study has demonstrated that lncRNA MIAT is associated with the immune infiltration of hepatocellular carcinoma (HCC). However, the underlying mechanism of MIAT regulating the PD-L1-mediated immune escape of HCC is poorly understood. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of MIAT and PD-L1 mRNA in HCC. The relationship between MIAT, miR-411-5p, STAT3 and PD-L1 was explored by dual-luciferase reporter assay, cytotoxicity assay, Western blot and RNA immunoprecipitation (RIP). In addition, the xenograft model was established to determine the effect of MIAT on PD-L1 expression in vivo. We found that MIAT and PD-L1 were significantly upregulated in HCC tissues and the expression of PD-L1 was regulated by MIAT. The knockdown of MIAT enhanced the cytotoxicity of T cells on HCC cells. MIAT negatively regulated miR-411-5p expression, upregulated STAT3 and ultimately increased PD-L1 expression from the transcription level. The inhibition of miR-411-5p reversed STAT3 and PD-L1 expression inhibited by MIAT knockdown in HCC cells. This study suggests a novel lncRNA-mediated mechanism for HCC cells to evade the immune response; MIAT/miR-411-5p/STAT3/PD-L1 may be a novel therapeutic target for HCC.
{"title":"lncRNA MIAT targets miR-411-5p/STAT3/PD-L1 axis mediating hepatocellular carcinoma immune response","authors":"Xiaoxia Zhang, Banglun Pan, Jiacheng Qiu, Xiaoling Ke, Shuling Shen, Xiaoqian Wang, Nanhong Tang","doi":"10.1111/iep.12440","DOIUrl":"10.1111/iep.12440","url":null,"abstract":"<p>Emerging evidences have shown that long noncoding RNA (lncRNA) plays an important role in the immune escape of cancer cells. Our previous study has demonstrated that lncRNA MIAT is associated with the immune infiltration of hepatocellular carcinoma (HCC). However, the underlying mechanism of MIAT regulating the PD-L1-mediated immune escape of HCC is poorly understood. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of MIAT and PD-L1 mRNA in HCC. The relationship between MIAT, miR-411-5p, STAT3 and PD-L1 was explored by dual-luciferase reporter assay, cytotoxicity assay, Western blot and RNA immunoprecipitation (RIP). In addition, the xenograft model was established to determine the effect of MIAT on PD-L1 expression in vivo. We found that MIAT and PD-L1 were significantly upregulated in HCC tissues and the expression of PD-L1 was regulated by MIAT. The knockdown of MIAT enhanced the cytotoxicity of T cells on HCC cells. MIAT negatively regulated miR-411-5p expression, upregulated STAT3 and ultimately increased PD-L1 expression from the transcription level. The inhibition of miR-411-5p reversed STAT3 and PD-L1 expression inhibited by MIAT knockdown in HCC cells. This study suggests a novel lncRNA-mediated mechanism for HCC cells to evade the immune response; MIAT/miR-411-5p/STAT3/PD-L1 may be a novel therapeutic target for HCC.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"103 3","pages":"102-111"},"PeriodicalIF":3.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}