首页 > 最新文献

ChemCatChem最新文献

英文 中文
Fe–N–C Support-Enhanced Pt Catalyst for High-Performance Oxygen Reduction Fe-N-C载体增强Pt催化剂用于高性能氧还原
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-19 DOI: 10.1002/cctc.202501198
Xinquan Wu, Zhen Sun, Hao Li, Xiaolei Guo, Zhen-Feng Huang, Ruijie Gao, Chengxiang Shi, Xiangwen Zhang, Lun Pan, Ji-Jun Zou

Platinum-based catalysts are highly effective for the oxygen reduction reaction (ORR), but their prohibitive cost and insufficient activity impede large-scale commercialization. Herein, we report a Pt@Fe-NC electrocatalyst synthesized by depositing uniform platinum nanoparticles onto an iron–nitrogen–carbon (Fe–NC) support via an ethylene glycol reduction method. The Fe–NC support, prepared from an iron (II)-1,10-phenanthroline complex precursor to ensure high iron utilization, modulates the electronic structure of the Pt nanoparticles, thereby enhancing both catalytic activity and stability. The optimized Pt@Fe-NC catalyst (13.54 wt% Pt) exhibits exceptional ORR performance in acidic media, with a half-wave potential of 0.852 V and notable stability. When integrated into a zinc-air battery, the catalyst delivered a high specific capacity of 652.66 mAh gZn−1. Furthermore, a proton exchange membrane fuel cell (PEMFC) employing this catalyst achieved a high open-circuit voltage (OCV) of 0.964 V and a peak power density of 1.722 W cm−2, outperforming most previously reported Pt-based catalysts. This study highlights a synergistic strategy between Pt nanoparticles and metal-nitrogen-carbon (M–N–C) supports to boost ORR performance, presenting a viable path toward advanced, cost-effective catalysts for energy conversion devices like PEMFCs and zinc-air batteries.

铂基催化剂在氧还原反应(ORR)中非常有效,但其昂贵的成本和活性不足阻碍了大规模的商业化。本文报道了一种Pt@Fe-NC电催化剂,该催化剂是通过乙二醇还原法将均匀的铂纳米颗粒沉积在铁氮碳(Fe-NC)载体上合成的。Fe-NC载体由铁(II)-1,10-菲罗啉配合物前驱体制备,以确保铁的高利用率,调节Pt纳米粒子的电子结构,从而提高催化活性和稳定性。优化后的Pt@Fe-NC催化剂(13.54 wt% Pt)在酸性介质中表现出优异的ORR性能,半波电位为0.852 V,稳定性显著。当集成到锌空气电池中时,催化剂提供了652.66 mAh gZn−1的高比容量。此外,使用该催化剂的质子交换膜燃料电池(PEMFC)获得了0.964 V的高开路电压(OCV)和1.722 W cm−2的峰值功率密度,优于之前报道的大多数基于pt的催化剂。这项研究强调了铂纳米颗粒和金属氮碳(M-N-C)支架之间的协同策略,以提高ORR性能,为pemfc和锌空气电池等能量转换设备提供了先进、经济的催化剂。
{"title":"Fe–N–C Support-Enhanced Pt Catalyst for High-Performance Oxygen Reduction","authors":"Xinquan Wu,&nbsp;Zhen Sun,&nbsp;Hao Li,&nbsp;Xiaolei Guo,&nbsp;Zhen-Feng Huang,&nbsp;Ruijie Gao,&nbsp;Chengxiang Shi,&nbsp;Xiangwen Zhang,&nbsp;Lun Pan,&nbsp;Ji-Jun Zou","doi":"10.1002/cctc.202501198","DOIUrl":"https://doi.org/10.1002/cctc.202501198","url":null,"abstract":"<p>Platinum-based catalysts are highly effective for the oxygen reduction reaction (ORR), but their prohibitive cost and insufficient activity impede large-scale commercialization. Herein, we report a Pt@Fe-NC electrocatalyst synthesized by depositing uniform platinum nanoparticles onto an iron–nitrogen–carbon (Fe–NC) support via an ethylene glycol reduction method. The Fe–NC support, prepared from an iron (II)-1,10-phenanthroline complex precursor to ensure high iron utilization, modulates the electronic structure of the Pt nanoparticles, thereby enhancing both catalytic activity and stability. The optimized Pt@Fe-NC catalyst (13.54 wt% Pt) exhibits exceptional ORR performance in acidic media, with a half-wave potential of 0.852 V and notable stability. When integrated into a zinc-air battery, the catalyst delivered a high specific capacity of 652.66 mAh g<sub>Zn</sub><sup>−1</sup>. Furthermore, a proton exchange membrane fuel cell (PEMFC) employing this catalyst achieved a high open-circuit voltage (OCV) of 0.964 V and a peak power density of 1.722 W cm<sup>−2</sup>, outperforming most previously reported Pt-based catalysts. This study highlights a synergistic strategy between Pt nanoparticles and metal-nitrogen-carbon (M–N–C) supports to boost ORR performance, presenting a viable path toward advanced, cost-effective catalysts for energy conversion devices like PEMFCs and zinc-air batteries.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"18 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Active Fluorinated Cu/ZnO/MgO Carbon Dioxide-to-Methanol Hydrogenation Catalyst with Long-Term Stability 具有长期稳定性的活性氟化Cu/ZnO/MgO二氧化碳加氢催化剂
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-17 DOI: 10.1002/cctc.202501348
Lukas D. Ernst, Lisa Schmalenbach, Sebastian Polinski, Dr. Michael Günthel, Markus Knäbbeler-Buß, Dr. Esmael Balaghi, Dr. Mikhail Agrachev, Dr. Wijnand Marquart, Dr. Shaine Raseale, Prof. Dr. Nico Fischer, Prof. Dr. Anna Fischer, Ingo Krossing

The oxidative fluorination of a ternary CZMg (Cu/ZnO/MgO) methanol catalyst resulted in a 5%–10% catalyst improvement within the first 3 to 4 days on a CO2/3 H2 stream reaching a stable and improved performance over 14 days on stream with respect to methanol productivity (at 40 bar, 250 °C, GHSV 19,800 NL kgcat−1 h−1). By contrast the powerful commercial (but more expensive) CZZ (Cu/ZnO/ZrO2) and the industrially used CZA (Cu/ZnO/Al2O3) system optimized for CO/CO2/H2 streams lost 30% (CZA) / 12% (CZZ) of their initial methanol productivity and were surpassed in productivity by a fluorinated CZMg system within a few hours (CZZ) or after a few days on stream (CZA). This (fluorinated) CZMg catalyst system was characterized using methods including XPS, XAS, in situ pXRD, in situ EPR, and HRTEM. Hence, oxidative fluorination of the pristine CZMg system reduced the apparent activation energy for CO2 hydrogenation EA,app from 52 to 43 kJ mol−1 (CZMg versus CZMg_F1250), removed the volcano shape of the methanol production under integral conversion in a stoichiometric (1 + x)H2 / (COx)-variation stream (x = 1…2) and led to stable performance even with a CO2-rich or pure CO2-stream with stoichiometric amounts of H2 present (at 40 bar, 250 °C, GHSV 19,800 NL kgcat−1 h−1). This long-term stability is most likely attributed to the formation of mixed oxo fluorides MgO1-xF2x during oxidative fluorination. Magnesium and fluoride are presumably incorporated into the ZnO1-x overgrowths of the Cu nanoparticles, stabilize them against sintering and apparently prevent the catalyst from deactivation by water, thus acting as a structural support.

氧化氟化三元CZMg (Cu/ZnO/MgO)甲醇催化剂在co /3 / H2流上的前3 - 4天催化剂性能改善5%-10%,在14天的甲醇生产率方面达到稳定和改进的性能(在40 bar, 250°C, GHSV 19,800 NL kgcat−1 h−1)。相比之下,强大的商业(但更昂贵)CZZ (Cu/ZnO/ZrO2)和工业上使用的CZA (Cu/ZnO/Al2O3)系统优化了CO/CO2/H2流,其初始甲醇生产率损失了30% (CZA) / 12% (CZZ),并且在几小时(CZZ)或几天后(CZA)被氟化CZMg系统超越。采用XPS、XAS、原位pXRD、原位EPR和HRTEM等方法对该(氟化)CZMg催化剂体系进行了表征。因此,氧化氟化的原始CZMg系统二氧化碳加氢EA的表观活化能,降低应用程序从52到43 kJ摩尔−1 (CZMg与CZMg_F1250),删除的火山形状下的甲醇生产积分转换在化学计量(1 + x) H2 / (COx)变异流(x = 1……2)甚至导致了性能稳定的气体或纯CO2-stream和化学计量的H2(40条,250°C, GHSV 19800 NL kgcat−1 h−1)。这种长期稳定性很可能是由于氧化氟化过程中形成了混合的含氧氟化物MgO1-xF2x。镁和氟化物可能被纳入到Cu纳米颗粒的ZnO1-x过度生长中,稳定它们防止烧结,显然防止催化剂被水钝化,从而起到结构支撑的作用。
{"title":"An Active Fluorinated Cu/ZnO/MgO Carbon Dioxide-to-Methanol Hydrogenation Catalyst with Long-Term Stability","authors":"Lukas D. Ernst,&nbsp;Lisa Schmalenbach,&nbsp;Sebastian Polinski,&nbsp;Dr. Michael Günthel,&nbsp;Markus Knäbbeler-Buß,&nbsp;Dr. Esmael Balaghi,&nbsp;Dr. Mikhail Agrachev,&nbsp;Dr. Wijnand Marquart,&nbsp;Dr. Shaine Raseale,&nbsp;Prof. Dr. Nico Fischer,&nbsp;Prof. Dr. Anna Fischer,&nbsp;Ingo Krossing","doi":"10.1002/cctc.202501348","DOIUrl":"https://doi.org/10.1002/cctc.202501348","url":null,"abstract":"<p>The oxidative fluorination of a ternary CZMg (Cu/ZnO/MgO) methanol catalyst resulted in a 5%–10% catalyst improvement within the first 3 to 4 days on a CO<sub>2</sub>/3 H<sub>2</sub> stream reaching a stable and improved performance over 14 days on stream with respect to methanol productivity (at 40 bar, 250 °C, GHSV 19,800 NL kgcat<sup>−1</sup> h<sup>−1</sup>). By contrast the powerful commercial (but more expensive) CZZ (Cu/ZnO/ZrO<sub>2</sub>) and the industrially used CZA (Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>) system optimized for CO/CO<sub>2</sub>/H<sub>2</sub> streams lost 30% (CZA) / 12% (CZZ) of their initial methanol productivity and were surpassed in productivity by a fluorinated CZMg system within a few hours (CZZ) or after a few days on stream (CZA). This (fluorinated) CZMg catalyst system was characterized using methods including XPS, XAS, in situ pXRD, in situ EPR, and HRTEM. Hence, oxidative fluorination of the pristine CZMg system reduced the apparent activation energy for CO<sub>2</sub> hydrogenation <i>E</i><sub>A,app</sub> from 52 to 43 kJ mol<sup>−1</sup> (CZMg versus CZMg_F1250), removed the volcano shape of the methanol production under integral conversion in a stoichiometric (1 + x)H<sub>2</sub> / (CO<i><sub>x</sub></i>)-variation stream (<i>x</i> = 1…2) and led to stable performance even with a CO<sub>2</sub>-rich or pure CO<sub>2</sub>-stream with stoichiometric amounts of H<sub>2</sub> present (at 40 bar, 250 °C, GHSV 19,800 NL kgcat<sup>−1</sup> h<sup>−1</sup>). This long-term stability is most likely attributed to the formation of mixed oxo fluorides MgO<sub>1-</sub><i><sub>x</sub></i>F<sub>2</sub><i><sub>x</sub></i> during oxidative fluorination. Magnesium and fluoride are presumably incorporated into the ZnO<sub>1-</sub><i><sub>x</sub></i> overgrowths of the Cu nanoparticles, stabilize them against sintering and apparently prevent the catalyst from deactivation by water, thus acting as a structural support.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 24","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202501348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145792398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenation of CO2 to Methanol over Amine-Doped Ordered Mesoporous Polymers Under Dynamic Reaction Conditions 动态反应条件下胺掺杂有序介孔聚合物上CO2加氢制甲醇的研究
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-16 DOI: 10.1002/cctc.202501297
Huidong Xu, Dr. Stephan Bartling, Prof. Dr. Evgenii V. Kondratenko, Prof. Dr. Andreas Jentys

A one-step method was developed to synthesize highly ordered, primary amine–functionalized two-dimensional (2D) hexagonal mesoporous polymers, designed to enhance the density of catalytically active sites for CO2 capture and subsequent hydrogenation to methanol. Incorporation of Pt nanoparticles generates an ordered bifunctional (base/metal) mesoporous system, enabling efficient CO2 adsorption and optimal metal utilization for effective methanol synthesis from the captured CO2 at the amine–metal interface. Compared with silica-based materials,[1,2] this novel polymer achieves a fourfold increase in methanol yield while maintaining 100% selectivity under mild reaction conditions.

采用一步法合成了高度有序的、伯胺功能化的二维(2D)六方介孔聚合物,旨在提高二氧化碳捕获和随后加氢制甲醇的催化活性位点的密度。Pt纳米颗粒的加入产生了有序的双功能(碱/金属)介孔体系,实现了高效的CO2吸附和最佳的金属利用,从而在胺-金属界面上从捕获的CO2中有效合成甲醇。与硅基材料相比[1,2],在温和的反应条件下,这种新型聚合物在保持100%选择性的同时,甲醇收率提高了4倍。
{"title":"Hydrogenation of CO2 to Methanol over Amine-Doped Ordered Mesoporous Polymers Under Dynamic Reaction Conditions","authors":"Huidong Xu,&nbsp;Dr. Stephan Bartling,&nbsp;Prof. Dr. Evgenii V. Kondratenko,&nbsp;Prof. Dr. Andreas Jentys","doi":"10.1002/cctc.202501297","DOIUrl":"https://doi.org/10.1002/cctc.202501297","url":null,"abstract":"<p>A one-step method was developed to synthesize highly ordered, primary amine–functionalized two-dimensional (2D) hexagonal mesoporous polymers, designed to enhance the density of catalytically active sites for CO<sub>2</sub> capture and subsequent hydrogenation to methanol. Incorporation of Pt nanoparticles generates an ordered bifunctional (base/metal) mesoporous system, enabling efficient CO<sub>2</sub> adsorption and optimal metal utilization for effective methanol synthesis from the captured CO<sub>2</sub> at the amine–metal interface. Compared with silica-based materials,<sup>[1,2]</sup> this novel polymer achieves a fourfold increase in methanol yield while maintaining 100% selectivity under mild reaction conditions.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"18 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202501297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145969856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heteronuclear Dual-Atom Anchored g-C3N4: p-d Orbital Coupling Enable Efficient Urea Electrosynthesis from Gaseous Pollutants 异核双原子锚定g-C3N4: p-d轨道偶联实现气态污染物的高效尿素电合成
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-14 DOI: 10.1002/cctc.202501449
Md Tarikal Nasir, Qingchao Fang, Xin Mao, Dimuthu Wijethunge, Xiuwen Zhou, Aijun Du

Electrocatalytic C–N coupling using gaseous pollutants NO and CO offers a promising alternative to conventional industrial urea synthesis. However, designing efficient electrocatalysts remains challenging due to the complexity of multi-step reactions, which yield diverse products. Herein, based on density functional theory (DFT) calculations, we explore Cu and p-block atoms (B, Al, and Ga) anchored on graphitic carbon nitride as novel heteronuclear double-atom catalysts (DACs) for urea synthesis from NO and CO. The reactants are stably adsorbed on the DACs, while strong dp orbital hybridization facilitates effective activation and efficient C–N coupling. Among the candidates, CuB@g-C3N4 and CuGa@g-C3N4 exhibit particularly promising performance, with limiting potentials of −0.55 V and −0.36 V, respectively. Furthermore, these catalysts significantly suppress competing reactions, including the hydrogen evolution reaction (HER) and the formation of *NOH, *COH, and *CHO intermediates, ensuring high selectivity. Our work not only highlights highly efficient p-d DACs for electrocatalytic urea production but also provides a theoretical framework in catalyst design.

电催化C-N偶联利用气态污染物NO和CO提供了一个有前途的替代传统工业尿素合成。然而,由于多步反应的复杂性,产生不同的产物,设计高效的电催化剂仍然具有挑战性。本文基于密度泛函理论(DFT)计算,研究了锚定在石墨氮化碳上的Cu和p嵌段原子(B、Al和Ga)作为新型异核双原子催化剂(DACs),用于NO和CO合成尿素。反应物稳定吸附在DACs上,而强d-p轨道杂化有利于有效活化和高效的C-N偶联。在候选材料中,CuB@g-C3N4和CuGa@g-C3N4表现出特别有前景的性能,其极限电位分别为- 0.55 V和- 0.36 V。此外,这些催化剂显著抑制竞争反应,包括析氢反应(HER)和*NOH、*COH和*CHO中间体的形成,确保了高选择性。我们的工作不仅强调了高效的p-d dac用于电催化尿素生产,而且为催化剂设计提供了理论框架。
{"title":"Heteronuclear Dual-Atom Anchored g-C3N4: p-d Orbital Coupling Enable Efficient Urea Electrosynthesis from Gaseous Pollutants","authors":"Md Tarikal Nasir,&nbsp;Qingchao Fang,&nbsp;Xin Mao,&nbsp;Dimuthu Wijethunge,&nbsp;Xiuwen Zhou,&nbsp;Aijun Du","doi":"10.1002/cctc.202501449","DOIUrl":"https://doi.org/10.1002/cctc.202501449","url":null,"abstract":"<p>Electrocatalytic C–N coupling using gaseous pollutants NO and CO offers a promising alternative to conventional industrial urea synthesis. However, designing efficient electrocatalysts remains challenging due to the complexity of multi-step reactions, which yield diverse products. Herein, based on density functional theory (DFT) calculations, we explore Cu and <i>p</i>-block atoms (B, Al, and Ga) anchored on graphitic carbon nitride as novel heteronuclear double-atom catalysts (DACs) for urea synthesis from NO and CO. The reactants are stably adsorbed on the DACs, while strong <i>d</i>–<i>p</i> orbital hybridization facilitates effective activation and efficient C–N coupling. Among the candidates, CuB@g-C<sub>3</sub>N<sub>4</sub> and CuGa@g-C<sub>3</sub>N<sub>4</sub> exhibit particularly promising performance, with limiting potentials of −0.55 V and −0.36 V, respectively. Furthermore, these catalysts significantly suppress competing reactions, including the hydrogen evolution reaction (HER) and the formation of *NOH, *COH, and *CHO intermediates, ensuring high selectivity. Our work not only highlights highly efficient <i>p</i>-<i>d</i> DACs for electrocatalytic urea production but also provides a theoretical framework in catalyst design.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 24","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145792351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Hydrogen-Bonding and CO2 Activation: A Sustainable Metal, Halogen, and Solvent-Free Strategy for CO2 Cycloaddition 协同氢键和CO2活化:一个可持续的金属、卤素和无溶剂的CO2环加成策略
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-12 DOI: 10.1002/cctc.202501611
Biplop Jyoti Hazarika, Khushboo S Paliwal, Antarip Mitra, Pratyay Pan, Aditi Chandrasekar, Venkataramanan Mahalingam

Conventional catalytic methodologies for the cycloaddition of CO2 into epoxides predominantly rely on transition metal-based catalysts in conjunction with detrimental halide-containing cocatalysts. Thus, developing metal and halide-free catalysts that function under ambient conditions is highly desirable. The current research endeavours to synthesize a pyrimidine-based bifunctional organocatalyst via a facile one-step Schiff-base condensation reaction. The synthesized organocatalyst efficiently transforms a wide range of epoxides (35 different epoxides, including 6 challenging internal epoxides) into cyclic carbonates with a minimal catalyst loading of just 0.1 mol% under mild conditions (60 °C–100 °C, atmospheric CO2 pressure) without solvents and cocatalysts. Comprehensive experimental investigations elucidate how the catalyst facilitates the reaction, emphasizing the intricate interplay of hydrogen (H) bonding, spatial arrangement, and catalyst-substrate interactions. The meticulous analysis, using advanced spectroscopic techniques and density functional theory (DFT) calculations, reveals that hydroxyl groups play a pivotal role in epoxide activation through H-bonding interactions, whereas the imine nitrogen facilitates CO2 activation through the formation of a carbamate intermediate. These two interactions collectively accelerate the overall catalytic process. Furthermore, the catalyst exhibits remarkable recyclability over six consecutive catalytic cycles. Therefore, this study underscores the potential of rationally designed metal-free catalysts in advancing sustainable catalysis through carbon capture and utilization technologies.

二氧化碳环加成成环氧化物的传统催化方法主要依赖于过渡金属基催化剂和有害的含卤化物助催化剂。因此,开发在环境条件下起作用的无金属和无卤化物催化剂是非常需要的。目前的研究是通过简单的一步希夫碱缩合反应合成一种基于嘧啶的双功能有机催化剂。合成的有机催化剂在温和条件下(60°C - 100°C,大气CO2压力),无溶剂和助催化剂,催化剂负载仅为0.1 mol%,有效地将各种环氧化合物(35种不同的环氧化合物,包括6种具有挑战性的内部环氧化合物)转化为环状碳酸盐。全面的实验研究阐明了催化剂如何促进反应,强调了氢(H)键、空间排列和催化剂-底物相互作用的复杂相互作用。细致的分析,使用先进的光谱技术和密度泛函理论(DFT)计算,揭示了羟基通过氢键相互作用在环氧化物活化中起关键作用,而亚胺氮通过形成氨基甲酸酯中间体促进CO2活化。这两种相互作用共同加速了整个催化过程。此外,该催化剂在连续六个催化循环中表现出显著的可回收性。因此,本研究强调了合理设计无金属催化剂在通过碳捕获和利用技术推进可持续催化方面的潜力。
{"title":"Synergistic Hydrogen-Bonding and CO2 Activation: A Sustainable Metal, Halogen, and Solvent-Free Strategy for CO2 Cycloaddition","authors":"Biplop Jyoti Hazarika,&nbsp;Khushboo S Paliwal,&nbsp;Antarip Mitra,&nbsp;Pratyay Pan,&nbsp;Aditi Chandrasekar,&nbsp;Venkataramanan Mahalingam","doi":"10.1002/cctc.202501611","DOIUrl":"https://doi.org/10.1002/cctc.202501611","url":null,"abstract":"<p>Conventional catalytic methodologies for the cycloaddition of CO<sub>2</sub> into epoxides predominantly rely on transition metal-based catalysts in conjunction with detrimental halide-containing cocatalysts. Thus, developing metal and halide-free catalysts that function under ambient conditions is highly desirable. The current research endeavours to synthesize a pyrimidine-based bifunctional organocatalyst via a facile one-step Schiff-base condensation reaction. The synthesized organocatalyst efficiently transforms a wide range of epoxides (35 different epoxides, including 6 challenging internal epoxides) into cyclic carbonates with a minimal catalyst loading of just 0.1 mol% under mild conditions (60 °C–100 °C, atmospheric CO<sub>2</sub> pressure) without solvents and cocatalysts. Comprehensive experimental investigations elucidate how the catalyst facilitates the reaction, emphasizing the intricate interplay of hydrogen (H) bonding, spatial arrangement, and catalyst-substrate interactions. The meticulous analysis, using advanced spectroscopic techniques and density functional theory (DFT) calculations, reveals that hydroxyl groups play a pivotal role in epoxide activation through H-bonding interactions, whereas the imine nitrogen facilitates CO<sub>2</sub> activation through the formation of a carbamate intermediate. These two interactions collectively accelerate the overall catalytic process. Furthermore, the catalyst exhibits remarkable recyclability over six consecutive catalytic cycles. Therefore, this study underscores the potential of rationally designed metal-free catalysts in advancing sustainable catalysis through carbon capture and utilization technologies.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 24","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145779437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spark Ablation Coupled with Powder Aerosolization for the One-Step Preparation of Ru/TiO2 Catalysts for CO2 Methanation 火花烧蚀耦合粉末雾化一步法制备Ru/TiO2 CO2甲烷化催化剂
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-12 DOI: 10.1002/cctc.202501472
Plaifa Hongmanorom, François Devred, Damien P. Debecker

The preparation of powdery heterogeneous catalysts often involves the use of solvents, costly precursors, and thermal treatments in multi-step processes. Herein, we demonstrate the preparation of Ru nanoparticles on TiO2 via spark ablation coupled with powder aerosolization, offering a clean and simple route with minimal waste generation and reduced pre- and post-synthesis processing. The as-prepared Ru/TiO2 catalyst is readily active in CO2 methanation reaction, achieving CH4 formation rate of 0.21 mmolgRu−1s−1 and TOF of 0.11 s−1 at 200 °C, outperforming the corresponding formulation prepared by wetness impregnation followed by calcination. The enhanced performance is attributed to a higher fraction of surface metallic Ru, as spark ablation under inert atmosphere typically yields metallic Ru nanoparticles. Additionally, Ru nanoparticles in the spark-made catalyst are well-distributed over both anatase and rutile TiO2, driven by Brownian motion and van der Waals adhesion. By contrast, Ru/TiO2-WI exhibits preferential Ru layer around rutile TiO2 due to pre-existing RuO2-rutile TiO2 epitaxial interactions formed during calcination. This work highlights a sustainable approach for designing highly active low-temperature CO2 methanation catalysts, with potential versatility for broader catalytic applications.

制备粉状非均相催化剂通常需要使用溶剂、昂贵的前驱体和多步骤的热处理。在此,我们展示了通过火花烧蚀结合粉末雾化在TiO2上制备Ru纳米颗粒,提供了一个清洁和简单的路线,产生的废物最少,减少了合成前和合成后的加工。制备的Ru/TiO2催化剂在CO2甲烷化反应中具有良好的活性,在200℃时CH4的生成速率为0.21 mmolgRu−1s−1,TOF为0.11 s−1,优于湿浸渍焙烧制得的相应配方。由于惰性气氛下的火花烧蚀通常会产生金属Ru纳米颗粒,因此表面金属Ru的比例更高,从而提高了性能。此外,在布朗运动和范德华附着力的驱动下,火花制备催化剂中的Ru纳米颗粒均匀分布在锐钛矿和金红石型TiO2上。相比之下,Ru/TiO2- wi在金红石TiO2周围表现出优先的Ru层,这是由于在煅烧过程中形成的预先存在的ruo2 -金红石TiO2外延相互作用。这项工作强调了设计高活性低温二氧化碳甲烷化催化剂的可持续方法,具有更广泛的催化应用潜力。
{"title":"Spark Ablation Coupled with Powder Aerosolization for the One-Step Preparation of Ru/TiO2 Catalysts for CO2 Methanation","authors":"Plaifa Hongmanorom,&nbsp;François Devred,&nbsp;Damien P. Debecker","doi":"10.1002/cctc.202501472","DOIUrl":"https://doi.org/10.1002/cctc.202501472","url":null,"abstract":"<p>The preparation of powdery heterogeneous catalysts often involves the use of solvents, costly precursors, and thermal treatments in multi-step processes. Herein, we demonstrate the preparation of Ru nanoparticles on TiO<sub>2</sub> via spark ablation coupled with powder aerosolization, offering a clean and simple route with minimal waste generation and reduced pre- and post-synthesis processing. The as-prepared Ru/TiO<sub>2</sub> catalyst is readily active in CO<sub>2</sub> methanation reaction, achieving CH<sub>4</sub> formation rate of 0.21 mmolg<sub>Ru</sub><sup>−1</sup>s<sup>−1</sup> and TOF of 0.11 s<sup>−1</sup> at 200 °C, outperforming the corresponding formulation prepared by wetness impregnation followed by calcination. The enhanced performance is attributed to a higher fraction of surface metallic Ru, as spark ablation under inert atmosphere typically yields metallic Ru nanoparticles. Additionally, Ru nanoparticles in the spark-made catalyst are well-distributed over both anatase and rutile TiO<sub>2</sub>, driven by Brownian motion and van der Waals adhesion. By contrast, Ru/TiO<sub>2</sub>-WI exhibits preferential Ru layer around rutile TiO<sub>2</sub> due to pre-existing RuO<sub>2</sub>-rutile TiO<sub>2</sub> epitaxial interactions formed during calcination. This work highlights a sustainable approach for designing highly active low-temperature CO<sub>2</sub> methanation catalysts, with potential versatility for broader catalytic applications.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 24","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145792329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Self-Propelling μ-Catbots Targeting On-The-Fly Energy Harvesting (ChemCatChem 21/2025) 封面:瞄准飞行能量收集的自推进μ-Catbots (ChemCatChem 21/2025)
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-11 DOI: 10.1002/cctc.70419
Saurabh Dubey, Sachin Kumar Sharma, Rishabh Kumar, Srijita De, Rahul Deka, Musaddique Mahfuz Ahmed, Omkar S. Deshmukh, Dipankar Bandyopadhyay

The Front Cover shows self-propelling catalytic micro-/nanobots (μ-Catbots) coated with Fe3O4 and Fe nanoparticles, which decompose H2O2 to O2 and HCOOH to H2, thus enabling real-time fuel cell powering. Magnetic control allows propulsion, bubble demixing, and easy retrieval. Image-based bubble analysis correlates with L–H kinetics, offering a novel approach for reaction rate evaluation and portable oxygen concentrators. More information can be found in the Research Article by D. Bandyopadhyay and co-workers (DOI: 10.1002/cctc.202500767).

前封面展示了包裹有Fe3O4和Fe纳米颗粒的自推进催化微纳米机器人(μ-Catbots),它们将H2O2分解为O2,将HCOOH分解为H2,从而实现实时燃料电池供电。磁控制允许推进,气泡脱混,并易于检索。基于图像的气泡分析与L-H动力学相关,为反应速率评估和便携式氧气浓缩器提供了一种新的方法。更多信息可以在D. Bandyopadhyay及其同事的研究文章中找到(DOI: 10.1002/ cccc .202500767)。
{"title":"Front Cover: Self-Propelling μ-Catbots Targeting On-The-Fly Energy Harvesting (ChemCatChem 21/2025)","authors":"Saurabh Dubey,&nbsp;Sachin Kumar Sharma,&nbsp;Rishabh Kumar,&nbsp;Srijita De,&nbsp;Rahul Deka,&nbsp;Musaddique Mahfuz Ahmed,&nbsp;Omkar S. Deshmukh,&nbsp;Dipankar Bandyopadhyay","doi":"10.1002/cctc.70419","DOIUrl":"https://doi.org/10.1002/cctc.70419","url":null,"abstract":"<p><b>The Front Cover</b> shows self-propelling catalytic micro-/nanobots (μ-Catbots) coated with Fe<sub>3</sub>O<sub>4</sub> and Fe nanoparticles, which decompose H<sub>2</sub>O<sub>2</sub> to O<sub>2</sub> and HCOOH to H<sub>2</sub>, thus enabling real-time fuel cell powering. Magnetic control allows propulsion, bubble demixing, and easy retrieval. Image-based bubble analysis correlates with L–H kinetics, offering a novel approach for reaction rate evaluation and portable oxygen concentrators. More information can be found in the Research Article by D. Bandyopadhyay and co-workers (DOI: 10.1002/cctc.202500767).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 21","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.70419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molybdenum Carbide Electro-Converted from CO2 and MoO3 for Hydrogen Evolution Reaction 由CO2和MoO3电转化碳化钼的析氢反应
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-11 DOI: 10.1002/cctc.202501320
Yixin Wang, Yonghui Song, Yunfei Chen, Ning Yin, Yuan Zhang, Shilei Lang, Zeyu Wang, Chenyang Wang

Molybdenum carbide (MoC/Mo2C), due to its unique noble-like metallic electronic structure, high conductivity, and abundant surface-active sites, exhibits promising catalytic performance for the hydrogen evolution reaction (HER). The directional and controllable synthesis of molybdenum carbide with specific phase composition is crucial for enhancing catalytic performance. This study employs a green and clean electrochemical method to achieve one-step controllable synthesis of a dual-phase MoC–Mo2C in molten salt. The electrolytic mechanism analysis reveals that MoO3 reacts with molten salt components to form soluble molybdate. Subsequently, CO32− and MoO42− as the electroactive ions are co-reduced, and then molybdenum carbide is in situ formatted at the cathode. By controlling the electrolysis temperature, the phase composition and morphology of molybdenum carbide are effectively regulated, yielding a feather-like dual-phase MoC–Mo2C catalyst. In a 1.0 M KOH solution, the dual-phase MoC–Mo2C catalyst exhibits a superior HER activity. The low overpotential is only 118 mV at a current density of 10 mA cm−2 for HER. Furthermore, it exhibits excellent stability, with only a 34 mV overpotential increase at 10 mA cm−2 after 30 h. This study provides a novel strategy for the clean and resource-efficient utilization of CO2 to synthesize molybdenum carbide catalysts for high performance.

碳化钼(MoC/Mo2C)由于其独特的类贵金属电子结构、高导电性和丰富的表面活性位点,在析氢反应(HER)中表现出良好的催化性能。定向可控合成具有特定相组成的碳化钼是提高催化性能的关键。本研究采用绿色清洁的电化学方法,在熔盐中一步可控合成双相MoC-Mo2C。电解机理分析表明,MoO3与熔盐组分反应生成可溶钼酸盐。随后,CO32−和MoO42−作为电活性离子被共还原,碳化钼在阴极原位成形。通过控制电解温度,可以有效调节碳化钼的相组成和形貌,制备出羽毛状的MoC-Mo2C双相催化剂。在1.0 M KOH溶液中,MoC-Mo2C双相催化剂表现出优异的HER活性。在电流密度为10 mA cm−2时,HER的低过电位仅为118 mV。在10 mA cm−2条件下,30 h后过电位仅增加34 mV。该研究为清洁高效利用CO2合成高性能碳化钼催化剂提供了一种新策略。
{"title":"Molybdenum Carbide Electro-Converted from CO2 and MoO3 for Hydrogen Evolution Reaction","authors":"Yixin Wang,&nbsp;Yonghui Song,&nbsp;Yunfei Chen,&nbsp;Ning Yin,&nbsp;Yuan Zhang,&nbsp;Shilei Lang,&nbsp;Zeyu Wang,&nbsp;Chenyang Wang","doi":"10.1002/cctc.202501320","DOIUrl":"https://doi.org/10.1002/cctc.202501320","url":null,"abstract":"<p>Molybdenum carbide (MoC/Mo<sub>2</sub>C), due to its unique noble-like metallic electronic structure, high conductivity, and abundant surface-active sites, exhibits promising catalytic performance for the hydrogen evolution reaction (HER). The directional and controllable synthesis of molybdenum carbide with specific phase composition is crucial for enhancing catalytic performance. This study employs a green and clean electrochemical method to achieve one-step controllable synthesis of a dual-phase MoC–Mo<sub>2</sub>C in molten salt. The electrolytic mechanism analysis reveals that MoO<sub>3</sub> reacts with molten salt components to form soluble molybdate. Subsequently, CO<sub>3</sub><sup>2−</sup> and MoO<sub>4</sub><sup>2−</sup> as the electroactive ions are co-reduced, and then molybdenum carbide is in situ formatted at the cathode. By controlling the electrolysis temperature, the phase composition and morphology of molybdenum carbide are effectively regulated, yielding a feather-like dual-phase MoC–Mo<sub>2</sub>C catalyst. In a 1.0 M KOH solution, the dual-phase MoC–Mo<sub>2</sub>C catalyst exhibits a superior HER activity. The low overpotential is only 118 mV at a current density of 10 mA cm<sup>−2</sup> for HER. Furthermore, it exhibits excellent stability, with only a 34 mV overpotential increase at 10 mA cm<sup>−2</sup> after 30 h. This study provides a novel strategy for the clean and resource-efficient utilization of CO<sub>2</sub> to synthesize molybdenum carbide catalysts for high performance.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 24","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145792395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Sustainable CO2 Fixation into Cyclic Carbonates via NiO–CuO–ZnO Heterogenous Catalyst at Ambient Temperature (ChemCatChem 21/2025) 封面专题:室温下通过NiO-CuO-ZnO多相催化剂将CO2持续固定为环状碳酸盐(ChemCatChem 21/2025)
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-11 DOI: 10.1002/cctc.70418

The Cover Feature shows a sustainable, solvent-free route for CO2 utilization using a trimetallic NiO–CuO–ZnO catalyst, enabling room-temperature conversion of epichlorohydrin to chloropropene carbonate with 80% yield. This energy-efficient, scalable process avoids precious metals, supports green chemistry, and advances circular carbon economy pathways. More information can be found in the Research Article by J. Rajalakshmi, D. Rajagopal, and A. S. Kumar (DOI: 10.1002/cctc.202500934).

Cover Feature展示了一种可持续的、无溶剂的CO2利用途径,使用三金属NiO-CuO-ZnO催化剂,可以在室温下将环氧氯丙烷转化为碳酸氯丙烯,收率为80%。这种节能、可扩展的工艺避免了贵金属,支持绿色化学,并推进了循环碳经济途径。更多信息可以在J. Rajalakshmi, D. Rajagopal和A. S. Kumar的研究文章中找到(DOI: 10.1002/ cccc .202500934)。
{"title":"Cover Feature: Sustainable CO2 Fixation into Cyclic Carbonates via NiO–CuO–ZnO Heterogenous Catalyst at Ambient Temperature (ChemCatChem 21/2025)","authors":"","doi":"10.1002/cctc.70418","DOIUrl":"https://doi.org/10.1002/cctc.70418","url":null,"abstract":"<p><b>The Cover Feature</b> shows a sustainable, solvent-free route for CO<sub>2</sub> utilization using a trimetallic NiO–CuO–ZnO catalyst, enabling room-temperature conversion of epichlorohydrin to chloropropene carbonate with 80% yield. This energy-efficient, scalable process avoids precious metals, supports green chemistry, and advances circular carbon economy pathways. More information can be found in the Research Article by J. Rajalakshmi, D. Rajagopal, and A. S. Kumar (DOI: 10.1002/cctc.202500934).\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 21","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.70418","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Supported Ru-CoFe Prussian Blue Analogues for Selective and Scalable Electrooxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid 自支撑Ru-CoFe普鲁士蓝类似物选择性和可扩展电氧化5-羟甲基糠醛为2,5-呋喃二羧酸
IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-11-11 DOI: 10.1002/cctc.202501428
Yiqin Zhao, Yiwei Hong, Zhichen Liu, Bowen Zhang, Cejun Hu, Hongwei Zhang, Pei Yuan

The electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) represents a promising route for producing renewable monomers for biodegradable plastics. However, achieving high conversion and selectivity under industrially relevant conditions remains challenging due to sluggish kinetics and catalyst instability. Herein, we report the rational design of a Ru-doped CoFe Prussian blue analogue (Ru-CoFe PBA) catalyst directly grown on copper foam via a one-step hydrothermal process. Comprehensive structural and electronic characterizations reveal that Ru incorporation induces an electron-deficient state in Co and Fe centers, thereby facilitating the formation of hydroxide species and enhancing HMF adsorption. As a result, the Ru-CoFe PBA/CF electrode exhibits outstanding electrocatalytic activity for HMF oxidation, achieving 100% conversion, 98.9% FDCA selectivity, and 97% Faradaic efficiency in 1 M KOH with 100 mM HMF, along with excellent cycling stability. Furthermore, deployment in a multi-stage continuous flow reactor enables high HMF conversion and FDCA selectivity under a broad range of operational parameters, maintaining stable performance over 150 h of continuous operation. This work highlights the synergistic benefits of heteroatom engineering and flow reactor design, offering a scalable platform for efficient biomass electrooxidation to value-added chemicals.

生物质衍生的5-羟甲基糠醛(HMF)电化学升级为2,5-呋喃二羧酸(FDCA)是生产生物降解塑料可再生单体的一条有前途的途径。然而,由于动力学缓慢和催化剂不稳定,在工业相关条件下实现高转化率和选择性仍然具有挑战性。在此,我们报告了通过一步水热法直接在泡沫铜上生长的ru掺杂CoFe普鲁士蓝类似物(Ru-CoFe PBA)催化剂的合理设计。综合结构和电子表征表明,Ru的掺入导致Co和Fe中心的缺电子态,从而促进氢氧化物的形成,增强HMF的吸附。结果表明,Ru-CoFe PBA/CF电极对HMF氧化表现出优异的电催化活性,在1 M KOH和100 mM HMF条件下,转化率为100%,FDCA选择性为98.9%,法拉第效率为97%,并且具有良好的循环稳定性。此外,在多级连续流反应器中部署可以在广泛的操作参数范围内实现高HMF转化率和FDCA选择性,在连续运行150小时以上保持稳定性能。这项工作强调了杂原子工程和流动反应器设计的协同效益,为高效的生物质电氧化生产增值化学品提供了一个可扩展的平台。
{"title":"Self-Supported Ru-CoFe Prussian Blue Analogues for Selective and Scalable Electrooxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid","authors":"Yiqin Zhao,&nbsp;Yiwei Hong,&nbsp;Zhichen Liu,&nbsp;Bowen Zhang,&nbsp;Cejun Hu,&nbsp;Hongwei Zhang,&nbsp;Pei Yuan","doi":"10.1002/cctc.202501428","DOIUrl":"https://doi.org/10.1002/cctc.202501428","url":null,"abstract":"<p>The electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) represents a promising route for producing renewable monomers for biodegradable plastics. However, achieving high conversion and selectivity under industrially relevant conditions remains challenging due to sluggish kinetics and catalyst instability. Herein, we report the rational design of a Ru-doped CoFe Prussian blue analogue (Ru-CoFe PBA) catalyst directly grown on copper foam via a one-step hydrothermal process. Comprehensive structural and electronic characterizations reveal that Ru incorporation induces an electron-deficient state in Co and Fe centers, thereby facilitating the formation of hydroxide species and enhancing HMF adsorption. As a result, the Ru-CoFe PBA/CF electrode exhibits outstanding electrocatalytic activity for HMF oxidation, achieving 100% conversion, 98.9% FDCA selectivity, and 97% Faradaic efficiency in 1 M KOH with 100 mM HMF, along with excellent cycling stability. Furthermore, deployment in a multi-stage continuous flow reactor enables high HMF conversion and FDCA selectivity under a broad range of operational parameters, maintaining stable performance over 150 h of continuous operation. This work highlights the synergistic benefits of heteroatom engineering and flow reactor design, offering a scalable platform for efficient biomass electrooxidation to value-added chemicals.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 24","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145792394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemCatChem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1