Pub Date : 2024-04-06DOI: 10.1142/s1793042124500593
Elif Kızıldere Mutlu, Gökhan Soydan
Denote by the class number of the imaginary quadratic field with prime. It is well known that for . Recently, all the solutions of the Diophantine equation with were given by Chakraborty et al. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, Publ. Math. Debrecen97(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation in unknown integers where , , ,
用 h=h(-p) 表示 p 为素数的虚二次型域ℚ(-p) 的类数。众所周知,对于 p∈{3,7,11,19,43,67,163},h=1。最近,Chakraborty 等人在 [Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, Publ.Math.Debrecen97(3-4) (2020) 339-352] 中给出。本文研究未知整数 (x,y,s,r,n) 中的二叉方程 x2+ps=2ryn,其中 s≥0,r≥3,n≥3,h∈{1,2,3} 和 gcd(x,y)=1。为此,我们使用了与弗雷-赫勒高椭圆曲线相关的伽罗瓦表示的模块性、交映方法和经典代数数论的基本方法的已知结果。本文的目的是扩展 Chakraborty 等人的上述结果。
{"title":"On the solutions of some Lebesgue–Ramanujan–Nagell type equations","authors":"Elif Kızıldere Mutlu, Gökhan Soydan","doi":"10.1142/s1793042124500593","DOIUrl":"https://doi.org/10.1142/s1793042124500593","url":null,"abstract":"<p>Denote by <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><msqrt><mrow><mo stretchy=\"false\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>∈</mo><mo st","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1142/s1793042124500805
Jun-Hwi Min
We prove the best possible upper bounds of the gaps between non-vanishing Fourier coefficients of half-integral weight cuspforms. This improves the works of Balog–Ono and Thorner. We also show an asymptotic formula of central modular -values for short intervals.
我们证明了半整数权凹凸形非相等傅里叶系数之间间隙的最佳上限。这改进了 Balog-Ono 和 Thorner 的工作。我们还展示了短区间中心模态 L 值的渐近公式。
{"title":"On the non-vanishing of Fourier coefficients of half-integral weight cuspforms","authors":"Jun-Hwi Min","doi":"10.1142/s1793042124500805","DOIUrl":"https://doi.org/10.1142/s1793042124500805","url":null,"abstract":"<p>We prove the best possible upper bounds of the gaps between non-vanishing Fourier coefficients of half-integral weight cuspforms. This improves the works of Balog–Ono and Thorner. We also show an asymptotic formula of central modular <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-values for short intervals.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1142/s1793042124500799
Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran
Serre showed that for any integer for almost all where is the Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study over the set of integers with many prime factors. Moreover, we show that any residue class can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of
塞雷证明,对于任意整数 m,几乎所有 n 的 a(n)≡0(modm),其中 a(n) 是任意有理系数模形式的第 n 个傅里叶系数。在本文中,我们考虑了某类余弦形式,并研究了在具有 O(1) 多质因数的整数集合上 #{a(n)(modm)}n≤x 的问题。此外,我们还证明了任何残差类 a∈ℤ/mℤ 都可以写成最多 13 个傅里叶系数之和,而这些系数作为 m 的函数是多项式有界的。
{"title":"Congruence classes for modular forms over small sets","authors":"Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran","doi":"10.1142/s1793042124500799","DOIUrl":"https://doi.org/10.1142/s1793042124500799","url":null,"abstract":"<p>Serre showed that for any integer <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>,</mo><mspace width=\"0.25em\"></mspace><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>≡</mo><mn>0</mn><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for almost all <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mstyle><mtext>th</mtext></mstyle></math></span><span></span> Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>#</mi><msub><mrow><mo stretchy=\"false\">{</mo><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≤</mo><mi>x</mi></mrow></msub></math></span><span></span> over the set of integers with <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> many prime factors. Moreover, we show that any residue class <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">/</mo><mi>m</mi><mi>ℤ</mi></math></span><span></span> can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-06DOI: 10.1142/s1793042124500738
Peng Gao, Liangyi Zhao
In this paper, we establish the expected order of magnitude of the th-moment of central values of the family of Dirichlet -functions to a fixed prime modulus over function fields for all real .
在本文中,我们建立了在所有实数 k≥0 的函数域上,对固定素模的 Dirichlet L 函数族中心值的第 k 次矩阵的预期数量级。
{"title":"Moments of Dirichlet L-functions to a fixed modulus over function fields","authors":"Peng Gao, Liangyi Zhao","doi":"10.1142/s1793042124500738","DOIUrl":"https://doi.org/10.1142/s1793042124500738","url":null,"abstract":"<p>In this paper, we establish the expected order of magnitude of the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>th-moment of central values of the family of Dirichlet <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions to a fixed prime modulus over function fields for all real <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>0</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1793042124500787
Nikos Tzanakis, Paul Voutier
We call an integer a near-square if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers by , and for . We show that for a given , there is at most one such that is a near-square. With the exceptions of and , any such can be a nea
{"title":"Near-squares in binary recurrence sequences","authors":"Nikos Tzanakis, Paul Voutier","doi":"10.1142/s1793042124500787","DOIUrl":"https://doi.org/10.1142/s1793042124500787","url":null,"abstract":"<p>We call an integer a <i>near-square</i> if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span> by <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>a</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span></span>. We show that for a given <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, there is at most one <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>5</mn></math></span><span></span> such that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a near-square. With the exceptions of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>6</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>7</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mn>3</mn><mn>9</mn><mo stretchy=\"false\">⋅</mo><mn>1</mn><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, any such <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> can be a nea","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1793042124500829
Avner Ash, Dan Yasaki
We investigate the subspace of the homology of a congruence subgroup of with coefficients in the Steinberg module which is spanned by certain modular symbols formed using the units of a totally real cubic field . By Borel–Serre duality, is isomorphic to . The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology . Their span is a naturally defined subspace of . Using a computer, we study where sits between
{"title":"The cuspidal cohomology of GL3/ℚ and cubic fields","authors":"Avner Ash, Dan Yasaki","doi":"10.1142/s1793042124500829","DOIUrl":"https://doi.org/10.1142/s1793042124500829","url":null,"abstract":"<p>We investigate the subspace of the homology of a congruence subgroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span> of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with coefficients in the Steinberg module <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> which is spanned by certain modular symbols formed using the units of a totally real cubic field <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. By Borel–Serre duality, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is isomorphic to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Their span is a naturally defined subspace <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Using a computer, we study where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> sits between <span>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1793042124500830
David Krumm, Allan Lacy
For every nonconstant rational function , the Galois groups of the dynatomic polynomials of encode various properties of are of interest in the subject of arithmetic dynamics. We study here the structure of these Galois groups as varies in a particular one-parameter family of maps, namely, the quadratic rational maps having a critical point of period 2. In particular, we provide explicit descriptions of the third and fourth dynatomic Galois groups for maps in this family.
{"title":"Dynatomic Galois groups for a family of quadratic rational maps","authors":"David Krumm, Allan Lacy","doi":"10.1142/s1793042124500830","DOIUrl":"https://doi.org/10.1142/s1793042124500830","url":null,"abstract":"<p>For every nonconstant rational function <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the Galois groups of the dynatomic polynomials of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> encode various properties of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> are of interest in the subject of arithmetic dynamics. We study here the structure of these Galois groups as <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> varies in a particular one-parameter family of maps, namely, the quadratic rational maps having a critical point of period 2. In particular, we provide explicit descriptions of the third and fourth dynatomic Galois groups for maps in this family.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1793042124500696
Zhonghua Li, Zhenlu Wang
We study the relations of multiple -values of general level. The generating function of sums of multiple -(star) values of level with fixed weight, depth and height is represented by the generalized hypergeometric function , which generalizes the results for multiple zeta(-star) values and multiple -(star) values. As applications, we obtain formulas for the generating functions of sums of multiple -(star) values of level with height one and maximal height and a weighted sum formula for sums of multiple -(star) values of level with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple -(star) values of level . Some evaluations of multiple -star values of level with one–two–three indices are given.
我们研究一般水平的多重 t 值的关系。具有固定权重、深度和高度的 N 级多个 t-(星)值之和的生成函数用广义超几何函数 3F2 表示,它推广了多个 zeta(-星)值和多个 t-(星)值的结果。作为应用,我们得到了高度为一和最大高度为 N 的多个 t-(星)级值之和的生成函数公式,以及权重和深度固定的 N 级多个 t-(星)级值之和的加权和公式。利用塞特尔代数,我们还得到了 N 层多个 t-(星)值的对称和公式和霍夫曼限制和公式。
{"title":"Relations of multiple t-values of general level","authors":"Zhonghua Li, Zhenlu Wang","doi":"10.1142/s1793042124500696","DOIUrl":"https://doi.org/10.1142/s1793042124500696","url":null,"abstract":"<p>We study the relations of multiple <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-values of general level. The generating function of sums of multiple <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight, depth and height is represented by the generalized hypergeometric function <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, which generalizes the results for multiple zeta(-star) values and multiple <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with height one and maximal height and a weighted sum formula for sums of multiple <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>. Some evaluations of multiple <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-star values of level <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span> with one–two–three indices are given.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1793042124500878
Xiaoan Lang, Jeremy Rouse
We study the problem of determining, given an integer , the rational solutions to . For , the curve has genus and its Jacobian is isogenous to the product of three elliptic curves , , . We explicitly determine the rational points on under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all .
我们研究的问题是,在给定整数 k 的情况下,确定 Ck:x3z+x2y2+y3z=kz4 的有理解。对于 k≠0,曲线 Ck 的属数为 3,其 Jacobian 与三条椭圆曲线 E1,k、E2,k、E3,k 的乘积同源。在假设其中一条椭圆曲线的秩为零的情况下,我们明确地确定了 Ck 上的有理点。我们讨论了将我们的结果扩展到处理所有 k∈ℚ 所涉及的挑战。
{"title":"Rational points on x3 + x2y2 + y3 = k","authors":"Xiaoan Lang, Jeremy Rouse","doi":"10.1142/s1793042124500878","DOIUrl":"https://doi.org/10.1142/s1793042124500878","url":null,"abstract":"<p>We study the problem of determining, given an integer <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>, the rational solutions to <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mo>=</mo><mi>k</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>. For <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≠</mo><mn>0</mn></math></span><span></span>, the curve <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> has genus <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span> and its Jacobian is isogenous to the product of three elliptic curves <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>. We explicitly determine the rational points on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>∈</mo><mi>ℚ</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1793042124500817
Shanta Laishram, Prabhakar Yadav
For positive integers , let be the truncated binomial expansion of consisting of all terms of degree It is conjectured that for , the polynomial is irreducible. We confirm this conjecture when Also we show for any and
{"title":"Irreducibility and galois groups of truncated binomial polynomials","authors":"Shanta Laishram, Prabhakar Yadav","doi":"10.1142/s1793042124500817","DOIUrl":"https://doi.org/10.1142/s1793042124500817","url":null,"abstract":"<p>For positive integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mi>m</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></mfrac></mfenced><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mfenced><mi>x</mi><mo stretchy=\"false\">+</mo><mo>…</mo><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span><span></span> be the truncated binomial expansion of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> consisting of all terms of degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mi>m</mi><mo>.</mo></math></span><span></span> It is conjectured that for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>></mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>, the polynomial <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible. We confirm this conjecture when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo><</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mo>.</mo></math></span><span></span> Also we show for any <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo><</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi><mo stretchy=\"false\">+</mo><mn>1</mn>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}