首页 > 最新文献

International Journal of Number Theory最新文献

英文 中文
On the solutions of some Lebesgue–Ramanujan–Nagell type equations 论某些勒贝格-拉马努扬-纳格尔型方程的解
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-06 DOI: 10.1142/s1793042124500593
Elif Kızıldere Mutlu, Gökhan Soydan

Denote by h=h(p) the class number of the imaginary quadratic field (p) with p prime. It is well known that h=1 for p{3,7,11,19,43,67,163}. Recently, all the solutions of the Diophantine equation x2+ps=4yn with h=1 were given by Chakraborty et al. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, Publ. Math. Debrecen97(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation x2+ps=2ryn in unknown integers (x,y,s,r,n), where s0, r3, n3, h
用 h=h(-p) 表示 p 为素数的虚二次型域ℚ(-p) 的类数。众所周知,对于 p∈{3,7,11,19,43,67,163},h=1。最近,Chakraborty 等人在 [Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, Publ.Math.Debrecen97(3-4) (2020) 339-352] 中给出。本文研究未知整数 (x,y,s,r,n) 中的二叉方程 x2+ps=2ryn,其中 s≥0,r≥3,n≥3,h∈{1,2,3} 和 gcd(x,y)=1。为此,我们使用了与弗雷-赫勒高椭圆曲线相关的伽罗瓦表示的模块性、交映方法和经典代数数论的基本方法的已知结果。本文的目的是扩展 Chakraborty 等人的上述结果。
{"title":"On the solutions of some Lebesgue–Ramanujan–Nagell type equations","authors":"Elif Kızıldere Mutlu, Gökhan Soydan","doi":"10.1142/s1793042124500593","DOIUrl":"https://doi.org/10.1142/s1793042124500593","url":null,"abstract":"<p>Denote by <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><msqrt><mrow><mo stretchy=\"false\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>∈</mo><mo st","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the non-vanishing of Fourier coefficients of half-integral weight cuspforms 关于半整数权凹凸形的傅里叶系数不求和问题
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-06 DOI: 10.1142/s1793042124500805
Jun-Hwi Min

We prove the best possible upper bounds of the gaps between non-vanishing Fourier coefficients of half-integral weight cuspforms. This improves the works of Balog–Ono and Thorner. We also show an asymptotic formula of central modular L-values for short intervals.

我们证明了半整数权凹凸形非相等傅里叶系数之间间隙的最佳上限。这改进了 Balog-Ono 和 Thorner 的工作。我们还展示了短区间中心模态 L 值的渐近公式。
{"title":"On the non-vanishing of Fourier coefficients of half-integral weight cuspforms","authors":"Jun-Hwi Min","doi":"10.1142/s1793042124500805","DOIUrl":"https://doi.org/10.1142/s1793042124500805","url":null,"abstract":"<p>We prove the best possible upper bounds of the gaps between non-vanishing Fourier coefficients of half-integral weight cuspforms. This improves the works of Balog–Ono and Thorner. We also show an asymptotic formula of central modular <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-values for short intervals.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Congruence classes for modular forms over small sets 小集合上模态的协整类
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-06 DOI: 10.1142/s1793042124500799
Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran

Serre showed that for any integer m,a(n)0(modm) for almost all n, where a(n) is the nth Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study #{a(n)(modm)}nx over the set of integers with O(1) many prime factors. Moreover, we show that any residue class a/m can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of m.

塞雷证明,对于任意整数 m,几乎所有 n 的 a(n)≡0(modm),其中 a(n) 是任意有理系数模形式的第 n 个傅里叶系数。在本文中,我们考虑了某类余弦形式,并研究了在具有 O(1) 多质因数的整数集合上 #{a(n)(modm)}n≤x 的问题。此外,我们还证明了任何残差类 a∈ℤ/mℤ 都可以写成最多 13 个傅里叶系数之和,而这些系数作为 m 的函数是多项式有界的。
{"title":"Congruence classes for modular forms over small sets","authors":"Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran","doi":"10.1142/s1793042124500799","DOIUrl":"https://doi.org/10.1142/s1793042124500799","url":null,"abstract":"<p>Serre showed that for any integer <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>,</mo><mspace width=\"0.25em\"></mspace><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>≡</mo><mn>0</mn><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for almost all <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mstyle><mtext>th</mtext></mstyle></math></span><span></span> Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>#</mi><msub><mrow><mo stretchy=\"false\">{</mo><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≤</mo><mi>x</mi></mrow></msub></math></span><span></span> over the set of integers with <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> many prime factors. Moreover, we show that any residue class <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">/</mo><mi>m</mi><mi>ℤ</mi></math></span><span></span> can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moments of Dirichlet L-functions to a fixed modulus over function fields 函数域上固定模的 Dirichlet L 函数矩
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-06 DOI: 10.1142/s1793042124500738
Peng Gao, Liangyi Zhao

In this paper, we establish the expected order of magnitude of the kth-moment of central values of the family of Dirichlet L-functions to a fixed prime modulus over function fields for all real k0.

在本文中,我们建立了在所有实数 k≥0 的函数域上,对固定素模的 Dirichlet L 函数族中心值的第 k 次矩阵的预期数量级。
{"title":"Moments of Dirichlet L-functions to a fixed modulus over function fields","authors":"Peng Gao, Liangyi Zhao","doi":"10.1142/s1793042124500738","DOIUrl":"https://doi.org/10.1142/s1793042124500738","url":null,"abstract":"<p>In this paper, we establish the expected order of magnitude of the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>th-moment of central values of the family of Dirichlet <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions to a fixed prime modulus over function fields for all real <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>0</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-squares in binary recurrence sequences 二元递推序列中的近似值
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500787
Nikos Tzanakis, Paul Voutier

We call an integer a near-square if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers a3 by u0(a)=0, u1(a)=1 and un+2(a)=aun+1(a)un(a) for n0. We show that for a given a3, there is at most one n5 such that un(a) is a near-square. With the exceptions of u6(3)=122 and u7(6)=239132, any such un(a) can be a nea

如果一个整数的绝对值是一个平方或一个质数乘以一个平方,我们就称它为近平方。我们研究了整数 a≥3 的二元递推序列中的近似平方,即 n≥0 时,u0(a)=0,u1(a)=1 和 un+2(a)=aun+1(a)-un(a)。除了 u6(3)=122 和 u7(6)=239⋅132 以外,只有当 a≡2(mod4),n≡3(mod4) 是质数且 n≥19 时,任何这样的 un(a) 才可能是近平方项。这是关于非enerate递推序列中的近方差的更普遍现象的一部分,它是由 u0(a,b)=0,u1(a,b)=1 和 un+2(a,b)=aun+1(a,b)+bun(a,b) 定义的,对于 n≥0 的整数 a 和 b=-b12 的递推序列。
{"title":"Near-squares in binary recurrence sequences","authors":"Nikos Tzanakis, Paul Voutier","doi":"10.1142/s1793042124500787","DOIUrl":"https://doi.org/10.1142/s1793042124500787","url":null,"abstract":"<p>We call an integer a <i>near-square</i> if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span> by <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>a</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span></span>. We show that for a given <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, there is at most one <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>5</mn></math></span><span></span> such that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a near-square. With the exceptions of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>6</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>7</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mn>3</mn><mn>9</mn><mo stretchy=\"false\">⋅</mo><mn>1</mn><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, any such <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> can be a nea","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cuspidal cohomology of GL3/ℚ and cubic fields GL3/ℚ 和立方域的尖顶同调
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500829
Avner Ash, Dan Yasaki

We investigate the subspace of the homology of a congruence subgroup Γ of SL3() with coefficients in the Steinberg module St(3) which is spanned by certain modular symbols formed using the units of a totally real cubic field E. By Borel–Serre duality, H0(Γ,St(3)) is isomorphic to H3(Γ,). The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology Hcusp3(Γ,). Their span is a naturally defined subspace C(Γ,E) of Hcusp3(Γ,). Using a computer, we study where C(Γ,E) sits between

我们研究 SL3(ℤ)的同余子群 Γ 的同调子空间,其系数在斯坦伯格模块 St(ℚ3)中,该模块由完全实立方域 E 的单位构成的某些模符号所跨。根据 Borel-Serre 对偶性,H0(Γ,St(ℚ3)) 与 H3(Γ,ℚ) 同构。有关模块符号的伯勒-塞尔对偶必然位于尖顶同调 Hcusp3(Γ,ℚ)中。它们的跨度是 Hcusp3(Γ,ℚ) 的一个自然定义的子空间 C(Γ,E)。我们利用计算机研究了 C(Γ,E) 位于 0 和 Hcusp3(Γ,ℚ) 之间的位置。根据我们的计算,我们猜想∑EC(Γ,E)=Hcusp3(Γ,ℚ),我们提出了这样一个问题:对于每个 E,C(Γ,E)=Hcusp3(Γ,ℚ)是否总是真的?
{"title":"The cuspidal cohomology of GL3/ℚ and cubic fields","authors":"Avner Ash, Dan Yasaki","doi":"10.1142/s1793042124500829","DOIUrl":"https://doi.org/10.1142/s1793042124500829","url":null,"abstract":"<p>We investigate the subspace of the homology of a congruence subgroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span> of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with coefficients in the Steinberg module <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> which is spanned by certain modular symbols formed using the units of a totally real cubic field <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. By Borel–Serre duality, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is isomorphic to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Their span is a naturally defined subspace <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Using a computer, we study where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> sits between <span>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynatomic Galois groups for a family of quadratic rational maps 二次有理映射族的动态伽罗瓦群
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500830
David Krumm, Allan Lacy

For every nonconstant rational function ϕ(x), the Galois groups of the dynatomic polynomials of ϕ encode various properties of ϕ are of interest in the subject of arithmetic dynamics. We study here the structure of these Galois groups as ϕ varies in a particular one-parameter family of maps, namely, the quadratic rational maps having a critical point of period 2. In particular, we provide explicit descriptions of the third and fourth dynatomic Galois groups for maps in this family.

对于每个非定常有理函数ϕ∈ℚ(x),ϕ的动态多项式的伽罗瓦群编码了ϕ的各种性质,这些性质在算术动力学中很有意义。我们在此研究这些伽罗瓦群的结构,因为ϕ在一个特定的单参数映射族(即具有周期 2 临界点的二次有理映射)中变化。特别是,我们提供了该族映射的第三和第四动态伽罗瓦群的明确描述。
{"title":"Dynatomic Galois groups for a family of quadratic rational maps","authors":"David Krumm, Allan Lacy","doi":"10.1142/s1793042124500830","DOIUrl":"https://doi.org/10.1142/s1793042124500830","url":null,"abstract":"<p>For every nonconstant rational function <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the Galois groups of the dynatomic polynomials of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> encode various properties of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> are of interest in the subject of arithmetic dynamics. We study here the structure of these Galois groups as <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> varies in a particular one-parameter family of maps, namely, the quadratic rational maps having a critical point of period 2. In particular, we provide explicit descriptions of the third and fourth dynatomic Galois groups for maps in this family.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relations of multiple t-values of general level 一般水平多个 t 值的关系
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500696
Zhonghua Li, Zhenlu Wang

We study the relations of multiple t-values of general level. The generating function of sums of multiple t-(star) values of level N with fixed weight, depth and height is represented by the generalized hypergeometric function 3F2, which generalizes the results for multiple zeta(-star) values and multiple t-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple t-(star) values of level N with height one and maximal height and a weighted sum formula for sums of multiple t-(star) values of level N with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple t-(star) values of level N. Some evaluations of multiple t-star values of level 2 with one–two–three indices are given.

我们研究一般水平的多重 t 值的关系。具有固定权重、深度和高度的 N 级多个 t-(星)值之和的生成函数用广义超几何函数 3F2 表示,它推广了多个 zeta(-星)值和多个 t-(星)值的结果。作为应用,我们得到了高度为一和最大高度为 N 的多个 t-(星)级值之和的生成函数公式,以及权重和深度固定的 N 级多个 t-(星)级值之和的加权和公式。利用塞特尔代数,我们还得到了 N 层多个 t-(星)值的对称和公式和霍夫曼限制和公式。
{"title":"Relations of multiple t-values of general level","authors":"Zhonghua Li, Zhenlu Wang","doi":"10.1142/s1793042124500696","DOIUrl":"https://doi.org/10.1142/s1793042124500696","url":null,"abstract":"<p>We study the relations of multiple <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-values of general level. The generating function of sums of multiple <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight, depth and height is represented by the generalized hypergeometric function <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, which generalizes the results for multiple zeta(-star) values and multiple <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with height one and maximal height and a weighted sum formula for sums of multiple <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>. Some evaluations of multiple <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-star values of level <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span> with one–two–three indices are given.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational points on x3 + x2y2 + y3 = k x3 + x2y2 + y3 = k 上的有理点
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500878
Xiaoan Lang, Jeremy Rouse

We study the problem of determining, given an integer k, the rational solutions to Ck:x3z+x2y2+y3z=kz4. For k0, the curve Ck has genus 3 and its Jacobian is isogenous to the product of three elliptic curves E1,k, E2,k, E3,k. We explicitly determine the rational points on Ck under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all k.

我们研究的问题是,在给定整数 k 的情况下,确定 Ck:x3z+x2y2+y3z=kz4 的有理解。对于 k≠0,曲线 Ck 的属数为 3,其 Jacobian 与三条椭圆曲线 E1,k、E2,k、E3,k 的乘积同源。在假设其中一条椭圆曲线的秩为零的情况下,我们明确地确定了 Ck 上的有理点。我们讨论了将我们的结果扩展到处理所有 k∈ℚ 所涉及的挑战。
{"title":"Rational points on x3 + x2y2 + y3 = k","authors":"Xiaoan Lang, Jeremy Rouse","doi":"10.1142/s1793042124500878","DOIUrl":"https://doi.org/10.1142/s1793042124500878","url":null,"abstract":"<p>We study the problem of determining, given an integer <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>, the rational solutions to <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mo>=</mo><mi>k</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>. For <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≠</mo><mn>0</mn></math></span><span></span>, the curve <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> has genus <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span> and its Jacobian is isogenous to the product of three elliptic curves <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>. We explicitly determine the rational points on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>∈</mo><mi>ℚ</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreducibility and galois groups of truncated binomial polynomials 截断二项式多项式的不可约性和伽洛瓦群
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500817
Shanta Laishram, Prabhakar Yadav

For positive integers nm, let Pn,m(x):=j=0mnjxj=n0+n1x++nmxm be the truncated binomial expansion of (1+x)n consisting of all terms of degree m. It is conjectured that for n>m+1, the polynomial Pn,m(x) is irreducible. We confirm this conjecture when 2mn<(m+1)10. Also we show for any r10 and 2mn<(m+1)r+1

对于正整数 n≥m,设 Pn,m(x):=∑j=0mnjxj=n0+n1x+...+nmxm 是 (1+x)n 的截二项展开式,由≤m 的所有项组成。有人猜想,对于 n>m+1,多项式 Pn,m(x) 是不可约的。当 2m≤n<(m+1)10 时,我们证实了这一猜想。我们还证明,对于任意 r≥10 和 2m≤n<(m+1)r+1,当 m≥max{106,2r3} 时,多项式 Pn,m(x) 是不可约的。根据显式 abc 猜想,对于固定的 m,我们给出一个仅取决于 m 的显式 n0,n1,使得 ∀n≥n0 时,多项式 Pn,m(x) 不可约。进一步∀n≥n1,与 Pn,m(x) 相关的伽罗瓦群是对称群 Sm。
{"title":"Irreducibility and galois groups of truncated binomial polynomials","authors":"Shanta Laishram, Prabhakar Yadav","doi":"10.1142/s1793042124500817","DOIUrl":"https://doi.org/10.1142/s1793042124500817","url":null,"abstract":"<p>For positive integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mi>m</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></mfrac></mfenced><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mfenced><mi>x</mi><mo stretchy=\"false\">+</mo><mo>…</mo><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span><span></span> be the truncated binomial expansion of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> consisting of all terms of degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mi>m</mi><mo>.</mo></math></span><span></span> It is conjectured that for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>&gt;</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>, the polynomial <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible. We confirm this conjecture when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo>&lt;</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mo>.</mo></math></span><span></span> Also we show for any <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo>&lt;</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi><mo stretchy=\"false\">+</mo><mn>1</mn>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Number Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1