首页 > 最新文献

International Journal of Number Theory最新文献

英文 中文
Finite sequences of integers expressible as sums of two squares 可表示为两个正方形之和的整数有限序列
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500866
Ajai Choudhry, Bibekananda Maji

This paper is concerned with finite sequences of integers that may be written as sums of squares of two nonzero integers. We first find infinitely many integers n such that n,n+h and n+k are all sums of two squares where h and k are two arbitrary integers, and as an immediate corollary obtain, in parametric terms, three consecutive integers that are sums of two squares. Similarly we obtain n in parametric terms such that all the four integers n,n+1,n+2,n+4 are sums of two squares. We also find infinitely many integers n such that all the five integers n,n+1,n+2,n+4,n+5 are sums of two squares, and finally, we find infinitely many arithmetic progressions, with common difference 4, of five integers all of which are sums of two squares.

本文关注的是可以写成两个非零整数的平方和的有限整数序列。我们首先找到了无限多个整数 n,使得 n、n+h 和 n+k 都是两个平方的和,其中 h 和 k 是两个任意整数,并立即推论出,在参数项中,有三个连续的整数是两个平方的和。同样,我们还可以从参数项中得到 n,从而得到 n,n+1,n+2,n+4,这四个整数都是两个平方的和。我们还可以找到无数个整数 n,使得所有五个整数 n,n+1,n+2,n+4,n+5 都是两个平方之和,最后,我们还可以找到无数个算术级数,它们的共同差为 4,五个整数都是两个平方之和。
{"title":"Finite sequences of integers expressible as sums of two squares","authors":"Ajai Choudhry, Bibekananda Maji","doi":"10.1142/s1793042124500866","DOIUrl":"https://doi.org/10.1142/s1793042124500866","url":null,"abstract":"<p>This paper is concerned with finite sequences of integers that may be written as sums of squares of two nonzero integers. We first find infinitely many integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> such that <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mi>h</mi></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">+</mo><mi>k</mi></math></span><span></span> are all sums of two squares where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi></math></span><span></span> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> are two arbitrary integers, and as an immediate corollary obtain, in parametric terms, three consecutive integers that are sums of two squares. Similarly we obtain <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> in parametric terms such that all the four integers <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>4</mn></math></span><span></span> are sums of two squares. We also find infinitely many integers <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> such that all the five integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>4</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>5</mn></math></span><span></span> are sums of two squares, and finally, we find infinitely many arithmetic progressions, with common difference <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn></math></span><span></span>, of five integers all of which are sums of two squares.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genus of a quotient of several types of numerical semigroups 几类数字半群商数的属数
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500891
Kyeongjun Lee, Hayan Nam

Finding the Frobenius number and the genus of any numerical semigroup S is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.

求任何数值半群 S 的弗罗贝尼斯数和属是一个众所周知的公开问题。同样,如何表达数值半群的商的弗罗贝尼斯数和属也是一个研究课题。本文通过枚举各类数字半群的希尔伯特数列,展示了由以下数列之一生成的数字半群商的属数表达式:算术级数、几何级数和毕达哥拉斯三重数。
{"title":"The genus of a quotient of several types of numerical semigroups","authors":"Kyeongjun Lee, Hayan Nam","doi":"10.1142/s1793042124500891","DOIUrl":"https://doi.org/10.1142/s1793042124500891","url":null,"abstract":"<p>Finding the Frobenius number and the genus of any numerical semigroup <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi></math></span><span></span> is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some separable integer partition classes 一些可分离的整数分割类
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500660
Y. H. Chen, Thomas Y. He, F. Tang, J. J. Wei

Recently, Andrews introduced separable integer partition classes and analyzed some well-known theorems. In this paper, we investigate partitions with parts separated by parity introduced by Andrews with the aid of separable integer partition classes with modulus 2. We also extend separable integer partition classes with modulus 1 to overpartitions, called separable overpartition classes. We study overpartitions and the overpartition analogue of Rogers–Ramanujan identities, which are separable overpartition classes.

最近,安德鲁斯引入了可分离整数分区类,并分析了一些著名定理。在本文中,我们借助模数为 2 的可分离整数分区类研究安德鲁斯提出的由奇偶性分隔的分区。我们还将模为 1 的可分离整数分治类扩展为过分治,称为可分离过分治类。我们研究过分区和罗杰斯-拉马努扬等式的过分区类似物,它们都是可分离的过分区类。
{"title":"Some separable integer partition classes","authors":"Y. H. Chen, Thomas Y. He, F. Tang, J. J. Wei","doi":"10.1142/s1793042124500660","DOIUrl":"https://doi.org/10.1142/s1793042124500660","url":null,"abstract":"<p>Recently, Andrews introduced separable integer partition classes and analyzed some well-known theorems. In this paper, we investigate partitions with parts separated by parity introduced by Andrews with the aid of separable integer partition classes with modulus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>. We also extend separable integer partition classes with modulus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span> to overpartitions, called separable overpartition classes. We study overpartitions and the overpartition analogue of Rogers–Ramanujan identities, which are separable overpartition classes.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues 无零区域在赫克特征值的平均值和移位卷积和上的应用
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500775
Jiseong Kim

By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for SL(n,). As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for SL(n,). Furthermore, we present a conditional result regarding sign changes of these coefficients.

通过假设维诺格拉多夫-科罗波夫型无零区域和广义拉马努扬-彼得森猜想,我们为 SL(n,ℤ) 的 Hecke-Maass cusp 形式的几乎所有傅里叶系数短和建立了非微观上界。作为应用,我们得到了涉及 SL(n,ℤ) Hecke-Maass cusp 形式系数的移位和的平均值的非难上限。此外,我们还提出了关于这些系数符号变化的条件结果。
{"title":"Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues","authors":"Jiseong Kim","doi":"10.1142/s1793042124500775","DOIUrl":"https://doi.org/10.1142/s1793042124500775","url":null,"abstract":"<p>By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>L</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>L</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Furthermore, we present a conditional result regarding sign changes of these coefficients.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variance of primes in short residue classes for function fields 函数域短残差类中的素数方差
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500763
Stephan Baier, Arkaprava Bhandari

Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, Int. Math. Res. Not.2014(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus Q is a polynomial in 𝔽q[T] such that Q(0)0. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.

Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, Int.Math.Res. Not.2014(1) (2014) 259-288]导出了函数场设置中算术级数和短区间中素数方差的渐近公式。在此,我们考虑计算算术级数和短区间交集中素数方差的混合问题。Keating 和 Rudnick 使用内卷将短区间转化为算术级数。我们沿用了他们的方法,但在算术级数中也应用了这种反卷。当模数 Q 是𝔽q[T]中的多项式时,Q(0)≠0,这样就产生了对偶算术级数。后者是我们在本文中始终保留的限制条件。最后,我们将讨论如何放宽这一条件。
{"title":"Variance of primes in short residue classes for function fields","authors":"Stephan Baier, Arkaprava Bhandari","doi":"10.1142/s1793042124500763","DOIUrl":"https://doi.org/10.1142/s1793042124500763","url":null,"abstract":"<p>Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, <i>Int. Math. Res. Not.</i><b>2014</b>(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi></math></span><span></span> is a polynomial in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>T</mi><mo stretchy=\"false\">]</mo></math></span><span></span> such that <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mo>≠</mo><mn>0</mn></math></span><span></span>. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplier systems for Siegel modular groups 西格尔模块群的乘法系统
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500684
Eberhard Freitag, Adrian Hauffe-Waschbüsch

Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, C. R. Acad. Sci. Paris287 (1978) 203–208] (see also 7.1 in [R. Hill, Fractional weights and non-congruence subgroups, in Automorphic Forms and Representations of Algebraic Groups Over Local Fields, eds. H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp. 71–80]) that the weights of Siegel modular forms on any congruence subgroup of the Siegel modular group of genus g>1 must be integral or half integral. Actually he proved that for a system v(M) of complex numbers of absolute value 1

v(M)det(CZ+D)r(r)(0.1)

can be an automorphy factor only if 2r is integral. We give a different proof for this. It uses Mennicke’s result [Zur Theorie der Siegelschen Modulgruppe, Math. Ann.159 (1965) 115–129] that subgroups of finite index of the Siegel modular group are congruence subgroups and some techniques from [Solution of the congruence subgroup problem for SLn(n3) and Sp2n(n2), Publ. Math. Inst. Hautes Études Sci.33 (1967) 59–137] of Bass–Milnor–Serre.

Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, C. R. Acad.Sci. Paris287 (1978) 203-208] 中证明的。(另见 7.1 [R.Hill, Fractional weights and non-congruence subgroups, in Automorphic Forms and Representations of Algebraic Groups Over Local Fields, eds.H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp.实际上,他证明了对于绝对值复数系统 v(M) 1v(M)det(CZ+D)r(r∈ℝ)(0.1) 只有当 2r 是积分时才能成为自形因子。我们给出了一个不同的证明。它使用了门尼克的结果[Zur Theorie der Siegelschen Modulgruppe, Math. Ann.159 (1965) 115-129],即西格尔模群的有限指数子群是全等子群,以及[Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2), Publ.Math.高等科学研究所,33 (1967) 59-137]的 Bass-Milnor-Serre.
{"title":"Multiplier systems for Siegel modular groups","authors":"Eberhard Freitag, Adrian Hauffe-Waschbüsch","doi":"10.1142/s1793042124500684","DOIUrl":"https://doi.org/10.1142/s1793042124500684","url":null,"abstract":"<p>Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, <i>C. R. Acad. Sci. Paris</i><b>287</b> (1978) 203–208] (see also 7.1 in [R. Hill, Fractional weights and non-congruence subgroups, in <i>Automorphic Forms and Representations of Algebraic Groups Over Local Fields</i>, eds. H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp. 71–80]) that the weights of Siegel modular forms on any congruence subgroup of the Siegel modular group of genus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span><span></span> must be integral or half integral. Actually he proved that for a system <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of complex numbers of absolute value 1</p><p><span><math altimg=\"eq-00003.gif\" display=\"block\" overflow=\"scroll\"><mtable columnalign=\"left\"><mtr><mtd columnalign=\"right\"><mspace width=\"8.5pc\"></mspace><mi>v</mi><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo><mo>det</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>C</mi><mi>Z</mi><mo stretchy=\"false\">+</mo><mi>D</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>r</mi><mo>∈</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mspace width=\"8.5pc\"></mspace><mo stretchy=\"false\">(</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mtd><mtd></mtd></mtr></mtable></math></span><span></span></p><p>can be an automorphy factor only if <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>r</mi></math></span><span></span> is integral. We give a different proof for this. It uses Mennicke’s result [Zur Theorie der Siegelschen Modulgruppe, <i>Math. Ann.</i><b>159</b> (1965) 115–129] that subgroups of finite index of the Siegel modular group are congruence subgroups and some techniques from [Solution of the congruence subgroup problem for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace width=\".275em\"></mspace><mo stretchy=\"false\">(</mo><mi>n</mi><mo>≥</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mspace width=\".275em\"></mspace><mo stretchy=\"false\">(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, <i>Publ. Math. Inst. Hautes Études Sci.</i><b>33</b> (1967) 59–137] of Bass–Milnor–Serre.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The minimal odd excludant and Euler’s partition theorem 最小奇数不等式和欧拉分割定理
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500714
Andrew Y. Z. Wang, Zheng Xu

In this work, we establish two interesting partition identities involving the minimal odd excludant, which has attracted great attention in recent years. In particular, we find a strong refinement of Euler’s celebrated theorem that the number of partitions of an integer into odd parts equals the number of partitions of that integer into distinct parts.

在这项工作中,我们建立了两个涉及最小奇数不等式的有趣的分割等式,该等式近年来引起了极大的关注。特别是,我们发现了欧拉著名定理的有力改进,即把一个整数分割成奇数部分的个数等于把该整数分割成不同部分的个数。
{"title":"The minimal odd excludant and Euler’s partition theorem","authors":"Andrew Y. Z. Wang, Zheng Xu","doi":"10.1142/s1793042124500714","DOIUrl":"https://doi.org/10.1142/s1793042124500714","url":null,"abstract":"<p>In this work, we establish two interesting partition identities involving the minimal odd excludant, which has attracted great attention in recent years. In particular, we find a strong refinement of Euler’s celebrated theorem that the number of partitions of an integer into odd parts equals the number of partitions of that integer into distinct parts.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reciprocity formulae for generalized Dedekind–Rademacher sums attached to three Dirichlet characters and related polynomial reciprocity formulae 附加于三个 Dirichlet 字符的广义 Dedekind-Rademacher 和的互易公式及相关多项式互易公式
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500726
Brad Isaacson

We define a three-character analogue of the generalized Dedekind–Rademacher sum introduced by Hall, Wilson, and Zagier and prove its reciprocity formula which contains all of the reciprocity formulas in the literature for generalized Dedekind–Rademacher sums attached (and not attached) to Dirichlet characters as special cases. Additionally, we prove related polynomial reciprocity formulas which contain all of the polynomial reciprocity formulas in the literature as special cases, such as those given by Carlitz, Beck & Kohl, and the present author.

我们定义了霍尔、威尔逊和扎吉尔引入的广义戴德金-拉德马赫和的三字符类似物,并证明了它的互易公式,其中包含了文献中所有作为特例的附于(和不附于)德里赫特字符的广义戴德金-拉德马赫和的互易公式。此外,我们还证明了相关的多项式互易公式,这些公式包含了文献中作为特例的所有多项式互易公式,如 Carlitz、Beck & Kohl 和本文作者给出的公式。
{"title":"Reciprocity formulae for generalized Dedekind–Rademacher sums attached to three Dirichlet characters and related polynomial reciprocity formulae","authors":"Brad Isaacson","doi":"10.1142/s1793042124500726","DOIUrl":"https://doi.org/10.1142/s1793042124500726","url":null,"abstract":"<p>We define a three-character analogue of the generalized Dedekind–Rademacher sum introduced by Hall, Wilson, and Zagier and prove its reciprocity formula which contains all of the reciprocity formulas in the literature for generalized Dedekind–Rademacher sums attached (and not attached) to Dirichlet characters as special cases. Additionally, we prove related polynomial reciprocity formulas which contain all of the polynomial reciprocity formulas in the literature as special cases, such as those given by Carlitz, Beck &amp; Kohl, and the present author.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On almost-prime k-tuples 关于几乎是素数的 k 元组
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500751
Bin Chen

Let τ denote the divisor function and ={h1,,hk} be an admissible set. We prove that there are infinitely many n for which the product i=1k(n+hi) is square-free and i=1kτ(n+hi)ρk, where ρk is asymptotic to 21262853k2. It improves a previous result of Ram Murty and Vatwani, replacing 3/4 by 2126/2853. The main ingredients in our proof are the higher rank Selberg sieve and Irving–Wu–Xi estimate for the divisor function in arithmetic progressions to smooth moduli.

让 τ 表示除数函数,ℋ={h1,...,hk} 是可容许集合。我们证明,有无穷多个 n 的积∏i=1k(n+hi)是无平方差的,且∑i=1kτ(n+hi)≤⌊ρk⌋,其中ρk 渐近于 21262853k2。它改进了拉姆-穆蒂和瓦特瓦尼之前的一个结果,用 2126/2853 取代了 3/4。我们证明的主要内容是光滑模的算术级数中的高阶塞尔伯格筛和除数函数的欧文-吴-西估计。
{"title":"On almost-prime k-tuples","authors":"Bin Chen","doi":"10.1142/s1793042124500751","DOIUrl":"https://doi.org/10.1142/s1793042124500751","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span> denote the divisor function and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> be an admissible set. We prove that there are infinitely many <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> for which the product <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is square-free and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mi>τ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>≤</mo><mo stretchy=\"false\">⌊</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">⌋</mo></math></span><span></span>, where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> is asymptotic to <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mfrac><mrow><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn></mrow><mrow><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. It improves a previous result of Ram Murty and Vatwani, replacing <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">/</mo><mn>4</mn></math></span><span></span> by <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></math></span><span></span>. The main ingredients in our proof are the higher rank Selberg sieve and Irving–Wu–Xi estimate for the divisor function in arithmetic progressions to smooth moduli.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Diophantine equation σ2(X¯n) = σn(X¯n) 关于 Diophantine 方程 σ2(X¯n) = σn(X¯n)
IF 0.7 3区 数学 Q2 Mathematics Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500635
Piotr Miska, Maciej Ulas

In this paper, we investigate the set S(n) of positive integer solutions of the title Diophantine equation. In particular, for a given n we prove boundedness of the number of solutions, give precise upper bound on the common value of σ2(X¯n) and σn(X¯n) together with the biggest value of the variable xn appearing in the solution. Moreover, we enumerate all solutions for n16 and discuss the set of values of xn/xn1 over elements of S(n).

在本文中,我们研究了标题 Diophantine 方程的正整数解集 S(n)。特别是,对于给定的 n,我们证明了解的有界性,给出了 σ2(X¯n)和 σn(X¯n)的公共值以及解中出现的变量 xn 的最大值的精确上限。此外,我们列举了 n≤16 的所有解,并讨论了 S(n) 元素上 xn/xn-1 的值集。
{"title":"On the Diophantine equation σ2(X¯n) = σn(X¯n)","authors":"Piotr Miska, Maciej Ulas","doi":"10.1142/s1793042124500635","DOIUrl":"https://doi.org/10.1142/s1793042124500635","url":null,"abstract":"<p>In this paper, we investigate the set <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of positive integer solutions of the title Diophantine equation. In particular, for a given <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> we prove boundedness of the number of solutions, give precise upper bound on the common value of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> together with the biggest value of the variable <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> appearing in the solution. Moreover, we enumerate all solutions for <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≤</mo><mn>1</mn><mn>6</mn></math></span><span></span> and discuss the set of values of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub></math></span><span></span> over elements of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Number Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1