Random walks can provide a powerful tool for harvesting the rich network of interactions captured within item-based models for top-n recommendation. They can exploit indirect relations between the items, mitigate the effects of sparsity, ensure wider itemspace coverage, as well as increase the diversity of recommendation lists. Their potential however, is hindered by the tendency of the walks to rapidly concentrate towards the central nodes of the graph, thereby significantly restricting the range of K-step distributions that can be exploited for personalized recommendations. In this work we introduce RecWalk; a novel random walk-based method that leverages the spectral properties of nearly uncoupled Markov chains to provably lift this limitation and prolong the influence of users' past preferences on the successive steps of the walk--allowing the walker to explore the underlying network more fruitfully. A comprehensive set of experiments on real-world datasets verify the theoretically predicted properties of the proposed approach and indicate that they are directly linked to significant improvements in top-n recommendation accuracy. They also highlight RecWalk's potential in providing a framework for boosting the performance of item-based models. RecWalk achieves state-of-the-art top-n recommendation quality outperforming several competing approaches, including recently proposed methods that rely on deep neural networks.
{"title":"RecWalk: Nearly Uncoupled Random Walks for Top-N Recommendation","authors":"A. Nikolakopoulos, G. Karypis","doi":"10.1145/3289600.3291016","DOIUrl":"https://doi.org/10.1145/3289600.3291016","url":null,"abstract":"Random walks can provide a powerful tool for harvesting the rich network of interactions captured within item-based models for top-n recommendation. They can exploit indirect relations between the items, mitigate the effects of sparsity, ensure wider itemspace coverage, as well as increase the diversity of recommendation lists. Their potential however, is hindered by the tendency of the walks to rapidly concentrate towards the central nodes of the graph, thereby significantly restricting the range of K-step distributions that can be exploited for personalized recommendations. In this work we introduce RecWalk; a novel random walk-based method that leverages the spectral properties of nearly uncoupled Markov chains to provably lift this limitation and prolong the influence of users' past preferences on the successive steps of the walk--allowing the walker to explore the underlying network more fruitfully. A comprehensive set of experiments on real-world datasets verify the theoretically predicted properties of the proposed approach and indicate that they are directly linked to significant improvements in top-n recommendation accuracy. They also highlight RecWalk's potential in providing a framework for boosting the performance of item-based models. RecWalk achieves state-of-the-art top-n recommendation quality outperforming several competing approaches, including recently proposed methods that rely on deep neural networks.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126192824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Session details: Session 5: Understanding Conversation, Discussion, and Opinions","authors":"Hang Li Bytedance","doi":"10.1145/3310345","DOIUrl":"https://doi.org/10.1145/3310345","url":null,"abstract":"","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"45 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132640043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Online services are increasingly intelligent. They evolve intelligently through A/B testing and experimentation, employ artificial intelligence in their core functionality using machine learning, and seamlessly engage human intelligence by connecting people in a low-friction manner. All of this has resulted in incredibly engaging experiences -- but not particularly productive ones. As more and more of people's most important tasks move online we need to think carefully about the underlying influence online services have on people's ability to attend to what matters to them. There is an opportunity to use intelligence for this to do more than just not distract people and actually start helping people attend to what matters even better than they would otherwise. This presentation explores the ways we might make it as compelling and easy to start an important task as it is to check social media.
{"title":"Attending to What Matters","authors":"J. Teevan","doi":"10.1145/3289600.3290623","DOIUrl":"https://doi.org/10.1145/3289600.3290623","url":null,"abstract":"Online services are increasingly intelligent. They evolve intelligently through A/B testing and experimentation, employ artificial intelligence in their core functionality using machine learning, and seamlessly engage human intelligence by connecting people in a low-friction manner. All of this has resulted in incredibly engaging experiences -- but not particularly productive ones. As more and more of people's most important tasks move online we need to think carefully about the underlying influence online services have on people's ability to attend to what matters to them. There is an opportunity to use intelligence for this to do more than just not distract people and actually start helping people attend to what matters even better than they would otherwise. This presentation explores the ways we might make it as compelling and easy to start an important task as it is to check social media.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133275508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a new time-dependent predictive model of user-item ratings centered around local coherence -- that is, while both users and items are constantly in flux, within a short-term sequence, the neighborhood of a particular user or item is likely to be coherent. Three unique characteristics of the framework are: (i) it incorporates both implicit and explicit feedbacks by extracting the local coherence hidden in the feedback sequences; (ii) it uses parallel recurrent neural networks to capture the evolution of users and items, resulting in a dual factor recommendation model; and (iii) it combines both coherence-enhanced consistent latent factors and dynamic latent factors to balance short-term changes with long-term trends for improved recommendation. Through experiments on Goodreads and Amazon, we find that the proposed model can outperform state-of-the-art models in predicting users' preferences.
{"title":"Recurrent Recommendation with Local Coherence","authors":"Jianling Wang, James Caverlee","doi":"10.1145/3289600.3291024","DOIUrl":"https://doi.org/10.1145/3289600.3291024","url":null,"abstract":"We propose a new time-dependent predictive model of user-item ratings centered around local coherence -- that is, while both users and items are constantly in flux, within a short-term sequence, the neighborhood of a particular user or item is likely to be coherent. Three unique characteristics of the framework are: (i) it incorporates both implicit and explicit feedbacks by extracting the local coherence hidden in the feedback sequences; (ii) it uses parallel recurrent neural networks to capture the evolution of users and items, resulting in a dual factor recommendation model; and (iii) it combines both coherence-enhanced consistent latent factors and dynamic latent factors to balance short-term changes with long-term trends for improved recommendation. Through experiments on Goodreads and Amazon, we find that the proposed model can outperform state-of-the-art models in predicting users' preferences.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125602956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The HS2019 tutorial will cover topics from an area of information retrieval (IR) with significant societal impact --- health search. Whether it is searching patient records, helping medical professionals find best-practice evidence, or helping the public locate reliable and readable health information online, health search is a challenging area for IR research with an actively growing community and many open problems. This tutorial will provide attendees with a full stack of knowledge on health search, from understanding users and their problems to practical, hands-on sessions on current tools and techniques, current campaigns and evaluation resources, as well as important open questions and future directions.
{"title":"WSDM 2019 Tutorial on Health Search (HS2019): A Full-Day from Consumers to Clinicians","authors":"B. Koopman, G. Zuccon","doi":"10.1145/3289600.3291379","DOIUrl":"https://doi.org/10.1145/3289600.3291379","url":null,"abstract":"The HS2019 tutorial will cover topics from an area of information retrieval (IR) with significant societal impact --- health search. Whether it is searching patient records, helping medical professionals find best-practice evidence, or helping the public locate reliable and readable health information online, health search is a challenging area for IR research with an actively growing community and many open problems. This tutorial will provide attendees with a full stack of knowledge on health search, from understanding users and their problems to practical, hands-on sessions on current tools and techniques, current campaigns and evaluation resources, as well as important open questions and future directions.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"185 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114961704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we develop a neural attentive interpretable recommendation system, named NAIRS. A self-attention network, as a key component of the system, is designed to assign attention weights to interacted items of a user. This attention mechanism can distinguish the importance of the various interacted items in contributing to a user profile. %, and it also provides interpretable recommendations. Based on the user profiles obtained by the self-attention network, NAIRS offers personalized high-quality recommendation. Moreover, it develops visual cues to interpret recommendations. This demo application with the implementation of NAIRS enables users to interact with a recommendation system, and it persistently collects training data to improve the system. The demonstration and experimental results show the effectiveness of NAIRS.
{"title":"NAIRS: A Neural Attentive Interpretable Recommendation System","authors":"Shuai Yu, Yongbo Wang, Min Yang, Baocheng Li, Qiang Qu, Jialie Shen","doi":"10.1145/3289600.3290609","DOIUrl":"https://doi.org/10.1145/3289600.3290609","url":null,"abstract":"In this paper, we develop a neural attentive interpretable recommendation system, named NAIRS. A self-attention network, as a key component of the system, is designed to assign attention weights to interacted items of a user. This attention mechanism can distinguish the importance of the various interacted items in contributing to a user profile. %, and it also provides interpretable recommendations. Based on the user profiles obtained by the self-attention network, NAIRS offers personalized high-quality recommendation. Moreover, it develops visual cues to interpret recommendations. This demo application with the implementation of NAIRS enables users to interact with a recommendation system, and it persistently collects training data to improve the system. The demonstration and experimental results show the effectiveness of NAIRS.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116386556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Users increasingly rely on social media feeds for consuming daily information. The items in a feed, such as news, questions, songs, etc., usually result from the complex interplay of a user's social contacts, her interests and her actions on the platform. The relationship of the user's own behavior and the received feed is often puzzling, and many users would like to have a clear explanation on why certain items were shown to them. Transparency and explainability are key concerns in the modern world of cognitive overload, filter bubbles, user tracking, and privacy risks. This paper presents FAIRY, a framework that systematically discovers, ranks, and explains relationships between users' actions and items in their social media feeds. We model the user's local neighborhood on the platform as an interaction graph, a form of heterogeneous information network constructed solely from information that is easily accessible to the concerned user. We posit that paths in this interaction graph connecting the user and her feed items can act as pertinent explanations for the user. These paths are scored with a learning-to-rank model that captures relevance and surprisal. User studies on two social platforms demonstrate the practical viability and user benefits of the FAIRY method.
{"title":"FAIRY: A Framework for Understanding Relationships Between Users' Actions and their Social Feeds","authors":"Azin Ghazimatin, Rishiraj Saha Roy, G. Weikum","doi":"10.1145/3289600.3290990","DOIUrl":"https://doi.org/10.1145/3289600.3290990","url":null,"abstract":"Users increasingly rely on social media feeds for consuming daily information. The items in a feed, such as news, questions, songs, etc., usually result from the complex interplay of a user's social contacts, her interests and her actions on the platform. The relationship of the user's own behavior and the received feed is often puzzling, and many users would like to have a clear explanation on why certain items were shown to them. Transparency and explainability are key concerns in the modern world of cognitive overload, filter bubbles, user tracking, and privacy risks. This paper presents FAIRY, a framework that systematically discovers, ranks, and explains relationships between users' actions and items in their social media feeds. We model the user's local neighborhood on the platform as an interaction graph, a form of heterogeneous information network constructed solely from information that is easily accessible to the concerned user. We posit that paths in this interaction graph connecting the user and her feed items can act as pertinent explanations for the user. These paths are scored with a learning-to-rank model that captures relevance and surprisal. User studies on two social platforms demonstrate the practical viability and user benefits of the FAIRY method.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116415427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donghyun Kim, Sungchul Kim, Handong Zhao, Sheng Li, Ryan A. Rossi, Eunyee Koh
Understanding user behavior and predicting future behavior on the web is critical for providing seamless user experiences as well as increasing revenue of service providers. Recently, thanks to the remarkable success of recurrent neural networks (RNNs), it has been widely used for modeling sequences of user behaviors. However, although sequential behaviors appear across multiple domains in practice, existing RNN-based approaches still focus on the single-domain scenario assuming that sequential behaviors come from only a single domain. Hence, in order to analyze sequential behaviors across multiple domains, they require to separately train multiple RNN models, which fails to jointly model the interplay among sequential behaviors across multiple domains. Consequently, they often suffer from lack of information within each domain. In this paper, we first introduce a practical but overlooked phenomenon in sequential behaviors across multiple domains, i.e.,domain switch where two successive behaviors belong to different domains. Then, we propose aDomain Switch-Aware Holistic Recurrent Neural Network (DS-HRNN) that effectively shares the knowledge extracted from multiple domains by systematically handlingdomain switch for the multi-domain scenario. DS-HRNN jointly models the multi-domain sequential behaviors and accurately predicts the future behaviors in each domain with only a single RNN model. Our extensive evaluations on two real-world datasets demonstrate that DCHRNN outperforms existing RNN-based approaches and non-sequential baselines with significant improvements by up to 14.93% in terms of recall of the future behavior prediction.
{"title":"Domain Switch-Aware Holistic Recurrent Neural Network for Modeling Multi-Domain User Behavior","authors":"Donghyun Kim, Sungchul Kim, Handong Zhao, Sheng Li, Ryan A. Rossi, Eunyee Koh","doi":"10.1145/3289600.3291019","DOIUrl":"https://doi.org/10.1145/3289600.3291019","url":null,"abstract":"Understanding user behavior and predicting future behavior on the web is critical for providing seamless user experiences as well as increasing revenue of service providers. Recently, thanks to the remarkable success of recurrent neural networks (RNNs), it has been widely used for modeling sequences of user behaviors. However, although sequential behaviors appear across multiple domains in practice, existing RNN-based approaches still focus on the single-domain scenario assuming that sequential behaviors come from only a single domain. Hence, in order to analyze sequential behaviors across multiple domains, they require to separately train multiple RNN models, which fails to jointly model the interplay among sequential behaviors across multiple domains. Consequently, they often suffer from lack of information within each domain. In this paper, we first introduce a practical but overlooked phenomenon in sequential behaviors across multiple domains, i.e.,domain switch where two successive behaviors belong to different domains. Then, we propose aDomain Switch-Aware Holistic Recurrent Neural Network (DS-HRNN) that effectively shares the knowledge extracted from multiple domains by systematically handlingdomain switch for the multi-domain scenario. DS-HRNN jointly models the multi-domain sequential behaviors and accurately predicts the future behaviors in each domain with only a single RNN model. Our extensive evaluations on two real-world datasets demonstrate that DCHRNN outperforms existing RNN-based approaches and non-sequential baselines with significant improvements by up to 14.93% in terms of recall of the future behavior prediction.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121156653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alan Said, Denis Parra, Juhee Bae, Sepideh Pashami
The first workshop on Interactive Data Mining is held in Melbourne, Australia, on February 15, 2019 and is co-located with 12th ACM International Conference on Web Search and Data Mining (WSDM 2019). The goal of this workshop is to share and discuss research and projects that focus on interaction with and interactivity of data mining systems. The program includes invited speaker, presentation of research papers, and a discussion session.
{"title":"IDM-WSDM 2019: Workshop on Interactive Data Mining","authors":"Alan Said, Denis Parra, Juhee Bae, Sepideh Pashami","doi":"10.1145/3289600.3291376","DOIUrl":"https://doi.org/10.1145/3289600.3291376","url":null,"abstract":"The first workshop on Interactive Data Mining is held in Melbourne, Australia, on February 15, 2019 and is co-located with 12th ACM International Conference on Web Search and Data Mining (WSDM 2019). The goal of this workshop is to share and discuss research and projects that focus on interaction with and interactivity of data mining systems. The program includes invited speaker, presentation of research papers, and a discussion session.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124643624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Huang, Z. Ren, Wayne Xin Zhao, Gaole He, Ji-Rong Wen, Daxiang Dong
In this paper, we focus on the task of sequential recommendation using taxonomy data. Existing sequential recommendation methods usually adopt a single vectorized representation for learning the overall sequential characteristics, and have a limited modeling capacity in capturing multi-grained sequential characteristics over context information. Besides, existing methods often directly take the feature vectors derived from context information as auxiliary input, which is difficult to fully exploit the structural patterns in context information for learning preference representations. To address above issues, we propose a novel Taxonomy-aware Multi-hop Reasoning Network, named TMRN, which integrates a basic GRU-based sequential recommender with an elaborately designed memory-based multi-hop reasoning architecture. For enhancing the reasoning capacity, we incorporate taxonomy data as structural knowledge to instruct the learning of our model. We associate the learning of user preference in sequential recommendation with the category hierarchy in the taxonomy. Given a user, for each recommendation, we learn a unique preference representation corresponding to each level in the taxonomy based on her/his overall sequential preference. In this way, the overall, coarse-grained preference representation can be gradually refined in different levels from general to specific, and we are able to capture the evolvement and refinement of user preference over the taxonomy, which makes our model highly explainable. Extensive experiments show that our proposed model is superior to state-of-the-art baselines in terms of both effectiveness and interpretability.
{"title":"Taxonomy-Aware Multi-Hop Reasoning Networks for Sequential Recommendation","authors":"Jin Huang, Z. Ren, Wayne Xin Zhao, Gaole He, Ji-Rong Wen, Daxiang Dong","doi":"10.1145/3289600.3290972","DOIUrl":"https://doi.org/10.1145/3289600.3290972","url":null,"abstract":"In this paper, we focus on the task of sequential recommendation using taxonomy data. Existing sequential recommendation methods usually adopt a single vectorized representation for learning the overall sequential characteristics, and have a limited modeling capacity in capturing multi-grained sequential characteristics over context information. Besides, existing methods often directly take the feature vectors derived from context information as auxiliary input, which is difficult to fully exploit the structural patterns in context information for learning preference representations. To address above issues, we propose a novel Taxonomy-aware Multi-hop Reasoning Network, named TMRN, which integrates a basic GRU-based sequential recommender with an elaborately designed memory-based multi-hop reasoning architecture. For enhancing the reasoning capacity, we incorporate taxonomy data as structural knowledge to instruct the learning of our model. We associate the learning of user preference in sequential recommendation with the category hierarchy in the taxonomy. Given a user, for each recommendation, we learn a unique preference representation corresponding to each level in the taxonomy based on her/his overall sequential preference. In this way, the overall, coarse-grained preference representation can be gradually refined in different levels from general to specific, and we are able to capture the evolvement and refinement of user preference over the taxonomy, which makes our model highly explainable. Extensive experiments show that our proposed model is superior to state-of-the-art baselines in terms of both effectiveness and interpretability.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"158 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124713266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}