Pub Date : 2025-02-28Epub Date: 2024-07-08DOI: 10.15283/ijsc24066
Jeongah Kim, Si-Hyung Park, Woong Sun
Valproic acid (VPA), widely used as an antiepileptic drug, exhibits developmental neurotoxicity when exposure occurs during early or late pregnancy, resulting in various conditions ranging from neural tube defects to autism spectrum disorders. However, toxicity during the very early stages of neural development has not been addressed. Therefore, we investigated the effects of VPA in a model where human pluripotent stem cells differentiate into anterior or posterior neural tissues. Exposure to VPA during the induction of neural stem cells induced different developmental toxic effects in a dose-dependent manner. For instance, VPA induced cell death more profoundly during anteriorly guided neural progenitor induction, while inhibition of cell proliferation and enhanced differentiation were observed during posteriorly guided neural induction. Furthermore, acute exposure to VPA during the posterior induction step also retarded the subsequent neurulation-like tube morphogenesis process in neural organoid culture. These results suggest that VPA exposure during very early embryonic development might exhibit cytotoxicity and subsequently disrupt neural differentiation and morphogenesis processes.
{"title":"The Differential Developmental Neurotoxicity of Valproic Acid on Anterior and Posterior Neural Induction of Human Pluripotent Stem Cells.","authors":"Jeongah Kim, Si-Hyung Park, Woong Sun","doi":"10.15283/ijsc24066","DOIUrl":"10.15283/ijsc24066","url":null,"abstract":"<p><p>Valproic acid (VPA), widely used as an antiepileptic drug, exhibits developmental neurotoxicity when exposure occurs during early or late pregnancy, resulting in various conditions ranging from neural tube defects to autism spectrum disorders. However, toxicity during the very early stages of neural development has not been addressed. Therefore, we investigated the effects of VPA in a model where human pluripotent stem cells differentiate into anterior or posterior neural tissues. Exposure to VPA during the induction of neural stem cells induced different developmental toxic effects in a dose-dependent manner. For instance, VPA induced cell death more profoundly during anteriorly guided neural progenitor induction, while inhibition of cell proliferation and enhanced differentiation were observed during posteriorly guided neural induction. Furthermore, acute exposure to VPA during the posterior induction step also retarded the subsequent neurulation-like tube morphogenesis process in neural organoid culture. These results suggest that VPA exposure during very early embryonic development might exhibit cytotoxicity and subsequently disrupt neural differentiation and morphogenesis processes.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"49-58"},"PeriodicalIF":2.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28Epub Date: 2024-01-09DOI: 10.15283/ijsc23107
Axel D Schmitter-Sánchez, Sangbum Park
The multiple layers of the skin cover and protect our entire body. Among the skin layers, the epidermis is in direct contact with the outer environment and serves as the first line of defense. The epidermis functions as a physical and immunological barrier. To maintain barrier function, the epidermis continually regenerates and repairs itself when injured. Interactions between tissue-resident immune cells and epithelial cells are essential to sustain epidermal regeneration and repair. In this review, we will dissect the crosstalk between epithelial cells and specific immune cell populations located in the epidermis during homeostasis and wound repair. In addition, we will analyze the contribution of dysregulated immune-epithelial interactions in chronic inflammatory diseases.
{"title":"Immune-Epithelial Cell Interactions during Epidermal Regeneration, Repair, and Inflammatory Diseases.","authors":"Axel D Schmitter-Sánchez, Sangbum Park","doi":"10.15283/ijsc23107","DOIUrl":"10.15283/ijsc23107","url":null,"abstract":"<p><p>The multiple layers of the skin cover and protect our entire body. Among the skin layers, the epidermis is in direct contact with the outer environment and serves as the first line of defense. The epidermis functions as a physical and immunological barrier. To maintain barrier function, the epidermis continually regenerates and repairs itself when injured. Interactions between tissue-resident immune cells and epithelial cells are essential to sustain epidermal regeneration and repair. In this review, we will dissect the crosstalk between epithelial cells and specific immune cell populations located in the epidermis during homeostasis and wound repair. In addition, we will analyze the contribution of dysregulated immune-epithelial interactions in chronic inflammatory diseases.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"1-11"},"PeriodicalIF":2.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28Epub Date: 2024-03-18DOI: 10.15283/ijsc23173
Keun-Tae Kim, Seong-Min Kim, Hyuk-Jin Cha
The sequential change from totipotency to multipotency occurs during early mammalian embryo development. However, due to the lack of cellular models to recapitulate the distinct potency of stem cells at each stage, their molecular and cellular characteristics remain ambiguous. The establishment of isogenic naïve and primed pluripotent stem cells to represent the pluripotency in the inner cell mass of the pre-implantation blastocyst and in the epiblast from the post-implantation embryo allows the understanding of the distinctive characteristics of two different states of pluripotent stem cells. This review discusses the prominent disparities between naïve and primed pluripotency, including signaling pathways, metabolism, and epigenetic status, ultimately facilitating a comprehensive understanding of their significance during early mammalian embryonic development.
{"title":"Crosstalk between Signaling Pathways and Energy Metabolism in Pluripotency.","authors":"Keun-Tae Kim, Seong-Min Kim, Hyuk-Jin Cha","doi":"10.15283/ijsc23173","DOIUrl":"10.15283/ijsc23173","url":null,"abstract":"<p><p>The sequential change from totipotency to multipotency occurs during early mammalian embryo development. However, due to the lack of cellular models to recapitulate the distinct potency of stem cells at each stage, their molecular and cellular characteristics remain ambiguous. The establishment of isogenic naïve and primed pluripotent stem cells to represent the pluripotency in the inner cell mass of the pre-implantation blastocyst and in the epiblast from the post-implantation embryo allows the understanding of the distinctive characteristics of two different states of pluripotent stem cells. This review discusses the prominent disparities between naïve and primed pluripotency, including signaling pathways, metabolism, and epigenetic status, ultimately facilitating a comprehensive understanding of their significance during early mammalian embryonic development.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"12-20"},"PeriodicalIF":2.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-28Epub Date: 2024-12-30DOI: 10.15283/ijsc24097
Se In Jung, Si Hwa Choi, Jang-Woon Kim, Jooyoung Lim, Yeri Alice Rim, Ji Hyeon Ju
Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown. Therefore, we investigated the impact of NGF in chondrogenesis using human induced pluripotent stem cells (hiPSCs)-derived chondrogenic pellets. To investigate how NGF affects the cartilage tissue, hiPSC-derived chondrogenic pellets were treated with NGF on day 3 of differentiation, expression of chondrogenic, hypertrophic, and fibrotic markers was confirmed. Also, inflammatory cytokine arrays were performed using the culture medium of the NGF treated chondrogenic pellets. As a result, NGF treatment decreased the expression of pro-chondrogenic markers by approximately 2~4 times, and hypertrophic (pro-osteogenic) markers and fibrotic markers were increased by approximately 3-fold or more in the NGF-treated cartilaginous pellets. In addition, angiogenesis was upregulated by approximately 4-fold or more, bone formation by more than 2-fold, and matrix metalloproteinase induction by more than 2-fold. These inflammatory cytokine array were using the NGF-treated chondrogenic pellet cultured medium. Furthermore, it was confirmed by Western blot to be related to the induction of the glycogen synthase kinase-3 beta (GSK3β) pathway by NGF. In Conclusions, these findings provide valuable insights into the multifaceted role of NGF in cartilage hypertrophy and fibrosis, which might play a critical role in OA progression.
{"title":"The Effect of Nerve Growth Factor on Cartilage Fibrosis and Hypertrophy during <i>In Vitro</i> Chondrogenesis Using Induced Pluripotent Stem Cells.","authors":"Se In Jung, Si Hwa Choi, Jang-Woon Kim, Jooyoung Lim, Yeri Alice Rim, Ji Hyeon Ju","doi":"10.15283/ijsc24097","DOIUrl":"10.15283/ijsc24097","url":null,"abstract":"<p><p>Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown. Therefore, we investigated the impact of NGF in chondrogenesis using human induced pluripotent stem cells (hiPSCs)-derived chondrogenic pellets. To investigate how NGF affects the cartilage tissue, hiPSC-derived chondrogenic pellets were treated with NGF on day 3 of differentiation, expression of chondrogenic, hypertrophic, and fibrotic markers was confirmed. Also, inflammatory cytokine arrays were performed using the culture medium of the NGF treated chondrogenic pellets. As a result, NGF treatment decreased the expression of pro-chondrogenic markers by approximately 2~4 times, and hypertrophic (pro-osteogenic) markers and fibrotic markers were increased by approximately 3-fold or more in the NGF-treated cartilaginous pellets. In addition, angiogenesis was upregulated by approximately 4-fold or more, bone formation by more than 2-fold, and matrix metalloproteinase induction by more than 2-fold. These inflammatory cytokine array were using the NGF-treated chondrogenic pellet cultured medium. Furthermore, it was confirmed by Western blot to be related to the induction of the glycogen synthase kinase-3 beta (GSK3β) pathway by NGF. In Conclusions, these findings provide valuable insights into the multifaceted role of NGF in cartilage hypertrophy and fibrosis, which might play a critical role in OA progression.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"59-71"},"PeriodicalIF":2.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30Epub Date: 2024-07-29DOI: 10.15283/ijsc23205
Jing He, Ting Wang, Danyang Liu, Jun Yang, Yuanpei He, Shouliang Zhao, Yanqin Ju
Schwann cells (SCs), a type of glial cell in the peripheral nervous system, can serve as a source of mesenchymal stem cells (MSCs) to repair injured pulp. This study aimed to investigate the role of SCs in tooth germ development and repair of pulp injury. We performed RNA-seq and immunofluorescent staining on tooth germs at different developmental stages. The effect of L-type calcium channel (LTCC) blocker nimodipine on SCs odontogenic differentiation was analyzed by real-time polymerase chain reaction and Alizarin Red S staining. We used the PLP1-CreERT2/ Rosa26-GFP tracing mice model to examine the role of SCs and Cav1.2 in self-repair after pulp injury. SC-specific markers expressed in rat tooth germs at different developmental stages. Nimodipine treatment enhanced mRNA levels of osteogenic markers (DSPP, DMP1, and Runx2) but decreased calcium nodule formation. SCs-derived cells increased following pulp injury and Cav1.2 showed a similar response pattern as SCs. The different SCs phenotypes are coordinated in the whole process to ensure tooth development. Blocking the LTCC with nimodipine promoted SCs odontogenic differentiation. Moreover, SCs participate in the process of injured dental pulp repair as a source of MSCs, and Cav1.2 may regulate this process.
{"title":"The Characterization and Regulation of Schwann Cells in the Tooth Germ Development and Odontogenic Differentiation.","authors":"Jing He, Ting Wang, Danyang Liu, Jun Yang, Yuanpei He, Shouliang Zhao, Yanqin Ju","doi":"10.15283/ijsc23205","DOIUrl":"10.15283/ijsc23205","url":null,"abstract":"<p><p>Schwann cells (SCs), a type of glial cell in the peripheral nervous system, can serve as a source of mesenchymal stem cells (MSCs) to repair injured pulp. This study aimed to investigate the role of SCs in tooth germ development and repair of pulp injury. We performed RNA-seq and immunofluorescent staining on tooth germs at different developmental stages. The effect of L-type calcium channel (LTCC) blocker nimodipine on SCs odontogenic differentiation was analyzed by real-time polymerase chain reaction and Alizarin Red S staining. We used the PLP1-CreERT2/ Rosa26-GFP tracing mice model to examine the role of SCs and Ca<sub>v</sub>1.2 in self-repair after pulp injury. SC-specific markers expressed in rat tooth germs at different developmental stages. Nimodipine treatment enhanced mRNA levels of osteogenic markers (DSPP, DMP1, and Runx2) but decreased calcium nodule formation. SCs-derived cells increased following pulp injury and Ca<sub>v</sub>1.2 showed a similar response pattern as SCs. The different SCs phenotypes are coordinated in the whole process to ensure tooth development. Blocking the LTCC with nimodipine promoted SCs odontogenic differentiation. Moreover, SCs participate in the process of injured dental pulp repair as a source of MSCs, and Ca<sub>v</sub>1.2 may regulate this process.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"437-448"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30Epub Date: 2024-09-06DOI: 10.15283/ijsc24084
Min Woo Kim, Kyu Sik Jeong, Jin Kim, Seul-Gi Lee, C-Yoon Kim, Hyung Min Chung
Prime editing (PE) is a recently developed genome-editing technique that enables versatile editing. Despite its flexibility and potential, applying PE in human induced pluripotent stem cells (hiPSCs) has not been extensively addressed. Genetic disease models using patient-derived hiPSCs have been used to study mechanisms and drug efficacy. However, genetic differences between patient and control cells have been attributed to the inaccuracy of the disease model, highlighting the significance of isogenic hiPSC models. Hereditary hemorrhagic telangiectasia 1 (HHT1) is a genetic disorder caused by an autosomal dominant mutation in endoglin (ENG). Although previous HHT models using mice and HUVEC have been used, these models did not sufficiently elucidate the relationship between the genotype and disease phenotype in HHT, demanding more clinically relevant models that reflect human genetics. Therefore, in this study, we used PE to propose a method for establishing an isogenic hiPSC line. Clinically reported target mutation in ENG was selected, and a strategy for PE was designed. After cloning the engineered PE guide RNA, hiPSCs were nucleofected along with PEmax and hMLH1dn plasmids. As a result, hiPSC clones with the intended mutation were obtained, which showed no changes in pluripotency or genetic integrity. Furthermore, introducing the ENG mutation increased the expression of proangiogenic markers during endothelial organoid differentiation. Consequently, our results suggest the potential of PE as a toolkit for establishing isogenic lines, enabling disease modeling based on hiPSC-derived disease-related cells or organoids. This approach is expected to stimulate mechanistic and therapeutic studies on genetic diseases.
{"title":"Generation of an Isogenic Hereditary Hemorrhagic Telangiectasia Model via Prime Editing in Human Induced Pluripotent Stem Cells.","authors":"Min Woo Kim, Kyu Sik Jeong, Jin Kim, Seul-Gi Lee, C-Yoon Kim, Hyung Min Chung","doi":"10.15283/ijsc24084","DOIUrl":"10.15283/ijsc24084","url":null,"abstract":"<p><p>Prime editing (PE) is a recently developed genome-editing technique that enables versatile editing. Despite its flexibility and potential, applying PE in human induced pluripotent stem cells (hiPSCs) has not been extensively addressed. Genetic disease models using patient-derived hiPSCs have been used to study mechanisms and drug efficacy. However, genetic differences between patient and control cells have been attributed to the inaccuracy of the disease model, highlighting the significance of isogenic hiPSC models. Hereditary hemorrhagic telangiectasia 1 (HHT1) is a genetic disorder caused by an autosomal dominant mutation in endoglin (<i>ENG</i>). Although previous HHT models using mice and HUVEC have been used, these models did not sufficiently elucidate the relationship between the genotype and disease phenotype in HHT, demanding more clinically relevant models that reflect human genetics. Therefore, in this study, we used PE to propose a method for establishing an isogenic hiPSC line. Clinically reported target mutation in <i>ENG</i> was selected, and a strategy for PE was designed. After cloning the engineered PE guide RNA, hiPSCs were nucleofected along with PEmax and hMLH1dn plasmids. As a result, hiPSC clones with the intended mutation were obtained, which showed no changes in pluripotency or genetic integrity. Furthermore, introducing the <i>ENG</i> mutation increased the expression of proangiogenic markers during endothelial organoid differentiation. Consequently, our results suggest the potential of PE as a toolkit for establishing isogenic lines, enabling disease modeling based on hiPSC-derived disease-related cells or organoids. This approach is expected to stimulate mechanistic and therapeutic studies on genetic diseases.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"397-406"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30Epub Date: 2024-07-02DOI: 10.15283/ijsc23202
Dong-Ho Kim, Sammy L Kim, Vijai Singh, Suresh Ramakrishna
Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the Usp7 gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the Usp7 gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.
{"title":"Usp7 Regulates Glial Lineage Cell-Specific Transcription Factors by Modulating Histone H2B Monoubiquitination.","authors":"Dong-Ho Kim, Sammy L Kim, Vijai Singh, Suresh Ramakrishna","doi":"10.15283/ijsc23202","DOIUrl":"10.15283/ijsc23202","url":null,"abstract":"<p><p>Histone H2B monoubiquitination (H2Bub1) is a dynamic posttranslational modification which are linked to DNA damage and plays a key role in a wide variety of regulatory transcriptional programs. Cancer cells exhibit a variety of epigenetic changes, particularly any aberrant H2Bub1 has frequently been associated with the development of tumors. Nevertheless, our understanding of the mechanisms governing the histone H2B deubiquitination and their associated functions during stem cell differentiation remain only partially understood. In this study, we wished to investigate the role of deubiquitinating enzymes (DUBs) on H2Bub1 regulation during stem cell differentiation. In a search for potential DUBs for H2B monoubiquitination, we identified Usp7, a ubiquitin-specific protease that acts as a negative regulator of H2B ubiquitination during the neuronal differentiation of mouse embryonic carcinoma cells. Loss of function of the <i>Usp7</i> gene by a CRISPR/Cas9 system during retinoic acid-mediated cell differentiation contributes to the increase in H2Bub1. Furthermore, knockout of the <i>Usp7</i> gene particularly elevated the expression of neuronal differentiation related genes including astryocyte-specific markers and oligodendrocyte-specific markers. In particular, glial lineage cell-specific transcription factors including oligodendrocyte transcription factor 2, glial fibrillary acidic protein, and SRY-box transcription factor 10 was significantly upregulated during neuronal differentiation. Thus, our findings suggest a novel role of Usp7 in gliogenesis in mouse embryonic carcinoma cells.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"427-436"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30Epub Date: 2024-01-22DOI: 10.15283/ijsc23108
Jaishree Sankaranarayanan, Seok Cheol Lee, Hyung Keun Kim, Ju Yeon Kang, Sree Samanvitha Kuppa, Jong Keun Seon
Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.
骨关节炎(OA)是一种关节疾病,由缓冲关节的软骨磨损引起。它是一种渐进性疾病,可导致严重疼痛和残疾。目前,还没有治愈 OA 的方法,不过有一些治疗方法可以控制症状和减缓病情发展。软骨缺损是一种常见的破坏性病变,由于其无血管和无神经的性质,治疗难度很大。不过,目前已有从微骨折到细胞疗法等多种常规疗法。无论如何,由于细胞活力不明确,其对软骨缺损的治疗效果有限。外泌体已成为治疗软骨缺损的有效工具,因为外泌体是一种复杂的复合体,含有蛋白质、DNA 和 RNA,而且由于其磷脂成分和外泌体内容物的改变,能够靶向细胞,从而提高再生潜力。外泌体应用广泛,包括组织愈合和抗炎治疗。近年来,基于生物材料的生物制造技术在众多可打印聚合物水凝胶中越来越受欢迎,组织特异性脱细胞细胞外基质可能会比模仿细胞外基质的环境更有效。外泌体被认为是目前基于细胞疗法的最佳替代选择,基于外泌体疗法的未来进展可能会在骨科领域产生更大的影响。这篇综述广泛关注外泌体的使用见解和以 OA 为中心的科学突破。
{"title":"Exosomes Reshape the Osteoarthritic Defect: Emerging Potential in Regenerative Medicine-A Review.","authors":"Jaishree Sankaranarayanan, Seok Cheol Lee, Hyung Keun Kim, Ju Yeon Kang, Sree Samanvitha Kuppa, Jong Keun Seon","doi":"10.15283/ijsc23108","DOIUrl":"10.15283/ijsc23108","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a joint disorder caused by wear and tear of the cartilage that cushions the joints. It is a progressive condition that can cause significant pain and disability. Currently, there is no cure for OA, though there are treatments available to manage symptoms and slow the progression of the disease. A chondral defect is a common and devastating lesion that is challenging to treat due to its avascular and aneural nature. However, there are conventional therapies available, ranging from microfracture to cell-based therapy. Anyhow, its efficiency in cartilage defects is limited due to unclear cell viability. Exosomes have emerged as a potent therapeutic tool for chondral defects because they are a complicated complex containing cargo of proteins, DNA, and RNA as well as the ability to target cells due to their phospholipidic composition and the altering exosomal contents that boost regeneration potential. Exosomes are used in a variety of applications, including tissue healing and anti-inflammatory therapy. As in recent years, biomaterials-based bio fabrication has gained popularity among the many printable polymer-based hydrogels, tissue-specific decellularized extracellular matrix might boost the effects rather than an extracellular matrix imitating environment, a short note has been discussed. Exosomes are believed to be the greatest alternative option for current cell-based therapy, and future progress in exosome-based therapy could have a greater influence in the field of orthopaedics. The review focuses extensively on the insights of exosome use and scientific breakthroughs centered OA.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"381-396"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30Epub Date: 2024-01-29DOI: 10.15283/ijsc23148
Junmyeong Park, Jueun Kim, Borami Shin, Hans R Sch Ler, Johnny Kim, Kee-Pyo Kim
Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating in vitro disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.
{"title":"Inducing Pluripotency in Somatic Cells: Historical Perspective and Recent Advances.","authors":"Junmyeong Park, Jueun Kim, Borami Shin, Hans R Sch Ler, Johnny Kim, Kee-Pyo Kim","doi":"10.15283/ijsc23148","DOIUrl":"10.15283/ijsc23148","url":null,"abstract":"<p><p>Inducing pluripotency in somatic cells is mediated by the Yamanaka factors Oct4, Sox2, Klf4, and c-Myc. The resulting induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine by virtue of their ability to differentiate into different types of functional cells. Specifically, iPSCs derived directly from patients offer a powerful platform for creating <i>in vitro</i> disease models. This facilitates elucidation of pathological mechanisms underlying human diseases and development of new therapeutic agents mitigating disease phenotypes. Furthermore, genetically and phenotypically corrected patient-derived iPSCs by gene-editing technology or the supply of specific pharmaceutical agents can be used for preclinical and clinical trials to investigate their therapeutic potential. Despite great advances in developing reprogramming methods, the efficiency of iPSC generation remains still low and varies between donor cell types, hampering the potential application of iPSC technology. This paper reviews histological timeline showing important discoveries that have led to iPSC generation and discusses recent advances in iPSC technology by highlighting donor cell types employed for iPSC generation.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"363-373"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-30Epub Date: 2023-11-30DOI: 10.15283/ijsc23106
Amna Rashid Tariq, Mijung Lee, Manho Kim
An enormous amount of current data has suggested involvement of endothelial progenitor cells (EPCs) in neovasculogenesis in both human and animal models. EPC level is an indicator of possible cardiovascular risk such as Alzheimer disease. EPC therapeutics requires its identification, isolation, differentiation and thus expansion. We approach here the peculiar techniques through current and previous reports available to find the most plausible and fast way of their expansion to be used in therapeutics. We discuss here the techniques for EPCs isolation from different resources like bone marrow and peripheral blood circulation. EPCs have been isolated by methods which used fibronectin plating and addition of various growth factors to culture media. Particularly, the investigations which tried to enhance EPC differentiation while inducing with growth factors and endothelial nitric oxide synthase are shared. We also include the cryopreservation and other storage methods of EPCs for a longer time. Sufficient amount of EPCs are required in transplantation and other therapeutics which signifies their in vitro expansion. We highlight the role of EPCs in transplantation which improved neurogenesis in animal models of ischemic stroke and human with acute cerebral infarct in the brain. Accumulatively, these data suggest the exhilarating route for enhancing EPC number to make their use in the clinic. Finally, we identify the expression of specific biomarkers in EPCs under the influence of growth factors. This review provides a brief overview of factors involved in EPC expansion and transplantation and raises interesting questions at every stage with constructive suggestions.
{"title":"Endothelial Progenitor Cells: A Brief Update.","authors":"Amna Rashid Tariq, Mijung Lee, Manho Kim","doi":"10.15283/ijsc23106","DOIUrl":"10.15283/ijsc23106","url":null,"abstract":"<p><p>An enormous amount of current data has suggested involvement of endothelial progenitor cells (EPCs) in neovasculogenesis in both human and animal models. EPC level is an indicator of possible cardiovascular risk such as Alzheimer disease. EPC therapeutics requires its identification, isolation, differentiation and thus expansion. We approach here the peculiar techniques through current and previous reports available to find the most plausible and fast way of their expansion to be used in therapeutics. We discuss here the techniques for EPCs isolation from different resources like bone marrow and peripheral blood circulation. EPCs have been isolated by methods which used fibronectin plating and addition of various growth factors to culture media. Particularly, the investigations which tried to enhance EPC differentiation while inducing with growth factors and endothelial nitric oxide synthase are shared. We also include the cryopreservation and other storage methods of EPCs for a longer time. Sufficient amount of EPCs are required in transplantation and other therapeutics which signifies their <i>in vitro</i> expansion. We highlight the role of EPCs in transplantation which improved neurogenesis in animal models of ischemic stroke and human with acute cerebral infarct in the brain. Accumulatively, these data suggest the exhilarating route for enhancing EPC number to make their use in the clinic. Finally, we identify the expression of specific biomarkers in EPCs under the influence of growth factors. This review provides a brief overview of factors involved in EPC expansion and transplantation and raises interesting questions at every stage with constructive suggestions.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"374-380"},"PeriodicalIF":2.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138459944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}