首页 > 最新文献

International journal of stem cells最新文献

英文 中文
Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors. 囊性纤维化跨膜传导调节因子敲除人多能干细胞向唾液腺上皮祖细胞的分化和表征。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-09-06 DOI: 10.15283/ijsc23036
Shuang Yan, Yifei Zhang, Siqi Zhang, Shicheng Wei

The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

多能干细胞的分化已被用于研究疾病的机制和发展。我们之前描述了一种将人多能干细胞(hPSCs)分化为唾液腺上皮祖细胞(SGEPs)的方法。在这里,囊性纤维化跨膜传导调节因子(CFTR)敲除的hPSCs被分化为CFTR敲除hESCs (CF-SGEPs)衍生的SGEPs,使用相同的方案来研究hpsc衍生的SGEPs是否可以模拟CF的特征。CF是一种影响唾液腺(SG)功能的疾病,由CFTR基因突变引起。首先,我们利用CRISPR-Cas9系统成功生成了CFTR敲除后CFTR蛋白表达降低的hPSCs。分化16天后,CFTR敲除hESCs (CF-SGEPs)衍生的SGEPs中CFTR蛋白表达下降。RNA-Seq显示,CF- sgeps中调节SG发育和功能的多个基因下调,炎症阳性调节因子上调,与CF患者的唾液表型相关。这些结果表明,CFTR抑制破坏了hpsc衍生的SGEPs的分化,这模拟了CF患者的SG发展。综上所述,本研究不仅证明了hscs衍生的SGEPs可以作为研究SG发育性疾病的可操作和易于获取的细胞模型,而且为CF机制的研究开辟了新的途径。
{"title":"Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors.","authors":"Shuang Yan, Yifei Zhang, Siqi Zhang, Shicheng Wei","doi":"10.15283/ijsc23036","DOIUrl":"10.15283/ijsc23036","url":null,"abstract":"<p><p>The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the <i>CFTR</i> gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"394-405"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10218343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice". “环鞘氨醇-1-磷酸引发的间充质干细胞改善lps诱导的小鼠急性肺损伤”的勘误表。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 DOI: 10.15283/23001C
Youngheon Park, Jimin Jang, Jooyeon Lee, Hyosin Baek, Jaehyun Park, Sang-Ryul Cha, Se Bi Lee, Sunghun Na, Jae-Woo Kwon, Young Jun Park, Myeong Jun Choi, Kye-Seong Kim, Seok-Ho Hong, Se-Ran Yang
In
{"title":"Corrigendum to \"Cyclic Phytosphingosine-1-Phosphate Primed Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice\".","authors":"Youngheon Park, Jimin Jang, Jooyeon Lee, Hyosin Baek, Jaehyun Park, Sang-Ryul Cha, Se Bi Lee, Sunghun Na, Jae-Woo Kwon, Young Jun Park, Myeong Jun Choi, Kye-Seong Kim, Seok-Ho Hong, Se-Ran Yang","doi":"10.15283/23001C","DOIUrl":"10.15283/23001C","url":null,"abstract":"In","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":"16 4","pages":"448-449"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138459945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNF43 and ZNRF3 in Wnt Signaling - A Master Regulator at the Membrane. RNF43和ZNRF3在Wnt信号传导中的作用-膜上的主要调节因子。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-08-30 DOI: 10.15283/ijsc23070
Fiona Farnhammer, Gabriele Colozza, Jihoon Kim

The Wnt β-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.

Wnt β-catenin信号通路是一个高度保守的机制,在胚胎发育和成体干细胞稳态中起关键作用。然而,Wnt通路的失调与包括癌症在内的多种疾病有关。因此,多层调控机制严密控制着Wnt信号的激活和抑制。E3泛素连接酶RNF43和ZNRF3是已知的Wnt通路的负调节因子,是Wnt信号调节的关键组成部分。这些E3泛素连接酶通过靶向Wnt受体诱导泛素化介导的内溶酶体降解来控制Wnt信号通路,从而控制Wnt信号通路的激活。我们还讨论了RNF43和ZNRF3的调控机制、相互作用物和进化。这篇综述文章总结了RNF43和ZNRF3的最新发现及其对开发针对Wnt信号通路治疗多种疾病(包括癌症)的潜在意义。
{"title":"RNF43 and ZNRF3 in Wnt Signaling - A Master Regulator at the Membrane.","authors":"Fiona Farnhammer, Gabriele Colozza, Jihoon Kim","doi":"10.15283/ijsc23070","DOIUrl":"10.15283/ijsc23070","url":null,"abstract":"<p><p>The Wnt <i>β</i>-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"376-384"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10109943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile In Vitro. 来自前病态肥胖个体的脂肪组织来源的间充质间质细胞在体外指导巨噬细胞向m2样结构发展
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-08-30 DOI: 10.15283/ijsc22172
Daiana V Lopes Alves, Cesar Claudio-da-Silva, Marcelo C A Souza, Rosa T Pinho, Wellington Seguins da Silva, Periela S Sousa-Vasconcelos, Radovan Borojevic, Carmen M Nogueira, Hélio Dos S Dutra, Christina M Takiya, Danielle C Bonfim, Maria Isabel D Rossi

Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.

肥胖在世界范围内持续增加,不可逆转地损害脂肪组织间充质间质细胞(ADSCs)的分化潜力和血管生成特性。由于这些细胞用于再生医学,特别是用于治疗炎症,肥胖对ADSCs免疫调节特性的影响尚不清楚,因此我们研究了从前肥胖受试者(Ex-Ob)中分离的ADSCs如何影响巨噬细胞分化和极化,因为这些细胞是炎症反应的主要指导细胞。对超重(OW)和前ob受试者的皮下脂肪组织(SAT)的分析显示,在CD68+/FXIII-A-炎症池中,前ob受试者中巨噬细胞的数量维持了大约两倍。尽管如此,体外共培养实验显示,Ex-Ob ADSCs可以诱导单核细胞分化为m2样,并且在LPS诱导的炎症条件下,通过静息M0巨噬细胞抑制HLA-DR上调,产生相似百分比的TNF-α+细胞,并抑制IL-10分泌,类似于用于比较的low -ADSCs和BMSCs,因为这些是可用于治疗目的的主要替代细胞类型。我们的研究结果表明,在巨噬细胞教育中,Ex-Ob ADSCs反映了OW-ADSCs,有利于M2免疫表型和混合(M1/M2)分泌反应。这些结果具有转化潜力,因为它们提供了证据,证明来自前ob和OW受试者的ADSCs可以用于再生医学的合格治疗。进一步的体内研究将是验证这些观察结果的基础。
{"title":"Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile <i>In Vitro</i>.","authors":"Daiana V Lopes Alves, Cesar Claudio-da-Silva, Marcelo C A Souza, Rosa T Pinho, Wellington Seguins da Silva, Periela S Sousa-Vasconcelos, Radovan Borojevic, Carmen M Nogueira, Hélio Dos S Dutra, Christina M Takiya, Danielle C Bonfim, Maria Isabel D Rossi","doi":"10.15283/ijsc22172","DOIUrl":"10.15283/ijsc22172","url":null,"abstract":"<p><p>Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68<sup>+</sup>/FXIII-A<sup>-</sup> inflammatory pool. Despite it, <i>in vitro</i>, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-<i>α</i><sup>+</sup> cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further <i>in vivo</i> studies will be fundamental to validate these observations.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"425-437"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10103748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vivo Stem Cell Imaging Principles and Applications. 体内干细胞成像原理和应用。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-08-30 DOI: 10.15283/ijsc23045
Seongje Hong, Dong-Sung Lee, Geun-Woo Bae, Juhyeong Jeon, Hak Kyun Kim, Siyeon Rhee, Kyung Oh Jung

Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.

干细胞是我们身体中每个器官和组织的基础细胞。再生医学中使用干细胞的细胞疗法作为一种可能的治疗先天性缺陷引起的各种疾病的方法受到了人们的关注。干细胞,如诱导多能干细胞(iPSCs)、胚胎干细胞(ESCs)、间充质干细胞(MSCs)和神经祖细胞干细胞(NSCs),最近作为一种基于细胞的治疗剂在各种方面得到了研究。当各种干细胞被移植到活体中时,它们可以分化并发挥复杂的功能。对于干细胞移植,通过评估干细胞来源、给药途径、体内生物分布、移植细胞存活、功能和移动性来确定干细胞治疗的适用性是至关重要的。目前,这些不同的干细胞正在通过各种分子成像方法进行体内成像。各种成像方式,如光学成像、磁共振成像(MRI)、超声成像(US)、正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)已经被引入到各种干细胞成像的应用中。本文就活体分子成像技术在干细胞研究中的应用原理及最新进展作一综述。
{"title":"<i>In Vivo</i> Stem Cell Imaging Principles and Applications.","authors":"Seongje Hong, Dong-Sung Lee, Geun-Woo Bae, Juhyeong Jeon, Hak Kyun Kim, Siyeon Rhee, Kyung Oh Jung","doi":"10.15283/ijsc23045","DOIUrl":"10.15283/ijsc23045","url":null,"abstract":"<p><p>Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, <i>in vivo</i> bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged <i>in vivo</i> through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of <i>in vivo</i> molecular imaging for application of stem cell research.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"363-375"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10103744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids. 丙戊酸诱导的人脊髓类器官神经管缺损的转录特征。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-08-30 DOI: 10.15283/ijsc23012
Ju-Hyun Lee, Mohammed R Shaker, Si-Hyung Park, Woong Sun

In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.

在脊椎动物中,整个中枢神经系统来源于神经管,它是通过一个保守的早期发育形态发生过程形成的,称为神经发育。虽然遗传或环境因素引起的神经发育紊乱可导致神经管缺陷,但最常见的先天性畸形以及介导神经管缺陷的确切分子病理级联反应尚不清楚。最近,我们开发了人类脊髓类器官(hSCOs),它概括了人类神经发育的某些方面,并观察到丙戊酸(VPA)可能在类器官模型中引起神经发育缺陷。在这项研究中,我们使用转录组学和免疫染色分析鉴定并验证了vpa处理的类器官中细胞-细胞连接基因/蛋白的显著变化。此外,vpa处理的小鼠胚胎表现出基因表达受损和NTD表型,与hSCO模型中观察到的相似。总的来说,我们的数据表明,hsco为使用破坏性生物分析工具解剖目前未知的人类神经发育过程的分子途径提供了宝贵的生物资源。
{"title":"Transcriptional Signature of Valproic Acid-Induced Neural Tube Defects in Human Spinal Cord Organoids.","authors":"Ju-Hyun Lee, Mohammed R Shaker, Si-Hyung Park, Woong Sun","doi":"10.15283/ijsc23012","DOIUrl":"10.15283/ijsc23012","url":null,"abstract":"<p><p>In vertebrates, the entire central nervous system is derived from the neural tube, which is formed through a conserved early developmental morphogenetic process called neurulation. Although the perturbations in neurulation caused by genetic or environmental factors lead to neural tube defects (NTDs), the most common congenital malformation and the precise molecular pathological cascades mediating NTDs are not well understood. Recently, we have developed human spinal cord organoids (hSCOs) that recapitulate some aspects of human neurulation and observed that valproic acid (VPA) could cause neurulation defects in an organoid model. In this study, we identified and verified the significant changes in cell-cell junctional genes/proteins in VPA-treated organoids using transcriptomic and immunostaining analysis. Furthermore, VPA-treated mouse embryos exhibited impaired gene expression and NTD phenotypes, similar to those observed in the hSCO model. Collectively, our data demonstrate that hSCOs provide a valuable biological resource for dissecting the molecular pathways underlying the currently unknown human neurulation process using destructive biological analysis tools.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"385-393"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Risks and Benefits of Using Antibiotics Resistance Genes in Mesenchymal Stem Cell-Based Ex-Vivo Therapy. 在间充质干细胞离体治疗中使用抗生素耐药基因的风险和益处评估。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-06-30 DOI: 10.15283/ijsc23053
Narayan Bashyal, Young Jun Lee, Jin-Hwa Jung, Min Gyeong Kim, Kwang-Wook Lee, Woo Sup Hwang, Sung-Soo Kim, Da-Young Chang, Haeyoung Suh-Kim

Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

最近,体外基因治疗已成为一种很有前途的方法,通过在体外引入功能基因来增强间充质干细胞(MSCs)的治疗潜力。在这里,我们探讨了使用选择标记来提高基因传递效率的必要性,并评估了在制造过程中使用这些标记的潜在风险。我们将携带胞嘧啶脱氨酶基因(CD)的MSCs/CD作为治疗基因,将携带嘌呤霉素耐药基因(PuroR)作为选择标记。我们通过检测治疗性MSCs/CD对共培养U87/GFP细胞的抗癌作用,评估其治疗效果与纯度的相关性。为了模拟PuroR基因在体内的水平转移,我们通过引入PuroR基因产生了一株耐嘌呤霉素的大肠杆菌(e.c oli/PuroR),并评估了其对各种抗生素的反应性。我们发现MSCs/CD的抗癌作用与其纯度成正比,这表明在制造过程中,PuroR基因在去除不纯净的未修饰MSCs和提高MSCs/CD纯度方面发挥了关键作用。此外,我们发现临床可用的抗生素可以有效抑制假设微生物大肠杆菌/PuroR的生长。总之,我们的研究强调了在基于msc的基因治疗中,使用PuroR基因作为选择标记来提高治疗细胞的纯度和疗效的潜在益处。此外,我们的研究表明,抗生素耐药基因在体内水平转移的潜在风险可以通过临床可用的抗生素有效地控制。
{"title":"Assessment of Risks and Benefits of Using Antibiotics Resistance Genes in Mesenchymal Stem Cell-Based <i>Ex-Vivo</i> Therapy.","authors":"Narayan Bashyal, Young Jun Lee, Jin-Hwa Jung, Min Gyeong Kim, Kwang-Wook Lee, Woo Sup Hwang, Sung-Soo Kim, Da-Young Chang, Haeyoung Suh-Kim","doi":"10.15283/ijsc23053","DOIUrl":"10.15283/ijsc23053","url":null,"abstract":"<p><p>Recently, <i>ex-vivo</i> gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes <i>in vitro</i>. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (<i>PuroR</i>) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate <i>in vivo</i> horizontal transfer of the <i>PuroR</i> gene <i>in vivo</i>, we generated a puromycin-resistant <i>E. coli</i> (<i>E. coli</i>/<i>PuroR</i>) by introducing the <i>PuroR</i> gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the <i>PuroR</i> gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, <i>E. coli</i>/<i>PuroR</i>. In summary, our study highlights the potential benefits of using the <i>PuroR</i> gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes <i>in vivo</i> can be effectively managed by clinically available antibiotics.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"438-447"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9690162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical Study on Biodistribution of Mesenchymal Stem Cells after Local Transplantation into the Brain. 间充质干细胞局部脑移植后生物分布的临床前研究。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-08-30 DOI: 10.15283/ijsc23062
Narayan Bashyal, Min Gyeong Kim, Jin-Hwa Jung, Rakshya Acharya, Young Jun Lee, Woo Sup Hwang, Jung-Mi Choi, Da-Young Chang, Sung-Soo Kim, Haeyoung Suh-Kim

Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

间充质干细胞(MSCs)的治疗效果是由生物分布和体内移植决定的。与静脉输注相比,局部移植间充质干细胞的生物分布是部分了解的。在这里,我们进行了MSCs局部移植后的药代动力学(PK)研究。我们将人类间充质干细胞移植到免疫受损的裸鼠的大脑中。然后,我们从移植一个多月后的大脑、肺和肝脏中提取基因组DNA。采用定量聚合酶链反应与人铝特异性引物,我们分析了移植细胞的生物分布。为了评估脑内残余免疫反应的作用,使用表达胞嘧啶脱氨酶(MSCs/CD)的间充质干细胞消融注射部位的常驻免疫细胞。大多数Alu信号大部分停留在注射部位,并在一周内下降,最终在一个月后无法检测到。在第一周内,肺和肝脏可短暂检测到可忽略的信号。使用MSCs/CD抑制注射部位附近的iba1阳性小胶质细胞延长了Alu信号的存在。在异种移植动物模型中局部移植后,人间充质干细胞在有限的时间内主要停留在注射部位附近,而不会扩散到其他器官。人间充质干细胞移植可在免疫功能受损的动物中引起局部免疫反应,抑制驻留免疫细胞可延长移植细胞的存在。我们的研究为局部移植干细胞的体内命运提供了有价值的见解,并且局部递送是有效的,可以达到所需的剂量治疗神经系统疾病。
{"title":"Preclinical Study on Biodistribution of Mesenchymal Stem Cells after Local Transplantation into the Brain.","authors":"Narayan Bashyal, Min Gyeong Kim, Jin-Hwa Jung, Rakshya Acharya, Young Jun Lee, Woo Sup Hwang, Jung-Mi Choi, Da-Young Chang, Sung-Soo Kim, Haeyoung Suh-Kim","doi":"10.15283/ijsc23062","DOIUrl":"10.15283/ijsc23062","url":null,"abstract":"<p><p>Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment <i>in vivo</i>. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the <i>in vivo</i> fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"415-424"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10109941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Intensity Pulsed Ultrasound Promotes BMP9 Induced Osteoblastic Differentiation in Rat Dedifferentiated Fat Cells. 低强度脉冲超声促进BMP9诱导的大鼠去分化脂肪细胞成骨分化。
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-11-30 Epub Date: 2023-06-30 DOI: 10.15283/ijsc23027
Fumiaki Setoguchi, Kotaro Sena, Kazuyuki Noguchi

Dedifferentiated fat cells (DFATs) isolated from mature adipocytes have a multilineage differentiation capacity similar to mesenchymal stem cells and are considered as promising source of cells for tissue engineering. Bone morphogenetic protein 9 (BMP9) and low-intensity pulsed ultrasound (LIPUS) have been reported to stimulate bone formation both in vitro and in vivo. However, the combined effect of BMP9 and LIPUS on osteoblastic differentiation of DFATs has not been studied. After preparing DFATs from mature adipose tissue from rats, DFATs were treated with different doses of BMP9 and/or LIPUS. The effects on osteoblastic differentiation were assessed by changes in alkaline phosphatase (ALP) activity, mineralization/calcium deposition, and expression of bone related genes; Runx2, osterix, osteopontin. No significant differences for ALP activity, mineralization deposition, as well as expression for bone related genes were observed by LIPUS treatment alone while treatment with BMP9 induced osteoblastic differentiation of DFATs in a dose dependent manner. Further, co-treatment with BMP9 and LIPUS significantly increased osteoblastic differentiation of DFATs compared to those treated with BMP9 alone. In addition, upregulation for BMP9-receptor genes was observed by LIPUS treatment. Indomethacin, an inhibitor of prostaglandin synthesis, significantly inhibited the synergistic effect of BMP9 and LIPUS co-stimulation on osteoblastic differentiation of DFATs. LIPUS promotes BMP9 induced osteoblastic differentiation of DFATs in vitro and prostaglandins may be involved in this mechanism.

从成熟脂肪细胞中分离出的去分化脂肪细胞具有类似于间充质干细胞的多系分化能力,被认为是组织工程中很有前途的细胞来源。骨形态发生蛋白9 (Bone morphogenetic protein 9, BMP9)和低强度脉冲超声(low-intensity pulsed ultrasound, LIPUS)在体外和体内均有刺激骨形成的报道。然而,BMP9和LIPUS对dfat成骨分化的联合作用尚未得到研究。从大鼠成熟脂肪组织制备dfat后,用不同剂量的BMP9和/或LIPUS处理dfat。通过碱性磷酸酶(ALP)活性、矿化/钙沉积和骨相关基因表达的变化来评估对成骨细胞分化的影响;Runx2, osterix,骨桥蛋白。单独使用LIPUS治疗对ALP活性、矿化沉积以及骨相关基因的表达均无显著差异,而BMP9治疗诱导dfat成骨分化呈剂量依赖性。此外,与单独使用BMP9治疗的患者相比,BMP9和LIPUS联合治疗显著增加了dfat的成骨细胞分化。此外,通过LIPUS处理可以观察到bmp9受体基因的上调。前列腺素合成抑制剂吲哚美辛显著抑制BMP9和LIPUS共刺激对dfat成骨分化的协同作用。LIPUS促进BMP9诱导的dfat体外成骨分化,前列腺素可能参与了这一机制。
{"title":"Low-Intensity Pulsed Ultrasound Promotes BMP9 Induced Osteoblastic Differentiation in Rat Dedifferentiated Fat Cells.","authors":"Fumiaki Setoguchi, Kotaro Sena, Kazuyuki Noguchi","doi":"10.15283/ijsc23027","DOIUrl":"10.15283/ijsc23027","url":null,"abstract":"<p><p>Dedifferentiated fat cells (DFATs) isolated from mature adipocytes have a multilineage differentiation capacity similar to mesenchymal stem cells and are considered as promising source of cells for tissue engineering. Bone morphogenetic protein 9 (BMP9) and low-intensity pulsed ultrasound (LIPUS) have been reported to stimulate bone formation both <i>in vitro</i> and <i>in vivo</i>. However, the combined effect of BMP9 and LIPUS on osteoblastic differentiation of DFATs has not been studied. After preparing DFATs from mature adipose tissue from rats, DFATs were treated with different doses of BMP9 and/or LIPUS. The effects on osteoblastic differentiation were assessed by changes in alkaline phosphatase (ALP) activity, mineralization/calcium deposition, and expression of bone related genes; Runx2, osterix, osteopontin. No significant differences for ALP activity, mineralization deposition, as well as expression for bone related genes were observed by LIPUS treatment alone while treatment with BMP9 induced osteoblastic differentiation of DFATs in a dose dependent manner. Further, co-treatment with BMP9 and LIPUS significantly increased osteoblastic differentiation of DFATs compared to those treated with BMP9 alone. In addition, upregulation for BMP9-receptor genes was observed by LIPUS treatment. Indomethacin, an inhibitor of prostaglandin synthesis, significantly inhibited the synergistic effect of BMP9 and LIPUS co-stimulation on osteoblastic differentiation of DFATs. LIPUS promotes BMP9 induced osteoblastic differentiation of DFATs <i>in vitro</i> and prostaglandins may be involved in this mechanism.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":" ","pages":"406-414"},"PeriodicalIF":2.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9690160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway. 甲状旁腺激素相关蛋白通过激活cAMP/PKA信号通路促进患者源性胶质母细胞瘤干细胞的增殖
IF 2.3 4区 医学 Q3 CELL & TISSUE ENGINEERING Pub Date : 2023-08-30 DOI: 10.15283/ijsc22097
Zhenyu Guo, Tingqin Huang, Yingfei Liu, Chongxiao Liu

Background and objectives: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM.

Methods and results: Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP.

Conclusions: Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.

背景与目的:胶质母细胞瘤(GBM)是一种侵袭性原发性脑肿瘤,具有异质性、高复发率和致死率。胶质母细胞瘤干细胞在治疗抵抗和肿瘤复发中起着至关重要的作用。因此,靶向GSCs是开发有效治疗GBM的关键目标。甲状旁腺激素相关肽(PTHrP)在GBM中的作用及其对GSCs的影响尚不清楚。本研究旨在探讨PTHrP对GSCs的影响及其作为GBM治疗靶点的潜力。方法与结果:利用肿瘤基因组图谱(Cancer Genome Atlas, TCGA)数据库,我们发现PTHrP在GBM中表达较高,且与生存率呈负相关。从手术切除后获得的三个人GBM样本中建立GSCs。暴露于不同浓度的重组人PTHrP蛋白(rPTHrP)可显著提高GSCs的活力。使用目标特异性siRNA (siPTHrP)敲低PTHrP可抑制肿瘤球的形成并减少brdu阳性细胞的数量。在原位异种移植小鼠模型中,抑制PTHrP表达可显著抑制肿瘤生长。在生长培养基中添加rPTHrP可抵消siPTHrP的抗增殖作用。进一步研究发现,PTHrP增加cAMP浓度,激活PKA信号通路。用福斯克林(一种腺苷酸环化酶激活剂)治疗可使siPTHrP的抗增殖作用失效。结论:我们的研究结果表明,PTHrP通过激活cAMP/PKA信号通路促进患者源性GSCs的增殖。这些结果揭示了PTHrP的新作用,并提示其作为GBM治疗靶点的潜力。
{"title":"Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway.","authors":"Zhenyu Guo,&nbsp;Tingqin Huang,&nbsp;Yingfei Liu,&nbsp;Chongxiao Liu","doi":"10.15283/ijsc22097","DOIUrl":"https://doi.org/10.15283/ijsc22097","url":null,"abstract":"<p><strong>Background and objectives: </strong>Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM.</p><p><strong>Methods and results: </strong>Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP.</p><p><strong>Conclusions: </strong>Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.</p>","PeriodicalId":14392,"journal":{"name":"International journal of stem cells","volume":"16 3","pages":"315-325"},"PeriodicalIF":2.3,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/9f/ijsc-16-3-315.PMC10465338.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10124843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International journal of stem cells
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1