T cells play an important role in the development and progression of multiple sclerosis (MS), an autoimmune disease of the central nervous system. In the present study, the immunomodulatory impacts of two Lactobacillus strains, L paracasei DSM 13434 and L plantarum DSM 15312, on the frequency and cytokine production of CD4+ T cells in MS patients were explored. Thirty MS patients were enrolled in this study. The CD4+ T cells were isolated, cultured, and exposed to the media containing cell-free supernatants of L plantarum (group1), L paracasei (group 2), the mixture group of cell-free supernatants of both probiotics (group 3), and vehicle (control) group (group 4). The frequencies of T helper (Th) 1, Th17, Th2, and T regulatory type 1 (Tr1) cells and mean fluorescent intensity (MFI) of the associated cytokines were assessed using flow cytometry. The levels of interleukin 17 (IL-17), transforming growth factor β (TGF-β), and interferon-gamma (IFN-γ) cytokines in supernatants of all groups were measured by enzyme-linked immunosorbent assay. The percentage of Th1 cells and the MFI of IFN-γ in Th1 cells (CD4+ IFN-γ+) in all three probiotic treatment groups were significantly decreased compared to the control group. However, no significant changes were observed in the proportion and MFI of Th2, Th17, and Tr1 cells. A significant decrease was observed in IL-17 secretion in the supernatant of cultured CD4+ T cells in all three treatment groups in comparison with control. The levels of TGF-β and IFN-γ were not significantly different among any of the study groups. Collectively, cell-free supernatants of the lactobacilli showed an in vitro anti-inflammatory effect. However, further studies are needed to prove the real effects of probiotics on MS.
{"title":"Immunosuppressive Effects of Two Probiotics, Lactobacillus paracasei DSM 13434 and Lactobacillus plantarum DSM 15312, on CD4+ T Cells of Multiple Sclerosis Patients.","authors":"Khadijeh Chakamian, Behrouz Robat-Jazi, Abdorreza Naser Moghadasi, Fatemeh Mansouri, Masoumeh Nodehi, Elahe Motevaseli, Maryam Izad, Saeed Yekaninejad, Mahdieh Shirzad, Kiana Bidad, Mona Oraei, Bita Ansaripour, Ali Akbar Saboor-Yaraghi","doi":"10.18502/ijaai.v22i1.12004","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12004","url":null,"abstract":"<p><p>T cells play an important role in the development and progression of multiple sclerosis (MS), an autoimmune disease of the central nervous system. In the present study, the immunomodulatory impacts of two Lactobacillus strains, L paracasei DSM 13434 and L plantarum DSM 15312, on the frequency and cytokine production of CD4+ T cells in MS patients were explored. Thirty MS patients were enrolled in this study. The CD4+ T cells were isolated, cultured, and exposed to the media containing cell-free supernatants of L plantarum (group1), L paracasei (group 2), the mixture group of cell-free supernatants of both probiotics (group 3), and vehicle (control) group (group 4). The frequencies of T helper (Th) 1, Th17, Th2, and T regulatory type 1 (Tr1) cells and mean fluorescent intensity (MFI) of the associated cytokines were assessed using flow cytometry. The levels of interleukin 17 (IL-17), transforming growth factor β (TGF-β), and interferon-gamma (IFN-γ) cytokines in supernatants of all groups were measured by enzyme-linked immunosorbent assay. The percentage of Th1 cells and the MFI of IFN-γ in Th1 cells (CD4+ IFN-γ+) in all three probiotic treatment groups were significantly decreased compared to the control group. However, no significant changes were observed in the proportion and MFI of Th2, Th17, and Tr1 cells. A significant decrease was observed in IL-17 secretion in the supernatant of cultured CD4+ T cells in all three treatment groups in comparison with control. The levels of TGF-β and IFN-γ were not significantly different among any of the study groups. Collectively, cell-free supernatants of the lactobacilli showed an in vitro anti-inflammatory effect. However, further studies are needed to prove the real effects of probiotics on MS.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"34-45"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC. The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells. Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control.
{"title":"MicroRNA-122 Is More Effective than Rapamycin in Inhibition of Epithelial-mesenchymal Transition and mTOR Signaling Pathway in Triple Negative Breast Cancer.","authors":"Majdedin Ghalavand, Ruhollah Dorostkar, Hojat Borna, Samira Mohammadi-Yeganeh, Seyed Mahmood Hashemi","doi":"10.18502/ijaai.v22i1.12006","DOIUrl":"10.18502/ijaai.v22i1.12006","url":null,"abstract":"<p><p>The fundamental mechanism responsible for the aggressiveness of metastatic cancers such as triple-negative breast cancer (TNBC) is the epithelial-mesenchymal transition (EMT). In cancer microenvironments, the Phosphoinositide 3-kinases (PI3K)-Akt- mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in regulating the EMT mechanism. The current study focuses on the impacts of rapamycin, a newly retargeted chemotherapeutic agent against mTOR, and MicroRNA (miR)-122 on the aggressive behavior of TNBC. The half-maximal inhibitory concentration (IC50) of rapamycin on 4T1 cells was determined using an MTT assay. Also, miR-122 was transiently transfected into 4T1 cells to study its effect on the pathway. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to assess the expression level of central mTOR and EMT-related cascade genes. Moreover, cell mobility and migration were evaluated using scratch and migration assays, respectively. Both rapamycin and miR-122 significantly decreased the expression levels of PI3K, AKT, and mTOR, as well as ZeB1 and Snail genes. However, no significant change was observed in Twist gene expression. Furthermore, scratch and migration assays revealed that the migration of 4T1 cells was markedly reduced, especially following miR-122 induction. Our experimental findings and gene enrichment studies indicated that miR-122 mainly operates on multiple metabolic pathways, as well as EMT and mTOR, while rapamycin has restricted targets in cancer cells. Consequently, miR-122 can be considered a potential cancer microRNA therapy option, which can be validated in the future in animal studies to demonstrate its efficacy in cancer control.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"46-61"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.18502/ijaai.v22i1.12012
Esmaeil Mortaz, Hamidreza Jamaati, Neda K Dezfuli, Hakime Sheikhzade, Seyed MohammadReza Hashemian, Neda Dalil Roofchayee, Frazaneh Dastan, Payam Tabarsi, Gert Folkerts, Johan Garssen, Sharon Mumby, Ian M Adcock
COVID-19, caused by SARS-CoV-2, requires new approaches to control the disease. Programmed cell death protein (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) play important roles in T-cell exhaustion in severe COVID-19. This study evaluated the frequency of whole blood lymphocytes expressing PD-1 and CTLA-4 in COVID-19 patients upon admission to the intensive care unit (ICU) (i.e., severe) or infection ward (i.e., moderate) and after 7 days of antiviral therapy. COVID-19 patients were treated with either favipiravir or Kaletra (FK group, 11 severe and 11 moderate) or dexamethasone plus remdesivir (DR group, 7 severe and 10 moderate) for 7 days in a pilot study. Eight healthy control subjects were also enrolled. The frequency of PD-1+ and CTLA-4+ lymphocytes in whole blood was evaluated by flow cytometry. Patients on DR therapy had shorter hospital stays than those on FK therapy. The frequency of PD-1+ lymphocytes in the FK group at baseline differed between COVID-19 patients and healthy controls, while the frequency of both PD-1+ and CTLA-4+ cells increased significantly 7 days of FK therapy. The response was similar in both moderate and severe patients. In contrast, the frequency of PD-1+ and CTLA-4+ lymphocytes varied significantly between patients and healthy controls before DR treatment. DR therapy enhanced PD-1+ but not the CTLA-4+ frequency of these cells after 7 days. We show that the frequency of PD-1 and CTAL-4-bearing lymphocytes during hospitalization was increased in Iranian ICU COVID-19 patients who received FK treatment, but that the frequency of CTLA-4+ cells was higher at baseline and did not increase in patients who received DR. The effectiveness of DR treatment may reflect differences in T-cell activation or exhaustion status, particularly in CTLA-4-expressing cells.
{"title":"Changes in PD-1- and CTLA-4-bearing blood lymphocytes in ICU COVID-19 patients treated with Favipiravir/Kaletra or Dexamethasone/Remdesivir: a pilot study.","authors":"Esmaeil Mortaz, Hamidreza Jamaati, Neda K Dezfuli, Hakime Sheikhzade, Seyed MohammadReza Hashemian, Neda Dalil Roofchayee, Frazaneh Dastan, Payam Tabarsi, Gert Folkerts, Johan Garssen, Sharon Mumby, Ian M Adcock","doi":"10.18502/ijaai.v22i1.12012","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12012","url":null,"abstract":"<p><p>COVID-19, caused by SARS-CoV-2, requires new approaches to control the disease. Programmed cell death protein (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) play important roles in T-cell exhaustion in severe COVID-19. This study evaluated the frequency of whole blood lymphocytes expressing PD-1 and CTLA-4 in COVID-19 patients upon admission to the intensive care unit (ICU) (i.e., severe) or infection ward (i.e., moderate) and after 7 days of antiviral therapy. COVID-19 patients were treated with either favipiravir or Kaletra (FK group, 11 severe and 11 moderate) or dexamethasone plus remdesivir (DR group, 7 severe and 10 moderate) for 7 days in a pilot study. Eight healthy control subjects were also enrolled. The frequency of PD-1+ and CTLA-4+ lymphocytes in whole blood was evaluated by flow cytometry. Patients on DR therapy had shorter hospital stays than those on FK therapy. The frequency of PD-1+ lymphocytes in the FK group at baseline differed between COVID-19 patients and healthy controls, while the frequency of both PD-1+ and CTLA-4+ cells increased significantly 7 days of FK therapy. The response was similar in both moderate and severe patients. In contrast, the frequency of PD-1+ and CTLA-4+ lymphocytes varied significantly between patients and healthy controls before DR treatment. DR therapy enhanced PD-1+ but not the CTLA-4+ frequency of these cells after 7 days. We show that the frequency of PD-1 and CTAL-4-bearing lymphocytes during hospitalization was increased in Iranian ICU COVID-19 patients who received FK treatment, but that the frequency of CTLA-4+ cells was higher at baseline and did not increase in patients who received DR. The effectiveness of DR treatment may reflect differences in T-cell activation or exhaustion status, particularly in CTLA-4-expressing cells.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"99-109"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The purpose of this study was to evaluate the effect of 8 months of treatment with itraconazole on airway wall thickness in patients with severe persistent asthma. It was a double-blind, randomized, placebo-controlled clinical trial (IRCT20091111002695N9). Seventy-five subjects with severe persistent asthma received itraconazole (100 mg), prednisolone (5 mg), or placebo twice a day for eight months in three treatment groups (n=25 in each group). The primary objective was to improve the right upper lobe apical segmental bronchus (RB1) wall thickness percentage measured by high-resolution computed tomography scan of the lungs. Other morphometric measurements of RB1, asthma control test (ACT) score, presence of wheezing, dyspnea severity, rate of asthma exacerbation, fractional exhaled nitric oxide (FeNO), and expiratory volume in 1 second (FEV1) were set as the secondary outcomes. Wall thickness percentage reduced significantly from 46% to 43.7% from pre- to post-treatment in the itraconazole-treated subjects. Similarly, lumen area and radius increased significantly in both the prednisolone and itraconazole groups. Itraconazole led to a significant improvement in wheezing, dyspnea severity, FEV1, ACT score, and FeNO. Although prednisolone was also effective in improving pulmonary function tests and ACT scores, it was associated with significantly more side effects than itraconazole. Long-term treatment with itraconazole resulted in a significant reduction in bronchial wall thickness and improvements in clinical findings and pulmonary function tests. Thus, itraconazole could be a helpful add-on treatment option for severe persistent asthma patients to achieve better disease control.
{"title":"Itraconazole Improved Bronchial Wall Thickness in Severe Persistent Asthma: A Double-blind Placebo-controlled Randomized Clinical Trial.","authors":"Farnaz Aligolighasemabadi, Majid Mirsadraee, Mohammadamin Sadeghdoust, Shadi Ghaffari, Mohammad Sarafraz Yazdi, Saeed Naghibi, Amirhossein Hashemi Attar","doi":"10.18502/ijaai.v22i1.12000","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12000","url":null,"abstract":"<p><p>The purpose of this study was to evaluate the effect of 8 months of treatment with itraconazole on airway wall thickness in patients with severe persistent asthma. It was a double-blind, randomized, placebo-controlled clinical trial (IRCT20091111002695N9). Seventy-five subjects with severe persistent asthma received itraconazole (100 mg), prednisolone (5 mg), or placebo twice a day for eight months in three treatment groups (n=25 in each group). The primary objective was to improve the right upper lobe apical segmental bronchus (RB1) wall thickness percentage measured by high-resolution computed tomography scan of the lungs. Other morphometric measurements of RB1, asthma control test (ACT) score, presence of wheezing, dyspnea severity, rate of asthma exacerbation, fractional exhaled nitric oxide (FeNO), and expiratory volume in 1 second (FEV1) were set as the secondary outcomes. Wall thickness percentage reduced significantly from 46% to 43.7% from pre- to post-treatment in the itraconazole-treated subjects. Similarly, lumen area and radius increased significantly in both the prednisolone and itraconazole groups. Itraconazole led to a significant improvement in wheezing, dyspnea severity, FEV1, ACT score, and FeNO. Although prednisolone was also effective in improving pulmonary function tests and ACT scores, it was associated with significantly more side effects than itraconazole. Long-term treatment with itraconazole resulted in a significant reduction in bronchial wall thickness and improvements in clinical findings and pulmonary function tests. Thus, itraconazole could be a helpful add-on treatment option for severe persistent asthma patients to achieve better disease control.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"1-11"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fibrosing pneumonia (FP) is classified into usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP), each having its own etiology and prognosis. Both types of FP are progressive and chronic conditions with distinct etiologies. Cytokines and inflammatory mediators play critical roles in the pathogenesis of FP. Among them, the role of transforming growth factor beta-1 (TGF-β1) and modulators triggering fibrosis are not well understood. In this study, the expression of triggering receptor expressed on myeloid cells-1 (TREM-1) as a stimulator for the production of TGF-β1 and also CD4+CD25+Foxp3+ regulatory cells were investigted in FP patients. Sixteen UIP, 14 NSIP and 4 pulmonary fibrosis following Mycobacterium tuberculosis (TB) infection patients, were compared with 12 healthy controls. The frequency of blood CD14+TGF-β1+ and CD14+TREM1+-gated monocytes and CD4+CD25+Foxp3+ regulatory T cells (Treg), as well as the plasma levels of TGF-β1 and IL‑10 were measured. Fibrosis patients compared to healthy controls had a greater frequency of CD14+TGF-β1+ [15.9 (0.2-88.2) vs. 0.6 (0.2-11.0)] and CD14+TREM1+ [21.1 (2.3-91.2) vs. 10.3 (3.1-28.6)]-gated monocytes, and CD4+CD25+Foxp3+ [1.2 (0.3-3.6) vs. 0.2 (0.1-0.4)]-gated lymphocytes. Plasma TGF-β1 were also significantly increased in patients with fibrosis compared to healthy controls [9316.2 (±5554.4) vs. 3787.5 (±2255.6)]. These results confirm the importance of TGF-β1 and TREM1 in pulmonary fibrosis. It seems that this reciprocal cycle in healthy people is modulated by the production of IL‑10 by Treg cells, thus limiting fibrosis, as observed in patients following TB infection. Further investigations are recommended to evaluate possible immunomodulatory mechanisms defects in pulmonary fibrosis.
纤维化性肺炎(FP)分为普通间质性肺炎(UIP)和非特异性间质性肺炎(NSIP),每一种都有其自身的病因和预后。两种类型的FP都是具有不同病因的进行性慢性疾病。细胞因子和炎症介质在FP的发病机制中起关键作用。其中,转化生长因子β -1 (TGF-β1)及调节因子引发纤维化的作用尚不清楚。本研究研究了骨髓细胞上表达的触发受体-1 (TREM-1)作为TGF-β1生成的刺激因子以及CD4+CD25+Foxp3+调节细胞在FP患者中的表达情况。UIP 16例,NSIP 14例,结核分枝杆菌感染后肺纤维化4例,与12例健康对照进行比较。检测血中CD14+TGF-β1+、CD14+TREM1+门控单核细胞、CD4+CD25+Foxp3+调节性T细胞(Treg)频率,以及血浆中TGF-β1、IL - 10水平。与健康对照组相比,纤维化患者CD14+TGF-β1+ [15.9 (0.2-88.2) vs. 0.6(0.2-11.0)]和CD14+TREM1+ [21.1 (2.3-91.2) vs. 10.3(3.1-28.6)]门控单核细胞和CD4+CD25+Foxp3+ [1.2 (0.3-3.6) vs. 0.2(0.1-0.4)]门控淋巴细胞的频率更高。与健康对照组相比,纤维化患者血浆TGF-β1水平也显著升高[9316.2(±5554.4)比3787.5(±225.6)]。这些结果证实了TGF-β1和TREM1在肺纤维化中的重要性。正如在结核病感染患者中观察到的那样,健康人群中的这种相互循环似乎受到Treg细胞产生IL - 10的调节,从而限制了纤维化。建议进一步研究以评估肺纤维化中可能的免疫调节机制缺陷。
{"title":"Dysregulation of Immunity in Pulmonary Fibrosis is Associated with Increased Myeloid-specific Triggering Receptor-1 and Transforming Growth Factor-beta1 Expression.","authors":"Shima Rasouli, Jalal Heshmatnia, Nariman Mosaffa, Majid Marjani, Esmaeil Mortaz","doi":"10.18502/ijaai.v22i1.12002","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12002","url":null,"abstract":"<p><p>Fibrosing pneumonia (FP) is classified into usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP), each having its own etiology and prognosis. Both types of FP are progressive and chronic conditions with distinct etiologies. Cytokines and inflammatory mediators play critical roles in the pathogenesis of FP. Among them, the role of transforming growth factor beta-1 (TGF-β1) and modulators triggering fibrosis are not well understood. In this study, the expression of triggering receptor expressed on myeloid cells-1 (TREM-1) as a stimulator for the production of TGF-β1 and also CD4+CD25+Foxp3+ regulatory cells were investigted in FP patients. Sixteen UIP, 14 NSIP and 4 pulmonary fibrosis following Mycobacterium tuberculosis (TB) infection patients, were compared with 12 healthy controls. The frequency of blood CD14+TGF-β1+ and CD14+TREM1+-gated monocytes and CD4+CD25+Foxp3+ regulatory T cells (Treg), as well as the plasma levels of TGF-β1 and IL‑10 were measured. Fibrosis patients compared to healthy controls had a greater frequency of CD14+TGF-β1+ [15.9 (0.2-88.2) vs. 0.6 (0.2-11.0)] and CD14+TREM1+ [21.1 (2.3-91.2) vs. 10.3 (3.1-28.6)]-gated monocytes, and CD4+CD25+Foxp3+ [1.2 (0.3-3.6) vs. 0.2 (0.1-0.4)]-gated lymphocytes. Plasma TGF-β1 were also significantly increased in patients with fibrosis compared to healthy controls [9316.2 (±5554.4) vs. 3787.5 (±2255.6)]. These results confirm the importance of TGF-β1 and TREM1 in pulmonary fibrosis. It seems that this reciprocal cycle in healthy people is modulated by the production of IL‑10 by Treg cells, thus limiting fibrosis, as observed in patients following TB infection. Further investigations are recommended to evaluate possible immunomodulatory mechanisms defects in pulmonary fibrosis.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"12-24"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
COVID-19 can induce lung inflammation, and inflammatory factors play an essential role in its pathogenesis. This inflammation can be controlled to a great extent by microRNAs(miRs). This study evaluated miR-146a-5p expression levels in the serum of patients with COVID-19 and their association with the expression of interleukin (IL)-18 and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes, and lung damage. patients with COVID-19 were divided into two groups: mild and severe phases. The severe phase is defined as having a positive polymerase chain reaction (PCR) for SARS-CoV2, and acute pulmonary symptoms. The subjects' demographic, clinical, and paraclinical characteristics were collected according to a pre-prepared checklist. Total RNA was isolated from all samples using the Trizol kit to assess gene expression. The extracted product was then evaluated for the expression of miR-146a and the target genes (i.e., IL-18 and RANKL) using real-time PCR. The miR-146a gene's mean expression in mild and severe patients was 0.73 and 1.89, respectively, and this difference was statistically significant between the two groups. Also, the mean Expression of the IL-18 gene, 1.37±0.38 in the mild and 2.83±0.58 in the severe groups of the disease, demonstrated a significant difference between the two groups. In contrast, the expression levels of the RANKL gene did not show a significant difference between the two groups. Therefore, it may be hypothesized that altered levels of miR-146a may contribute to the severe COVID-19 that is more commonly observed in smokers, but further research is required.
{"title":"Investigating the Relationship between the Levels of IL18, RANKL Gene Expression, MicroRNA-146a and Inflammatory Factors with the Severity of COVID-19.","authors":"Karmand Hamad Khdhir, Shahriar Alipour, Shiva Gholizadeh-Ghaleh Aziz, Seyed Hesamaddin Banihashemi","doi":"10.18502/ijaai.v22i1.12009","DOIUrl":"10.18502/ijaai.v22i1.12009","url":null,"abstract":"<p><p>COVID-19 can induce lung inflammation, and inflammatory factors play an essential role in its pathogenesis. This inflammation can be controlled to a great extent by microRNAs(miRs). This study evaluated miR-146a-5p expression levels in the serum of patients with COVID-19 and their association with the expression of interleukin (IL)-18 and receptor activator of nuclear factor kappa-Β ligand (RANKL) genes, and lung damage. patients with COVID-19 were divided into two groups: mild and severe phases. The severe phase is defined as having a positive polymerase chain reaction (PCR) for SARS-CoV2, and acute pulmonary symptoms. The subjects' demographic, clinical, and paraclinical characteristics were collected according to a pre-prepared checklist. Total RNA was isolated from all samples using the Trizol kit to assess gene expression. The extracted product was then evaluated for the expression of miR-146a and the target genes (i.e., IL-18 and RANKL) using real-time PCR. The miR-146a gene's mean expression in mild and severe patients was 0.73 and 1.89, respectively, and this difference was statistically significant between the two groups. Also, the mean Expression of the IL-18 gene, 1.37±0.38 in the mild and 2.83±0.58 in the severe groups of the disease, demonstrated a significant difference between the two groups. In contrast, the expression levels of the RANKL gene did not show a significant difference between the two groups. Therefore, it may be hypothesized that altered levels of miR-146a may contribute to the severe COVID-19 that is more commonly observed in smokers, but further research is required.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"82-90"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.18502/ijaai.v22i1.12007
Mohammad Khakpoor-Koosheh, Hosein Rostamian, Elham Masoumi, Leila Jafarzadeh, Keyvan Fallah-Mehrjardi, Mohammad Javad Tavassolifar, Farshid Noorbakhsh, Hamid Reza Mirzaei, Jamshid Hadjati, Nima Rezaei
High production of lactic acid is a common feature of various tumors. Lactic acid is an immunosuppressive molecule with crucial roles in tumor cells' immune escape, which could largely be attributed to its negative effects on the T cells present in the tumor microenvironment (TME). Strategies that decrease the glycolysis rate of tumor cells could enhance immunosurveillance and limit tumor growth. Pyruvate kinase M2 (PKM2) is a key enzyme in the glycolysis pathway, and it plays a vital role in lactic acid buildup in the TME. MicroRNA (miR)-124 has been shown to be able to decrease tumor cell lactic acid synthesis indirectly by reducing PKM2 levels. In this study, we first overexpressed miR-124 in the tumor cells and evaluated its effects on the PKM2 expression and lactic acid production of the tumor cells using quantitative real-time polymerase chain reaction (qRT-PCR) and spectrophotometry, respectively. Then, we cocultured miR-124-treated tumor cells with T cells to investigate the effects of miR-124 overexpression on T cell proliferation, cytokine production, and apoptosis. Our results demonstrated that miR-124 overexpression could significantly reduce the amount of lactic acid produced by tumor cells by manipulating their glucose metabolism, which led to the augmented proliferation and IFN-γ production of T cells. Moreover, it rescued T cells from lactic acid-induced apoptosis. Our data suggest that lactic acid is a hindering factor for T-cell-based immunotherapies; however, manipulating tumor cells' metabolism via miR-124 could be a promising way to improve antitumor responses of T cells.
{"title":"MicroRNA-124 Enhances T Cells Functions by Manipulating the Lactic Acid Metabolism of Tumor Cells.","authors":"Mohammad Khakpoor-Koosheh, Hosein Rostamian, Elham Masoumi, Leila Jafarzadeh, Keyvan Fallah-Mehrjardi, Mohammad Javad Tavassolifar, Farshid Noorbakhsh, Hamid Reza Mirzaei, Jamshid Hadjati, Nima Rezaei","doi":"10.18502/ijaai.v22i1.12007","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12007","url":null,"abstract":"<p><p>High production of lactic acid is a common feature of various tumors. Lactic acid is an immunosuppressive molecule with crucial roles in tumor cells' immune escape, which could largely be attributed to its negative effects on the T cells present in the tumor microenvironment (TME). Strategies that decrease the glycolysis rate of tumor cells could enhance immunosurveillance and limit tumor growth. Pyruvate kinase M2 (PKM2) is a key enzyme in the glycolysis pathway, and it plays a vital role in lactic acid buildup in the TME. MicroRNA (miR)-124 has been shown to be able to decrease tumor cell lactic acid synthesis indirectly by reducing PKM2 levels. In this study, we first overexpressed miR-124 in the tumor cells and evaluated its effects on the PKM2 expression and lactic acid production of the tumor cells using quantitative real-time polymerase chain reaction (qRT-PCR) and spectrophotometry, respectively. Then, we cocultured miR-124-treated tumor cells with T cells to investigate the effects of miR-124 overexpression on T cell proliferation, cytokine production, and apoptosis. Our results demonstrated that miR-124 overexpression could significantly reduce the amount of lactic acid produced by tumor cells by manipulating their glucose metabolism, which led to the augmented proliferation and IFN-γ production of T cells. Moreover, it rescued T cells from lactic acid-induced apoptosis. Our data suggest that lactic acid is a hindering factor for T-cell-based immunotherapies; however, manipulating tumor cells' metabolism via miR-124 could be a promising way to improve antitumor responses of T cells.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"62-71"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.18502/ijaai.v22i1.12011
Behrooz Ghezelbash, Mehdi Rostami, Mohammad Heidarvand, Alireza Mafi, Hamid Chegni, Nahid Eskandari
Some risk causes may be associated with the severity of COVID-19. The central host-pathogen factors might affect infection are human receptor angiotensin-converting enzyme 2 (ACE2), trans-membrane protease serine 2 (TMPRSS2), and SARS-CoV-2 surface spike (S)-protein. The main purpose of this study was to determine the differences in the expression the metalloproteinases-2 (MMP-2), MMP-9, ACE2, and TMPRSS2 genes and their correlation with lymphopenia in the mild and severe types of the COVID-19 patients. Eighty-eight patients, aged 36 to 60 years old with the mild (n=44) and severe (n=44) types of COVID-19 were enrolled. Total RNA was isolated from the peripheral blood mononuclear cells (PBMCs). The changes of MMP-2, MMP-9, ACE2 and TMPRSS2 gene expression in PBMCs from mild and severe COVID-19 patients were examined by the real time-quantitative polymerase chain reaction (RT-qPCR) assay and, compared between the groups. Data were collected from May 2021 to March 2022. The mean age of the patients in both groups was 48 (interquartile range, 36-60), and there were no appreciable differences in age or gender distribution between the two groups. The present study showed that a significant increase in the expression of ACE2, TMPRSS2, MMP-2, and MMP-9 genes in the severe type of the COVID-19 patients compared, to the mild type of the COVID-19 patients. Overall, it suggests the expression levels of these genes on the PBMC surface in the immune system are susceptible to infection by SARS-COV-2 and therefore could potentially predict the patients' outcome.
{"title":"Correlation of Expression of MMP-2, ACE2, and TMPRSS2 Genes with Lymphopenia for Mild and Severity of COVID-19.","authors":"Behrooz Ghezelbash, Mehdi Rostami, Mohammad Heidarvand, Alireza Mafi, Hamid Chegni, Nahid Eskandari","doi":"10.18502/ijaai.v22i1.12011","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12011","url":null,"abstract":"<p><p>Some risk causes may be associated with the severity of COVID-19. The central host-pathogen factors might affect infection are human receptor angiotensin-converting enzyme 2 (ACE2), trans-membrane protease serine 2 (TMPRSS2), and SARS-CoV-2 surface spike (S)-protein. The main purpose of this study was to determine the differences in the expression the metalloproteinases-2 (MMP-2), MMP-9, ACE2, and TMPRSS2 genes and their correlation with lymphopenia in the mild and severe types of the COVID-19 patients. Eighty-eight patients, aged 36 to 60 years old with the mild (n=44) and severe (n=44) types of COVID-19 were enrolled. Total RNA was isolated from the peripheral blood mononuclear cells (PBMCs). The changes of MMP-2, MMP-9, ACE2 and TMPRSS2 gene expression in PBMCs from mild and severe COVID-19 patients were examined by the real time-quantitative polymerase chain reaction (RT-qPCR) assay and, compared between the groups. Data were collected from May 2021 to March 2022. The mean age of the patients in both groups was 48 (interquartile range, 36-60), and there were no appreciable differences in age or gender distribution between the two groups. The present study showed that a significant increase in the expression of ACE2, TMPRSS2, MMP-2, and MMP-9 genes in the severe type of the COVID-19 patients compared, to the mild type of the COVID-19 patients. Overall, it suggests the expression levels of these genes on the PBMC surface in the immune system are susceptible to infection by SARS-COV-2 and therefore could potentially predict the patients' outcome.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"91-98"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder more common in autosomal recessive (AR) than X-linked in Iran. This study aimed to assess whether having a child with AR-CGD would increase the likelihood of the next child being affected by CGD. Ninety-one families with at least one child affected by AR-CGD entered this study. Out of the 270 children, 128 were affected by AR-CGD. We used a cross tab for the odds ratio (OR) calculation, in which exposure to a previously affected child and the next child's status were evaluated. This study illustrated that the chances of having another child afflicted with AR-CGD are significantly increased if the previous child had AR-CGD (OR=2.77, 95% CI=1.35-5.69).Althoug h AR disorders affect 25% of each pregnancy, we showed that the chance that the next child would be affected by CGD, given that the previous child was affected, is 2.77 times greater than in families with a normal child. It is recommended to warn families with one or more affected children to evaluate the risk of CGD in their subsequent pregnancies with prenatal diagnosis.
{"title":"The Risk of the Next Child Getting Affected by Chronic Granulomatous Disease in Families with at Least One Autosomal Recessive CGD Child.","authors":"Seyedeh Zalfa Modarresi, Shagayegh Tajik, Mohsen Badalzadeh, Mohammad Reza Fazlollahi, Massoud Houshmand, Marzieh Maddah, Zahra Alizadeh, Mohammad Nabavi, Nasrin Bazargan, Masoud Movahedi, Zahra Pourpak","doi":"10.18502/ijaai.v22i1.12014","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12014","url":null,"abstract":"Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder more common in autosomal recessive (AR) than X-linked in Iran. This study aimed to assess whether having a child with AR-CGD would increase the likelihood of the next child being affected by CGD. Ninety-one families with at least one child affected by AR-CGD entered this study. Out of the 270 children, 128 were affected by AR-CGD. We used a cross tab for the odds ratio (OR) calculation, in which exposure to a previously affected child and the next child's status were evaluated. This study illustrated that the chances of having another child afflicted with AR-CGD are significantly increased if the previous child had AR-CGD (OR=2.77, 95% CI=1.35-5.69).Althoug h AR disorders affect 25% of each pregnancy, we showed that the chance that the next child would be affected by CGD, given that the previous child was affected, is 2.77 times greater than in families with a normal child. It is recommended to warn families with one or more affected children to evaluate the risk of CGD in their subsequent pregnancies with prenatal diagnosis.","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"119-123"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takayasu arteritis (TA) is a chronic inflammatory disorder characterized by vascular damage and fibrosis in the intima that commonly occurs in the aorta. In many damaged sites in TA patients, natural killer (NK) cells have been shown to be hyperactivated and produce inflammatory cytokines and toxic components. Killer cell immunoglobulin-like receptors (KIRs) are found on NK cells and interact with human leukocyte antigen (HLA) class I ligands to activate or suppress NK cells. The present study assessed the possible role of KIR and their HLA ligand genes in susceptibility to TA in Iranian patients. This case-control study included 50 TA patients and 50 healthy subjects. DNA was extracted from whole peripheral blood samples, and polymerase chain reaction with sequence-specific primers (PCR-SSP) was performed to recognize the presence or absence of polymorphism in 17 KIR genes and 5 HLA class I ligands in each participant. Among the KIR and HLA genes, a significant decrease was detected in the frequency of 2DS4 (full allele) in TA patients (38%) compared with healthy controls (82%) (OR=0.13, 95% CI=0.05-0.34). However, none of the KIR and HLA genotypes or the interactions between these genes were associated with susceptibility to TA. The KIR2DS4 gene might be involved in the regulation of activation as well as the production of cytotoxic mediators of NK cells in patients with TA.
{"title":"Association of Killer Cell Immunoglobulin-like Receptor (KIR) Genes and their HLA Ligands with Susceptibility to Takayasu Arteritis in the Iranian Population.","authors":"Fereshteh Beigmohammadi, Saeed Aslani, Hoda Kavosi, Ali Javinani, Shayan Mostafaei, Mehran Pournazari, Baharak Tasorian, Elham Farhadi, Asghar Hajiabbasi, Habib Zayeni, Alireza Khabbazi, Ahmadreza Jamshidi, Irandokht Shenavar Masooleh, Zahra Tamartash, Mahdi Vojdanian, Mahdi Mahmoudi","doi":"10.18502/ijaai.v22i1.12003","DOIUrl":"https://doi.org/10.18502/ijaai.v22i1.12003","url":null,"abstract":"<p><p>Takayasu arteritis (TA) is a chronic inflammatory disorder characterized by vascular damage and fibrosis in the intima that commonly occurs in the aorta. In many damaged sites in TA patients, natural killer (NK) cells have been shown to be hyperactivated and produce inflammatory cytokines and toxic components. Killer cell immunoglobulin-like receptors (KIRs) are found on NK cells and interact with human leukocyte antigen (HLA) class I ligands to activate or suppress NK cells. The present study assessed the possible role of KIR and their HLA ligand genes in susceptibility to TA in Iranian patients. This case-control study included 50 TA patients and 50 healthy subjects. DNA was extracted from whole peripheral blood samples, and polymerase chain reaction with sequence-specific primers (PCR-SSP) was performed to recognize the presence or absence of polymorphism in 17 KIR genes and 5 HLA class I ligands in each participant. Among the KIR and HLA genes, a significant decrease was detected in the frequency of 2DS4 (full allele) in TA patients (38%) compared with healthy controls (82%) (OR=0.13, 95% CI=0.05-0.34). However, none of the KIR and HLA genotypes or the interactions between these genes were associated with susceptibility to TA. The KIR2DS4 gene might be involved in the regulation of activation as well as the production of cytotoxic mediators of NK cells in patients with TA.</p>","PeriodicalId":14560,"journal":{"name":"Iranian journal of allergy, asthma, and immunology","volume":"22 1","pages":"25-33"},"PeriodicalIF":1.5,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9582760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}