首页 > 最新文献

J. Comput. Sci.最新文献

英文 中文
Extended BGK model for diatomic gases 双原子气体的扩展BGK模型
Pub Date : 2020-06-27 DOI: 10.1016/j.jocs.2020.101179
Praveen Kumar Kolluru, M. Atif, S. Ansumali
{"title":"Extended BGK model for diatomic gases","authors":"Praveen Kumar Kolluru, M. Atif, S. Ansumali","doi":"10.1016/j.jocs.2020.101179","DOIUrl":"https://doi.org/10.1016/j.jocs.2020.101179","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"70 5 1","pages":"101179"},"PeriodicalIF":0.0,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87711519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Towards a generalised lattice Boltzmann method for aerodynamic simulations 气动模拟的广义晶格玻尔兹曼方法
Pub Date : 2020-06-26 DOI: 10.1016/j.jocs.2020.101182
J. A. R. Barraza, R. Deiterding
{"title":"Towards a generalised lattice Boltzmann method for aerodynamic simulations","authors":"J. A. R. Barraza, R. Deiterding","doi":"10.1016/j.jocs.2020.101182","DOIUrl":"https://doi.org/10.1016/j.jocs.2020.101182","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"45 1","pages":"101182"},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84306701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Sub-Kolmogorov droplet dynamics in isotropic turbulence using a multiscale lattice Boltzmann scheme 基于多尺度晶格玻尔兹曼格式的各向同性湍流中的亚kolmogorov液滴动力学
Pub Date : 2020-06-26 DOI: 10.1016/j.jocs.2020.101178
F. Milan, F. Milan, Luca Biferale, M. Sbragaglia, F. Toschi, F. Toschi
{"title":"Sub-Kolmogorov droplet dynamics in isotropic turbulence using a multiscale lattice Boltzmann scheme","authors":"F. Milan, F. Milan, Luca Biferale, M. Sbragaglia, F. Toschi, F. Toschi","doi":"10.1016/j.jocs.2020.101178","DOIUrl":"https://doi.org/10.1016/j.jocs.2020.101178","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"28 1","pages":"101178"},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76642958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Development of element-by-element kernel algorithms in unstructured finite-element solvers for many-core wide-SIMD CPUs: Application to earthquake simulation 多核宽simd cpu非结构化有限元求解器逐元核算法的发展:在地震模拟中的应用
Pub Date : 2020-06-26 DOI: 10.1016/j.jocs.2020.101174
K. Fujita, Masashi Horikoshi, T. Ichimura, L. Meadows, K. Nakajima, M. Hori, Lalith Maddegedara
{"title":"Development of element-by-element kernel algorithms in unstructured finite-element solvers for many-core wide-SIMD CPUs: Application to earthquake simulation","authors":"K. Fujita, Masashi Horikoshi, T. Ichimura, L. Meadows, K. Nakajima, M. Hori, Lalith Maddegedara","doi":"10.1016/j.jocs.2020.101174","DOIUrl":"https://doi.org/10.1016/j.jocs.2020.101174","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"135 1","pages":"101174"},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79624237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Real-time Mobile Sensor Management Framework for city-scale environmental monitoring 用于城市规模环境监测的实时移动传感器管理框架
Pub Date : 2020-05-20 DOI: 10.1016/J.JOCS.2020.101205
Kun Qian, C. Claudel
{"title":"Real-time Mobile Sensor Management Framework for city-scale environmental monitoring","authors":"Kun Qian, C. Claudel","doi":"10.1016/J.JOCS.2020.101205","DOIUrl":"https://doi.org/10.1016/J.JOCS.2020.101205","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"45 1","pages":"101205"},"PeriodicalIF":0.0,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75521839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Surrogate-assisted performance prediction for data-driven knowledge discovery algorithms: Application to evolutionary modeling of clinical pathways 数据驱动的知识发现算法的代理辅助性能预测:应用于临床路径的进化建模
Pub Date : 2020-04-02 DOI: 10.1016/j.jocs.2022.101562
Anastasia A. Funkner, A. Yakovlev, S. Kovalchuk
{"title":"Surrogate-assisted performance prediction for data-driven knowledge discovery algorithms: Application to evolutionary modeling of clinical pathways","authors":"Anastasia A. Funkner, A. Yakovlev, S. Kovalchuk","doi":"10.1016/j.jocs.2022.101562","DOIUrl":"https://doi.org/10.1016/j.jocs.2022.101562","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"19 1","pages":"101562"},"PeriodicalIF":0.0,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78466590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A coupled lattice Boltzmann-Multiparticle collision method for multi-resolution hydrodynamics 多分辨率流体力学的晶格玻尔兹曼-多粒子耦合碰撞方法
Pub Date : 2020-04-01 DOI: 10.1016/j.jocs.2020.101160
A. Montessori, A. Tiribocchi, M. Lauricella, S. Succi
{"title":"A coupled lattice Boltzmann-Multiparticle collision method for multi-resolution hydrodynamics","authors":"A. Montessori, A. Tiribocchi, M. Lauricella, S. Succi","doi":"10.1016/j.jocs.2020.101160","DOIUrl":"https://doi.org/10.1016/j.jocs.2020.101160","url":null,"abstract":"","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"32 1","pages":"101160"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89887560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multi-Dimensional HITS Based on Random Walks for Multilayer Temporal Networks 基于随机游动的多层时间网络多维HITS
Pub Date : 2020-01-01 DOI: 10.17706/jcp.15.3.98-105
Laishui Lv, Kun Zhang
Numerous centrality measures have been established to identify the important nodes in static networks, among them, HITS centrality is widely used as a ranking method. In this paper, we extend the classical HITS centrality to rank nodes in multilayer temporal networks with directed edges. First, we use a sixth-order tensor to represent multilayer temporal network and then introduce random walks in the established sixth-order tensor by constructing six transition probability tensors. Second, we establish tensor equations based on these constructed tensors to obtain six centrality vectors: two for the nodes, two for the layers and two for the time stamps. Besides, we prove the existence of the proposed centrality measure under some conditions. Finally, we experimentally show the effectiveness of the proposed centrality on an synthetic network and a real-world network.
为了识别静态网络中的重要节点,已经建立了许多中心性度量,其中HITS中心性作为一种排序方法被广泛使用。在本文中,我们将经典的HITS中心性扩展到具有有向边的多层时态网络中的节点排序。首先,我们使用一个六阶张量来表示多层时间网络,然后通过构造六个转移概率张量在建立的六阶张量中引入随机游动。其次,我们基于这些构造的张量建立张量方程,以获得六个中心性向量:两个用于节点,两个用于层和两个用于时间戳。此外,我们还在一定条件下证明了所提出的中心性测度的存在性。最后,我们通过实验证明了所提出的中心性在合成网络和现实世界网络上的有效性。
{"title":"Multi-Dimensional HITS Based on Random Walks for Multilayer Temporal Networks","authors":"Laishui Lv, Kun Zhang","doi":"10.17706/jcp.15.3.98-105","DOIUrl":"https://doi.org/10.17706/jcp.15.3.98-105","url":null,"abstract":"Numerous centrality measures have been established to identify the important nodes in static networks, among them, HITS centrality is widely used as a ranking method. In this paper, we extend the classical HITS centrality to rank nodes in multilayer temporal networks with directed edges. First, we use a sixth-order tensor to represent multilayer temporal network and then introduce random walks in the established sixth-order tensor by constructing six transition probability tensors. Second, we establish tensor equations based on these constructed tensors to obtain six centrality vectors: two for the nodes, two for the layers and two for the time stamps. Besides, we prove the existence of the proposed centrality measure under some conditions. Finally, we experimentally show the effectiveness of the proposed centrality on an synthetic network and a real-world network.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"94 1","pages":"98-105"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74933359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Reasoning in the Knowledge-Based Dynamic Fuzzy Sets 基于知识的动态模糊集近似推理
Pub Date : 2020-01-01 DOI: 10.17706/jcp.15.2.59-72
R. Intan, S. Halim, L. P. Dewi
Intan and Mukaidono discussed that knowledge plays an important role in determining the membership function of a given fuzzy set by introducing a concept, called Knowledge-based Fuzzy Sets (KFS) in 2002. Here, the membership degree of an element given a fuzzy set is subjectively determined by the knowledge. Every knowledge may have each different membership degree of the element given the fuzzy set. In 1988, Wang et al. extended the concept of fuzzy set, called Dynamic Fuzzy Sets (DFS) by considering that the membership degree of an element given a fuzzy set might be dynamically changeable over the time. Both generalized concepts, KFS and DFS, were hybridized by Intan et al. to be a Knowledge-based Dynamic Fuzzy Set (KDFS). As usually happened in the real-world application, the KDFS showed that a membership function of a given fuzzy set subjectively determined by a certain knowledge may be dynamically changeable over time. Moreover, the concept of fuzzy granularity was discussed dealing with the KDFS. Related to the concept of fuzzy granularity in KDFS, this paper discusses the concept of approximate reasoning of KDFS in representing fuzzy production rules as generally applied in the fuzzy expert system.
Intan和Mukaidono在2002年提出了基于知识的模糊集(knowledge -based fuzzy Sets, KFS)的概念,讨论了知识在确定给定模糊集的隶属函数方面起着重要作用。在这里,给定一个模糊集合的元素的隶属度是由知识主观上决定的。在给定的模糊集合中,每个知识的元素的隶属度可能各不相同。1988年,Wang等人考虑到给定模糊集的元素的隶属度可能随时间动态变化,对模糊集的概念进行了扩展,称为动态模糊集(Dynamic fuzzy Sets, DFS)。Intan等人将广义概念KFS和DFS混合成基于知识的动态模糊集(KDFS)。正如在实际应用中经常发生的那样,KDFS表明,由某一知识主观确定的给定模糊集的隶属度函数可能随时间动态变化。在此基础上,讨论了模糊粒度的概念。结合KDFS中的模糊粒度概念,讨论了模糊专家系统中常用的KDFS表示模糊产生规则的近似推理概念。
{"title":"Approximate Reasoning in the Knowledge-Based Dynamic Fuzzy Sets","authors":"R. Intan, S. Halim, L. P. Dewi","doi":"10.17706/jcp.15.2.59-72","DOIUrl":"https://doi.org/10.17706/jcp.15.2.59-72","url":null,"abstract":"Intan and Mukaidono discussed that knowledge plays an important role in determining the membership function of a given fuzzy set by introducing a concept, called Knowledge-based Fuzzy Sets (KFS) in 2002. Here, the membership degree of an element given a fuzzy set is subjectively determined by the knowledge. Every knowledge may have each different membership degree of the element given the fuzzy set. In 1988, Wang et al. extended the concept of fuzzy set, called Dynamic Fuzzy Sets (DFS) by considering that the membership degree of an element given a fuzzy set might be dynamically changeable over the time. Both generalized concepts, KFS and DFS, were hybridized by Intan et al. to be a Knowledge-based Dynamic Fuzzy Set (KDFS). As usually happened in the real-world application, the KDFS showed that a membership function of a given fuzzy set subjectively determined by a certain knowledge may be dynamically changeable over time. Moreover, the concept of fuzzy granularity was discussed dealing with the KDFS. Related to the concept of fuzzy granularity in KDFS, this paper discusses the concept of approximate reasoning of KDFS in representing fuzzy production rules as generally applied in the fuzzy expert system.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"58 1","pages":"59-72"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91347962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Convolutional Neural Network for Remote-Sensing Scene Image Classification 基于卷积神经网络的遥感场景图像分类
Pub Date : 2020-01-01 DOI: 10.17706/jcp.15.2.48-58
Muhammad Ashad Baloch, Sajid Ali, Mubashir H. Malik, Aamir Hussain, Abdul Mustaan Madni
Deep neural networks are providing a powerful solution for remote-sensing scene image classification. However, a limited number of training samples, inter-class similarity among scene categories, and to get the benefits of multi-layer features remains a significant challenge in the remote sensing domain. Many efforts have been proposed to deal the above challenges by adapting knowledge of state-of-the-art networks such as AlexNet, GoogleNet, OverFeat, etc. However, these networks have high number of parameters. This research proposes a five-layer architecture which has fewer parameters compared with above state-of-the-art networks, and can be also complementary to other convolutional neural network features. Extensive experiments on UC Merced and WHU-RS datasets prove that although our network decreases the number of parameters dramatically, it generates more accurate results than AlexNet, OverFeat, and its accuracy is comparable with other state-of-the-art methods.
深度神经网络为遥感场景图像分类提供了强有力的解决方案。然而,训练样本数量有限、场景类别之间的类间相似性以及如何利用多层特征的优势仍然是遥感领域面临的一个重大挑战。已经提出了许多努力,通过适应最先进的网络(如AlexNet, GoogleNet, OverFeat等)的知识来应对上述挑战。然而,这些网络有大量的参数。本研究提出了一种五层架构,与上述最先进的网络相比,该架构具有更少的参数,并且可以与其他卷积神经网络特征互补。在UC Merced和WHU-RS数据集上进行的大量实验证明,尽管我们的网络大大减少了参数的数量,但它产生的结果比AlexNet、OverFeat更准确,其准确性与其他最先进的方法相当。
{"title":"An Efficient Convolutional Neural Network for Remote-Sensing Scene Image Classification","authors":"Muhammad Ashad Baloch, Sajid Ali, Mubashir H. Malik, Aamir Hussain, Abdul Mustaan Madni","doi":"10.17706/jcp.15.2.48-58","DOIUrl":"https://doi.org/10.17706/jcp.15.2.48-58","url":null,"abstract":"Deep neural networks are providing a powerful solution for remote-sensing scene image classification. However, a limited number of training samples, inter-class similarity among scene categories, and to get the benefits of multi-layer features remains a significant challenge in the remote sensing domain. Many efforts have been proposed to deal the above challenges by adapting knowledge of state-of-the-art networks such as AlexNet, GoogleNet, OverFeat, etc. However, these networks have high number of parameters. This research proposes a five-layer architecture which has fewer parameters compared with above state-of-the-art networks, and can be also complementary to other convolutional neural network features. Extensive experiments on UC Merced and WHU-RS datasets prove that although our network decreases the number of parameters dramatically, it generates more accurate results than AlexNet, OverFeat, and its accuracy is comparable with other state-of-the-art methods.","PeriodicalId":14601,"journal":{"name":"J. Comput. Sci.","volume":"35 1","pages":"48-58"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77102674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
J. Comput. Sci.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1