In vivo levels of insulin are oscillatory with a period of ~5-10 minutes, indicating that the islets of Langerhans within the pancreas are synchronized. While the synchronizing factors are still under investigation, one result of this behavior is expected to be coordinated and oscillatory intracellular factors, such as intracellular Ca2+ levels, throughout the islet population. In other cell types, oscillatory intracellular signals, like intracellular Ca2+, have been shown to affect specific gene expression. To test how the gene expression landscape may differ between a synchronized islet population with its reproducible intracellular oscillations and an unsynchronized islet population with heterogeneous oscillations, gene set enrichment analysis (GSEA) was used to compare an islet population that had been synchronized using a glucose wave with a 5-min period, and an unsynchronized islet population. In the population exposed to the glucose wave, 58/62 islets showed synchronization as evidenced by coordinated intracellular Ca2+ oscillations with an average oscillation period of 5.1 min, while in the unsynchronized population 29/62 islets showed slow oscillations with an average period of 5.2 min. The synchronized islets also had a significantly smaller drift of their oscillation period during the experiment as compared to the unsynchronized population. GSEA indicated that the synchronized population had reduced expression of gene sets related to protein translation, protein turnover, energy expenditure, and insulin synthesis, while those that were related to maintenance of cell morphology were increased.
Pancreatic islets play an essential role in regulating blood glucose levels. Age-dependent development of glucose intolerance and insulin resistance results in hyperglycemia, which in turn stimulates insulin synthesis and secretion from aged islets, to fulfill the increased demand for insulin. However, the mechanism underlying enhanced insulin secretion remains unknown. Glutamic acid decarboxylase 67 (GAD67) catalyzes the conversion of glutamate into γ-aminobutyric acid (GABA) and CO2. Both glutamate and GABA can affect islet function. Here, we investigated the role of GAD67 in insulin secretion in young (3 month old) and aged (24 month old) C57BL/6J male mice. Unlike young mice, aged mice displayed glucose-intolerance and insulin-resistance. However, aged mice secreted more insulin and showed lower fed blood glucose levels than young mice. GAD67 levels in primary islets increased with aging and in response to high glucose levels. Inhibition of GAD67 activity using a potent inhibitor of GAD, 3-mercaptopropionic acid, abrogated glucose-stimulated insulin secretion from a pancreatic β-cell line and from young and aged islets. Collectively, our results suggest that blood glucose levels regulate GAD67 expression, which contributes to β-cell responses to impaired glucose homeostasis caused by advanced aging.
Immunologic and non-immunologic loss of islet cells upon their transplantation into the liver leads to suboptimal outcomes. Anti-inflammatory agents are used during autologous and allogeneic transplantation. The aim of this qualitative systematic literature review is to evaluate their clinical use and safety. Electronic databases Embase, PubMed, Cumulative Index for Nursing and Allied Health Literature, ClinicalTrials.gov, and EU Clinical Trials Register were searched. Of the 216 unique citations, 10 with tumor necrosis factor (TNF) blockers [etanercept (ETA) or infliximab] and 3 with both TNF blockers and an interluekin-1 receptor antagonist [anakinra (ANA)]) were included. Of these, 12 were in allogeneic and one in autologous transplant. Insulin independence with decreased islet cells and number of transfusions were reported with their use. One infection was reported in a group receiving ETA. Analysis suggested that the use of ETA ± ANA have the potential to improve outcomes in islet cell transplant.
The aim of the study was to determine the acute contribution of fuel oxidation in mediating the increase in insulin secretion rate (ISR) in response to fatty acids. Measures of mitochondrial metabolism, as reflected by oxygen consumption rate (OCR) and cytochrome c reduction, calcium signaling, and ISR by rat islets were used to evaluate processes stimulated by acute exposure to palmitic acid (PA). The contribution of mitochondrial oxidation of PA was determined in the presence and absence of a blocker of mitochondrial transport of fatty acids (etomoxir) at different glucose concentrations. Subsequent to increasing glucose from 3 to 20 mM, PA caused small increases in OCR and cytosolic calcium (about 20% of the effect of glucose). In contrast, the effect of PA on ISR was almost 3 times that by glucose, suggesting that the metabolism of PA is not the dominant mechanism mediating PA's effect on ISR. This was further supported by lack of inhibition of PA-stimulated OCR and ISR when blocking entry of PA into mitochondria (with etomoxir), and PA's lack of stimulation of reduced cytochrome c in the presence of high glucose. Consistent with the lack of metabolic stimulation by PA, an inhibitor of calcium release from the endoplasmic reticulum, but not a blocker of L-type calcium channels, abolished the PA-induced elevation of cytosolic calcium. Notably, ISR was unaffected by thapsigargin showing the dissociation of endoplasmic reticulum calcium release and second phase insulin secretion. In conclusion, stimulation of ISR by PA was mediated by mechanisms largely independent of the oxidation of the fuel.
Body mass index (BMI) is widely used to define obesity. In studies of pancreatic beta-cell/islet mass, BMI is also a common standard for matching control subjects in comparative studies along with age and sex, based on the existing dogma of their significant positive correlation reported in the literature. We aimed to test the feasibility of BMI and BSA to assess obesity and predict beta-cell/islet mass. We used National Health and Nutrition Examination Survey (NHANES) data that provided dual-energy Xray absorptiometry (DXA)-measured fat mass (percent body fat; %BF), BMI, and BSA for adult subjects (20-75y; 4,879 males and 4,953 females). We then analyzed 152 cases of islet isolation performed at our center for correlation between islet yields and various donor anthropometric indices. From NHANES, over 50% of male subjects and 60% of female subjects with BMI:20.1-28.1 were obese as defined by %BF, indicating a poor correlation between BMI and %BF. BSA was also a poor indicator of %BF, as broad overlap was observed in different BSA ranges. Additionally, BMI and BSA ranges markedly varied between sex and race/ethnicity groups. From islet isolation, BMI and BSA accounted for only a small proportion of variance in islet equivalent (IEQ; r2 = 0.09 and 0.11, respectively). BMI and obesity were strongly correlated in cases of high BMI subjects. However, the critical populations were non-obese subjects with BMI ranging from 20.1-28.1, in which a substantial proportion of individuals may carry excess body fat. Correlations between BMI, BSA, pancreas weight and beta-cell/islet mass were low.
The gut microbiota can play a role in pancreatitis and, likely, in the development of type 1 diabetes (T1D). Anti-microbial peptides and secretory proteins are important mediators of the innate immune response against bacteria but their expression in the human pancreas is not fully known. In this study, immunohistochemistry was used to analyze the expression of seven anti-microbial peptides (Defensin α1, α4, β1-4 and Cathelicidin) and two secretory proteins with known antimicrobial properties (REG3A and GP2) in pancreatic and duodenal biopsies from 10 non-diabetic organ donors and one organ donor that died at onset of T1D. Immunohistochemical data was compared with previously published whole-transcriptome data sets. Seven (Defensin α1, β2, β3, α4, GP2, Cathelicidin, and REG3A) host defense molecules showed positive staining patterns in most non-diabetic organ donors, whereas two (Defensin β1 and β4) were negative in all non-diabetic donors. Two molecules (Defensin α1 and GP2) were restricted to the exocrine pancreas whereas two (Defensin β3, α4) were only expressed in islet tissue. Cathelicidin, β2, and REG3A were expressed in both islets and exocrine tissue. The donor that died at onset of T1D had generally less positivity for the host defense molecules, but, notably, this pancreas was the only one where defensin β1 was found. Neither donor age, immune-cell infiltration, nor duodenal expression correlated to the pancreatic expression of host defense molecules. In conclusion, these findings could have important implications for the inflammatory processes in diabetes and pancreatitis as we find several host defense molecules expressed by the pancreatic tissue.
Histopathology based studies of the pancreas obtained from organ donors are increasing our awareness of islet phenotypic heterogeneity during development and aging, as well as in settings of type 1 diabetes, type 2 diabetes, monogenic diabetes or other forms of this metabolic disease. Islet amyloidosis represents a histopathological feature classically ascribed to patients with type 2 diabetes. Herein, the occurrence of islet amyloidosis and its severity are reported in a child with type 1 diabetes along with histological comparisons of islet amyloidosis in two young adults with recent-onset type 1 diabetes. Islet amyloidosis was infrequent yet widely distributed throughout the pancreas in the child with type 1 diabetes and both adults with type 1 diabetes, with no such pathology seen in matched control donors. Analysis of these cases add to the increasing appreciation of islet heterogeneity in children and young adults with type 1 diabetes. Such knowledge also supports a notion that multiple pathophysiological mechanisms underlie the loss of functional β-cell mass in the spectrum of clinical phenotypes in patients with type 1 diabetes.
A potentiating effect of medium-chain triglycerides on glucose-stimulated insulin secretion (GSIS) has been observed since the 1960s. Subsequent observations identified octanoic acid (OA), the main component of medium-chain triglyceride, as the potentiator of GSIS, but the mechanism was unclear. We used wild-type (WT), short-chain 3-hydroxyacyl-CoA dehydrogenase knockout (Hadh-/-), and sulfonylurea receptor 1 knockout (Sur1-/-) mouse islets to define the mechanism of OA potentiation of insulin secretion. Application of OA alone induced a 2- to 3- fold increase of insulin secretion with an apparent threshold of 3 mM in WT mouse islets, suggesting that OA itself is a weak insulin secretagogue. However, OA at 1 mM strongly potentiated fuel-stimulated insulin secretion, especially GSIS. The potentiating effect on fuel-stimulated insulin secretion by OA did not require fatty acid β-oxidation because OA also potentiated amino acid-stimulated insulin secretion in islets isolated from Hadh-/- mice, which cannot fully oxidize OA. Measurements using Sur1-/- islets indicated that the potentiating effect of OA on fuel-stimulated insulin secretion is Ca2+ dependent and is often accompanied by β-cell membrane potential depolarization, and may also involve the Ca2+/calmodulin complex. Experiments using DCPIB, an ethacrynic acid derivative, to inhibit volume-sensitive anion channels (VSACs) in Sur1-/- islets demonstrated that the potentiation effects of OA on insulin secretion are in part medicated by activation of VSAC. In addition, inhibition of IP3 receptor also abolishes the OA-induced intracellular Ca2+ increase in Sur1-/- islets.