Pub Date : 2022-12-06DOI: 10.1142/s0218126623501803
Wanyi Chen, Luqi Miao
{"title":"Urban Digital Transformation and Enterprise Personal Data Protection","authors":"Wanyi Chen, Luqi Miao","doi":"10.1142/s0218126623501803","DOIUrl":"https://doi.org/10.1142/s0218126623501803","url":null,"abstract":"","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"1 1","pages":"2350180:1-2350180:23"},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73078588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-05DOI: 10.1142/s0218126623501268
M. Yadav, Navdeep Singh
The negative solar resistance, is highly dependent on the solar operating point. The system will become sluggish and unstable during low irradiance. It is reported that the impact of negative solar resistance is nullified by parallel impedance emulated condition (PIEC). During low irradiance, the system stability has been moved to an unstable position which is not fully resolved by PIEC. In this paper, a virtual inertia-damping voltage and current solar droop emulated controller is proposed to improve the voltage oscillation profile, inertia problem and damping of the DC microgrid system. In DC microgrids, the inherent inertia from DC capacitors is low, thus affecting the bus voltage oscillation during a reduction of irradiance. The oscillation of the system has been increased due to the equivalent impedance by negative solar resistance at lower irradiance. Oscillation’s issue and voltage instability of the PV system have been enhanced by the inner current controller. In addition, the steady-state error of the PV voltage is minimized by the virtual inertia-damping voltage restoration droop controller with PIEC. Performance analysis and dynamic characteristics are discussed through a pole-zero plot for the various conditions of negative solar resistance using virtual inertia-damping voltage and current Solar Droop Emulated Controller. This paper focuses on stability analysis to strengthen the DC microgrid. The performance of the solar controller with bidirectional converter (BDC) controller has been discussed to verify the power management between the system to manage the power for the unbalanced load.
{"title":"Impact of Negative Solar Resistance on DC Microgrid Stability: Virtual Damping Voltage and Current Solar Droop Emulated Controller","authors":"M. Yadav, Navdeep Singh","doi":"10.1142/s0218126623501268","DOIUrl":"https://doi.org/10.1142/s0218126623501268","url":null,"abstract":"The negative solar resistance, is highly dependent on the solar operating point. The system will become sluggish and unstable during low irradiance. It is reported that the impact of negative solar resistance is nullified by parallel impedance emulated condition (PIEC). During low irradiance, the system stability has been moved to an unstable position which is not fully resolved by PIEC. In this paper, a virtual inertia-damping voltage and current solar droop emulated controller is proposed to improve the voltage oscillation profile, inertia problem and damping of the DC microgrid system. In DC microgrids, the inherent inertia from DC capacitors is low, thus affecting the bus voltage oscillation during a reduction of irradiance. The oscillation of the system has been increased due to the equivalent impedance by negative solar resistance at lower irradiance. Oscillation’s issue and voltage instability of the PV system have been enhanced by the inner current controller. In addition, the steady-state error of the PV voltage is minimized by the virtual inertia-damping voltage restoration droop controller with PIEC. Performance analysis and dynamic characteristics are discussed through a pole-zero plot for the various conditions of negative solar resistance using virtual inertia-damping voltage and current Solar Droop Emulated Controller. This paper focuses on stability analysis to strengthen the DC microgrid. The performance of the solar controller with bidirectional converter (BDC) controller has been discussed to verify the power management between the system to manage the power for the unbalanced load.","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"25 1","pages":"2350126:1-2350126:28"},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84121156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-02DOI: 10.1142/s0218126623501311
N. Akhter, H. Kumawat, A. A. B. Raj
Nowadays, developing the radio frequency (RF)-photonic sensors suitable for several Defence and civil applications is emerging due to its various unique advantages. In today’s scientific world, the involvement of low radar cross-section (RCS) airspace targets, such as unman aerial vehicles, drones, mini-helicopters, ornithopters, bionic birds, etc., is more for the purpose of airspace traffic management/guidance, materials delivery, legal/illegal surveillance and Defence/offense applications. The detection and recognition of such targets using the conventional RF sensors (which process only the main Doppler) is almost impossible. Therefore, extracting the distinctive micro-Doppler (m-D) signatures of these low-RCS targets and using them to image/differentiate/recognize their postures become significant which is the main contribution in this paper. A C-band continuous wave RF-photonic sensor is developed and different low-RCS targets: 2/3 blades rotating propeller system (drones), cone like structure (warhead) and a bionic-bird (spy-bird); are operated in front of it. The different nonlinear postures, of these targets, covered in our experimental measurements are m-D extraction of a slowly moving propeller system, detection of back-and-forth movements of a rotational propeller system, discerning the moving and static rotational propeller systems, simultaneous extraction of m-D signatures of a rotational and moving targets and recognition of flapping/gliding motions of bionic-bird. The analysis and recognition of all these postures using the experimentally generated m-D signatures are described.
{"title":"Development of RF-Photonic System for Automatic Targets' Nonlinear Rotational/Flapping/Gliding Signatures Imaging Applications","authors":"N. Akhter, H. Kumawat, A. A. B. Raj","doi":"10.1142/s0218126623501311","DOIUrl":"https://doi.org/10.1142/s0218126623501311","url":null,"abstract":"Nowadays, developing the radio frequency (RF)-photonic sensors suitable for several Defence and civil applications is emerging due to its various unique advantages. In today’s scientific world, the involvement of low radar cross-section (RCS) airspace targets, such as unman aerial vehicles, drones, mini-helicopters, ornithopters, bionic birds, etc., is more for the purpose of airspace traffic management/guidance, materials delivery, legal/illegal surveillance and Defence/offense applications. The detection and recognition of such targets using the conventional RF sensors (which process only the main Doppler) is almost impossible. Therefore, extracting the distinctive micro-Doppler (m-D) signatures of these low-RCS targets and using them to image/differentiate/recognize their postures become significant which is the main contribution in this paper. A C-band continuous wave RF-photonic sensor is developed and different low-RCS targets: 2/3 blades rotating propeller system (drones), cone like structure (warhead) and a bionic-bird (spy-bird); are operated in front of it. The different nonlinear postures, of these targets, covered in our experimental measurements are m-D extraction of a slowly moving propeller system, detection of back-and-forth movements of a rotational propeller system, discerning the moving and static rotational propeller systems, simultaneous extraction of m-D signatures of a rotational and moving targets and recognition of flapping/gliding motions of bionic-bird. The analysis and recognition of all these postures using the experimentally generated m-D signatures are described.","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"164 1","pages":"2350131:1-2350131:26"},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86162841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-02DOI: 10.1142/s0218126623501827
Vinodhini C Aruna, S. Sabena
{"title":"An Integrated XI-UNet for Accurate Retinal Vessel Segmentation","authors":"Vinodhini C Aruna, S. Sabena","doi":"10.1142/s0218126623501827","DOIUrl":"https://doi.org/10.1142/s0218126623501827","url":null,"abstract":"","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"17 1","pages":"2350182:1-2350182:13"},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75316904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1142/s0218126623501773
Yanfeng Geng, Zhong Zheng
{"title":"Wireless Communication for Drilling Using Acoustic Wave Based on MIMO-OFDM","authors":"Yanfeng Geng, Zhong Zheng","doi":"10.1142/s0218126623501773","DOIUrl":"https://doi.org/10.1142/s0218126623501773","url":null,"abstract":"","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"37 1","pages":"2350177:1-2350177:27"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86861539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1142/s0218126623501797
K. Sivakumar, S. Sasikumar, M. Krishnamurthy
{"title":"Tree Social Relations Optimization-Based ReLU-BiLSTM Framework for Improving Video Quality in Video Compression","authors":"K. Sivakumar, S. Sasikumar, M. Krishnamurthy","doi":"10.1142/s0218126623501797","DOIUrl":"https://doi.org/10.1142/s0218126623501797","url":null,"abstract":"","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"365 1","pages":"2350179:1-2350179:21"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84909285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-30DOI: 10.1142/s0218126623501669
Saeid Seyedi, N. J. Navimipour
{"title":"A Space-Efficient Universal and Multi-Operative Reversible Gate Design Based on Quantum-Dots","authors":"Saeid Seyedi, N. J. Navimipour","doi":"10.1142/s0218126623501669","DOIUrl":"https://doi.org/10.1142/s0218126623501669","url":null,"abstract":"","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"13 1","pages":"2350166:1-2350166:10"},"PeriodicalIF":0.0,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87684945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-25DOI: 10.1142/s021812662350127x
Ö. Akmese
Random number generator design is one of the practical applications of nonlinear systems. This study used random number generation and sound encryption application with a fractional chaotic system. Random numbers were generated with the Langford chaotic system, and a sound encryption application was carried out for the secure transmission of voice messages. Randomization performance of numbers was evaluated by employing NIST-800-22 statistical tests, which meet the highest international requirements. It was observed that the distributions of these generated random numbers reached the desired level of randomness after the examination. Unlike the integer-order random number generators widely used in the literature, the fractional-order Langford chaotic system was employed to generate and analyze random numbers and demonstrate their utilization in sound encryption. Random numbers generated from a fractional degree-based chaotic system developed in this study can be used in cryptology, secret writing, stamping, statistical sampling, computer simulations, dynamic information compression and coding.
{"title":"A Novel Random Number Generator and Its Application in Sound Encryption Based on a Fractional-Order Chaotic System","authors":"Ö. Akmese","doi":"10.1142/s021812662350127x","DOIUrl":"https://doi.org/10.1142/s021812662350127x","url":null,"abstract":"Random number generator design is one of the practical applications of nonlinear systems. This study used random number generation and sound encryption application with a fractional chaotic system. Random numbers were generated with the Langford chaotic system, and a sound encryption application was carried out for the secure transmission of voice messages. Randomization performance of numbers was evaluated by employing NIST-800-22 statistical tests, which meet the highest international requirements. It was observed that the distributions of these generated random numbers reached the desired level of randomness after the examination. Unlike the integer-order random number generators widely used in the literature, the fractional-order Langford chaotic system was employed to generate and analyze random numbers and demonstrate their utilization in sound encryption. Random numbers generated from a fractional degree-based chaotic system developed in this study can be used in cryptology, secret writing, stamping, statistical sampling, computer simulations, dynamic information compression and coding.","PeriodicalId":14696,"journal":{"name":"J. Circuits Syst. Comput.","volume":"10 1","pages":"2350127:1-2350127:18"},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85640341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}