Deborah Pietrobono, Lara Russo, Maria Sofia Bertilacchi, Laura Marchetti, Claudia Martini, Chiara Giacomelli, Maria Letizia Trincavelli
Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.
{"title":"Extracellular adenosine oppositely regulates the purinome machinery in glioblastoma and mesenchymal stem cells","authors":"Deborah Pietrobono, Lara Russo, Maria Sofia Bertilacchi, Laura Marchetti, Claudia Martini, Chiara Giacomelli, Maria Letizia Trincavelli","doi":"10.1002/iub.2905","DOIUrl":"10.1002/iub.2905","url":null,"abstract":"<p>Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1234-1251"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This systematic literature review and meta-analysis provide an overview of the critical role of gut microbiota in modulating the efficacy of immunotherapy for colorectal cancer. Gut microbes influence host immune responses through multiple mechanisms including modulation of immune cell activity, metabolite action, and immune tolerance. The ability of specific gut microbes to improve the efficacy of immune checkpoint inhibitors has been linked to their ability to improve gut barrier function, modulate immune cell activity, and produce key immunomodulatory metabolites such as short-chain fatty acids. In addition, the composition and diversity of the gut microbiota are strongly associated with the efficacy of immunotherapies, demonstrating the potential to improve therapeutic response by modifying the gut microbiota. This paper also discusses the prospect of manipulating the gut microbiota through strategies such as fecal microbial transplantation, probiotic supplementation, and dietary modifications to optimize the efficacy of immunotherapy.
{"title":"The role of the gut microbiome in modulating immunotherapy efficacy in colorectal cancer","authors":"Siyuan Zuo, Yong Huang, Junwei Zou","doi":"10.1002/iub.2908","DOIUrl":"10.1002/iub.2908","url":null,"abstract":"<p>This systematic literature review and meta-analysis provide an overview of the critical role of gut microbiota in modulating the efficacy of immunotherapy for colorectal cancer. Gut microbes influence host immune responses through multiple mechanisms including modulation of immune cell activity, metabolite action, and immune tolerance. The ability of specific gut microbes to improve the efficacy of immune checkpoint inhibitors has been linked to their ability to improve gut barrier function, modulate immune cell activity, and produce key immunomodulatory metabolites such as short-chain fatty acids. In addition, the composition and diversity of the gut microbiota are strongly associated with the efficacy of immunotherapies, demonstrating the potential to improve therapeutic response by modifying the gut microbiota. This paper also discusses the prospect of manipulating the gut microbiota through strategies such as fecal microbial transplantation, probiotic supplementation, and dietary modifications to optimize the efficacy of immunotherapy.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1050-1057"},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EXPRESSION OF CONCERN: A. Bolli, P. Galluzzo, P. Ascenzi, G. Del Pozzo, I. Manco, M. T. Vietri, L. Mita, L. Altucci, D. G. Mita, and M. Marino, “ Laccase Treatment Impairs Bisphenol A-Induced Cancer Cell Proliferation Affecting Estrogen Receptor α-Dependent Rapid Signals,” IUBMB Life60, no. 12 (2008): 843–852, https://doi.org/10.1002/iub.130.
This Expression of Concern is for the above article, published online on 02 September 2008 in Wiley Online Library (wileyonlinelibrary.com), and has been published by agreement between the journal Editor-in-Chief, Efstathios S. Gonos; the International Union of Biochemistry and Molecular Biology; and Wiley Periodicals LLC. The Expression of Concern has been published due to concerns raised by a third party regarding duplicated sections of images in Figure 3A (P-ERK-ox-BPA, tubulin-BPA, tubulin-ox-BPA) and 3B (P-ERK-ox-BPA + ICI). Due to the elapsed time, the authors were not able to provide the original raw data, therefore the journal team could not verify the authenticity of these Figures and could not exclude that these concerns affect the overall conclusions of the article. Therefore, the journal has decided to issue an Expression of Concern to inform and alert the readers.
表达关切:A. Bolli、P. Galluzzo、P. Ascenzi、G. Del Pozzo、I. Manco、M. T. Vietri、L. Mita、L. Altucci、D. G. Mita 和 M. Marino,"漆酶处理影响双酚 A 诱导的癌细胞增殖,影响雌激素受体 α 依赖性快速信号",《IUBMB 生命》60,第 12 期(2008 年): 843-852, https://doi.org/10.1002/iub.130.This Expression of Concern is for the above article, published online on 02 September 2008 in Wiley Online Library (wileyonlinelibrary.com), and has been published by agreement between the journal Editor-in-Chief, Efstathios S. Gonos; the International Union of Biochemistry and Molecular Biology; and Wiley Periodicals LLC.由于第三方对图 3A(P-ERK-ox-BPA、tubulin-BPA、tubulin-ox-BPA)和图 3B(P-ERK-ox-BPA + ICI)中重复的图像部分表示担忧,因此发表了《关注声明》。由于时间久远,作者未能提供原始数据,因此期刊团队无法核实这些图表的真实性,也不能排除这些问题会影响文章的整体结论。因此,本刊决定发布 "关注声明",以告知和提醒读者。
{"title":"EXPRESSION OF CONCERN: Laccase Treatment Impairs Bisphenol A-Induced Cancer Cell Proliferation Affecting Estrogen Receptor α-Dependent Rapid Signals","authors":"","doi":"10.1002/iub.2901","DOIUrl":"10.1002/iub.2901","url":null,"abstract":"<p><b>EXPRESSION OF CONCERN</b>: <span>A. Bolli</span>, <span>P. Galluzzo</span>, <span>P. Ascenzi</span>, <span>G. Del Pozzo</span>, <span>I. Manco</span>, <span>M. T. Vietri</span>, <span>L. Mita</span>, <span>L. Altucci</span>, <span>D. G. Mita</span>, and <span>M. Marino</span>, “ <span>Laccase Treatment Impairs Bisphenol A-Induced Cancer Cell Proliferation Affecting Estrogen Receptor α-Dependent Rapid Signals</span>,” <i>IUBMB Life</i> <span>60</span>, no. <span>12</span> (<span>2008</span>): <span>843</span>–<span>852</span>, https://doi.org/10.1002/iub.130.</p><p>This Expression of Concern is for the above article, published online on 02 September 2008 in Wiley Online Library (wileyonlinelibrary.com), and has been published by agreement between the journal Editor-in-Chief, Efstathios S. Gonos; the International Union of Biochemistry and Molecular Biology; and Wiley Periodicals LLC. The Expression of Concern has been published due to concerns raised by a third party regarding duplicated sections of images in Figure 3A (P-ERK-ox-BPA, tubulin-BPA, tubulin-ox-BPA) and 3B (P-ERK-ox-BPA + ICI). Due to the elapsed time, the authors were not able to provide the original raw data, therefore the journal team could not verify the authenticity of these Figures and could not exclude that these concerns affect the overall conclusions of the article. Therefore, the journal has decided to issue an Expression of Concern to inform and alert the readers.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 10","pages":"858"},"PeriodicalIF":3.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iub.2901","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
{"title":"lncRNAs: New players of cancer drug resistance via targeting ABC transporters","authors":"Mohammad Ebrahimnezhad, Sanaz Hassanzadeh Asl, Maede Rezaie, Mehran Molavand, Bahman Yousefi, Maryam Majidinia","doi":"10.1002/iub.2888","DOIUrl":"10.1002/iub.2888","url":null,"abstract":"<p>Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 11","pages":"883-921"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.
{"title":"HucMSC extracellular vesicles increasing SATB 1 to activate the Wnt/β-catenin pathway in 6-OHDA-induced Parkinson's disease model","authors":"Ying He, Ruicheng Li, Yuxi Yu, Zhiran Xu, Jiaxin Gao, Cancan Wang, Chusheng Huang, Zhongquan Qi","doi":"10.1002/iub.2893","DOIUrl":"10.1002/iub.2893","url":null,"abstract":"<p>Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1154-1174"},"PeriodicalIF":3.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliki Papadimitriou-Tsantarliotou, Chrysostomos Avgeros, Maria Konstantinidou, Ioannis S. Vizirianakis
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
{"title":"Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation","authors":"Aliki Papadimitriou-Tsantarliotou, Chrysostomos Avgeros, Maria Konstantinidou, Ioannis S. Vizirianakis","doi":"10.1002/iub.2897","DOIUrl":"10.1002/iub.2897","url":null,"abstract":"<p>Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1011-1034"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayeshkumar Ruparelia, Rishit A. Soni, Hiren K. Patel
Heavy metals, a major source of pollution in the environment, pose a substantial threat due to their non-biodegradability and ability to accumulate in living organisms, causing health problems. Recently, researchers have been searching for cost-effective and safe ways to remove heavy metals from polluted waterways using agricultural waste substitutes. The present study focused on the low-cost treatments for the reduction of chromium Cr+6 metal from the effluent, wherein it has been found that chemically and bacterially treated agro-waste had increased heavy metal ion adsorption capabilities. A sequential optimization of the process parameters was attempted using Plackett–Burman design (PBD) and central composite design of response surface methodology (CCD-RSM) for the maximum reduction of the chromium metal from the effluent. A total of eight parameters were screened out using a 12-run PBD experiment. Out of the eight parameters, time, HCl, NaOH, and bacterial treatments were found to be significantly affecting the maximum reduction of Cr+6 from the effluent. To investigate the interactions' effects of the chosen parameters, they were evaluated using CCD-RSM. Maximum 74% Cr+6 reduction was achieved under the optimum treatment to rice husk of HCl 4.52 N, NaOH 3.53 N, bacterial suspension 7.41%, and with an interaction time 14.32 min using 30 run CCD-RSM experiment. A scanning electron microscope was used to confirm the effects of selected variables on the agro-waste for the Cr+6 reductions, as well as a Fourier transform infrared spectrometer.
{"title":"Optimization of the chromium (Cr+6) reduction from waterways using chemically and bacterially treated agro-waste","authors":"Jayeshkumar Ruparelia, Rishit A. Soni, Hiren K. Patel","doi":"10.1002/iub.2892","DOIUrl":"10.1002/iub.2892","url":null,"abstract":"<p>Heavy metals, a major source of pollution in the environment, pose a substantial threat due to their non-biodegradability and ability to accumulate in living organisms, causing health problems. Recently, researchers have been searching for cost-effective and safe ways to remove heavy metals from polluted waterways using agricultural waste substitutes. The present study focused on the low-cost treatments for the reduction of chromium Cr<sup>+6</sup> metal from the effluent, wherein it has been found that chemically and bacterially treated agro-waste had increased heavy metal ion adsorption capabilities. A sequential optimization of the process parameters was attempted using Plackett–Burman design (PBD) and central composite design of response surface methodology (CCD-RSM) for the maximum reduction of the chromium metal from the effluent. A total of eight parameters were screened out using a 12-run PBD experiment. Out of the eight parameters, time, HCl, NaOH, and bacterial treatments were found to be significantly affecting the maximum reduction of Cr<sup>+6</sup> from the effluent. To investigate the interactions' effects of the chosen parameters, they were evaluated using CCD-RSM. Maximum 74% Cr<sup>+6</sup> reduction was achieved under the optimum treatment to rice husk of HCl 4.52 N, NaOH 3.53 N, bacterial suspension 7.41%, and with an interaction time 14.32 min using 30 run CCD-RSM experiment. A scanning electron microscope was used to confirm the effects of selected variables on the agro-waste for the Cr<sup>+6</sup> reductions, as well as a Fourier transform infrared spectrometer.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1058-1071"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In 2020, the number of deaths caused by lung cancer worldwide reached 1,796,144, making it the leading cause of cancer-related deaths. Cyclooxygenase-2/prostaglandin endoperoxide synthase 2 (COX-2/PTGS2) is overexpressed in lung cancer, which promotes tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that the oligonucleotide drug HQi-sRNA-2 from Traditional Chinese Medicine Huangqin targeting COX-2/PTGS2 significantly inhibited proliferation, migration, and invasion and induced apoptosis in the human lung cancer cell line NCI-H460. Oral delivery of HQi-sRNA-2 bencaosomes prolonged survival, reduced tumor burden, and maintained weight in a spontaneous mouse lung cancer model. Compared with paclitaxel, HQi-sRNA-2 may be less toxic and have approximately equal efficacy in reducing tumor burden. Our previous studies reported that herbal small RNAs (sRNAs) are functional medical components. Our data suggest that sphingosine (d18:1)-HQi-sRNA-2 bencaosomes, targeting COX-2/PTGS2 and downregulating the PI3K and AKT signaling pathways, may provide novel therapeutics for lung cancer.
{"title":"COX-2/PTGS2-targeted herbal-derived oligonucleotide drug HQi-sRNA-2 was effective in spontaneous mouse lung cancer model","authors":"Yexuan Lin, Na Sun, Dengyuan Liu, Xinmeng Yang, Yixin Dong, Chengyu Jiang","doi":"10.1002/iub.2858","DOIUrl":"10.1002/iub.2858","url":null,"abstract":"<p>In 2020, the number of deaths caused by lung cancer worldwide reached 1,796,144, making it the leading cause of cancer-related deaths. Cyclooxygenase-2/prostaglandin endoperoxide synthase 2 (<i>COX-2/PTGS2</i>) is overexpressed in lung cancer, which promotes tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that the oligonucleotide drug HQi-sRNA-2 from Traditional Chinese Medicine Huangqin targeting <i>COX-2/PTGS2</i> significantly inhibited proliferation, migration, and invasion and induced apoptosis in the human lung cancer cell line NCI-H460. Oral delivery of HQi-sRNA-2 bencaosomes prolonged survival, reduced tumor burden, and maintained weight in a spontaneous mouse lung cancer model. Compared with paclitaxel, HQi-sRNA-2 may be less toxic and have approximately equal efficacy in reducing tumor burden. Our previous studies reported that herbal small RNAs (sRNAs) are functional medical components. Our data suggest that sphingosine (d18:1)-HQi-sRNA-2 bencaosomes, targeting <i>COX-2/PTGS2</i> and downregulating the PI3K and AKT signaling pathways, may provide novel therapeutics for lung cancer.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 11","pages":"937-950"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The utilization of anti-CD3/CD28 magnetic beads for T cell expansion in vitro has been investigated for adoptive cell transfer therapy. However, the impact of the CD3/CD28 antibody ratio on T cell differentiation and function remains incompletely elucidated. This study seeks to address this knowledge gap. To begin with, CD3 antibodies with a relatively low avidity for Jurkat cells (Kd = 13.55 nM) and CD28 antibodies with a relatively high avidity (Kd = 5.79 nM) were prepared. Afterwards, anti-CD3/CD28 antibodies with different mass ratios were attached to magnetic beads to examine the impacts of different antibody ratios on T cell capture, and proliferation. The research demonstrated that the most significant expansion of T cells was stimulated by the anti-CD3/CD28 magnetic beads with a mass ratio of 2:1 for CD3 antibodies and CD28 antibodies. Moreover, CD25 and PD1 expression of expanded T cells increased and then decreased, with lower CD25 and PD1 expression in the later stages of expansion indicating that T cells were not depleted. These T cells, which are massively expanded in vitro and have excellent expansion potential, can be infused back into the patient to treat tumor patients. This study shows that altering the ratio of anti-CD3/CD28 antibodies can control the strength of T cell stimulation, thereby leading to the improvement of T cell activation. This discovery can be utilized as a guide for the creation of other T cell stimulation approaches, which is beneficial for the further development of tumor immunotherapy technology.
在体外利用抗 CD3/CD28 磁珠扩增 T 细胞用于采纳性细胞转移疗法的研究已经展开。然而,CD3/CD28 抗体比例对 T 细胞分化和功能的影响仍未完全阐明。本研究试图填补这一知识空白。首先,制备了对 Jurkat 细胞具有较低亲和力(Kd = 13.55 nM)的 CD3 抗体和具有较高亲和力(Kd = 5.79 nM)的 CD28 抗体。然后,将不同质量比的抗 CD3/CD28 抗体附着在磁珠上,研究不同抗体比对 T 细胞捕获和增殖的影响。研究表明,CD3 抗体和 CD28 抗体质量比为 2:1 的抗 CD3/CD28 磁珠对 T 细胞扩增的刺激最为明显。此外,扩增的 T 细胞的 CD25 和 PD1 表达量先升高后降低,扩增后期 CD25 和 PD1 表达量降低,表明 T 细胞未被耗尽。这些在体外大规模扩增的 T 细胞具有极好的扩增潜力,可以回输到患者体内治疗肿瘤患者。这项研究表明,改变抗 CD3/CD28 抗体的比例可以控制 T 细胞刺激的强度,从而改善 T 细胞的活化。这一发现可作为创建其他 T 细胞刺激方法的指南,有利于肿瘤免疫疗法技术的进一步发展。
{"title":"Enhancing the activation of T cells through anti-CD3/CD28 magnetic beads by adjusting the antibody ratio","authors":"Yinuo Chen, Rui Zhao, Qi Fan, Mengmeng Liu, Yonglin Huang, Guoqing Shi","doi":"10.1002/iub.2898","DOIUrl":"10.1002/iub.2898","url":null,"abstract":"<p>The utilization of anti-CD3/CD28 magnetic beads for T cell expansion in vitro has been investigated for adoptive cell transfer therapy. However, the impact of the CD3/CD28 antibody ratio on T cell differentiation and function remains incompletely elucidated. This study seeks to address this knowledge gap. To begin with, CD3 antibodies with a relatively low avidity for Jurkat cells (Kd = 13.55 nM) and CD28 antibodies with a relatively high avidity (Kd = 5.79 nM) were prepared. Afterwards, anti-CD3/CD28 antibodies with different mass ratios were attached to magnetic beads to examine the impacts of different antibody ratios on T cell capture, and proliferation. The research demonstrated that the most significant expansion of T cells was stimulated by the anti-CD3/CD28 magnetic beads with a mass ratio of 2:1 for CD3 antibodies and CD28 antibodies. Moreover, CD25 and PD1 expression of expanded T cells increased and then decreased, with lower CD25 and PD1 expression in the later stages of expansion indicating that T cells were not depleted. These T cells, which are massively expanded in vitro and have excellent expansion potential, can be infused back into the patient to treat tumor patients. This study shows that altering the ratio of anti-CD3/CD28 antibodies can control the strength of T cell stimulation, thereby leading to the improvement of T cell activation. This discovery can be utilized as a guide for the creation of other T cell stimulation approaches, which is beneficial for the further development of tumor immunotherapy technology.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1175-1185"},"PeriodicalIF":3.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Estramustine (EM), a clinically successful hormone-refractory anti-prostate cancer drug, exhibited potent anti-proliferative activity, depolymerized microtubules, blocked cells at mitosis, and induced cell death in different cancer cells. Altered iron metabolism is a feature of cancer cells. Using EM, we examined the plausible relationship between microtubule depolymerization and induction of ferroptosis in human neuroblastoma (SH-SY5Y and IMR-32) cells. EM reduced glutathione (GSH) levels and induced reactive oxygen species (ROS) generation. The pre-treatment of neuroblastoma cells with ROS scavengers (N-acetyl cysteine and dithiothreitol) reduced the anti-proliferative effects of EM. EM treatment increased labile iron pool (LIP), depleted glutathione peroxidase 4 (GPX4) levels, and lipid peroxidation, hallmark features of ferroptosis, highlighting ferroptosis induction. Ferroptosis inhibitors (deferoxamine mesylate and liproxstatin-1) abrogated the cytotoxic effects of EM, further confirming ferroptosis induction. Vinblastine and nocodazole also increased LIP and induced lipid peroxidation in neuroblastoma cells. This study provides evidence for the coupling of microtubule integrity to ferroptosis. The results also suggest that microtubule-depolymerizing agents may be considered for developing pro-ferroptosis chemotherapeutics.
雌莫司汀(EM)是一种在临床上获得成功的激素难治性抗前列腺癌药物,它在不同的癌细胞中表现出强大的抗增殖活性、解聚微管、阻止细胞有丝分裂并诱导细胞死亡。铁代谢改变是癌细胞的一个特征。我们利用 EM 研究了人类神经母细胞瘤(SH-SY5Y 和 IMR-32)细胞中微管解聚与诱导铁变态反应之间的合理关系。EM会降低谷胱甘肽(GSH)水平并诱导活性氧(ROS)生成。用 ROS 清除剂(N-乙酰半胱氨酸和二硫苏糖醇)预处理神经母细胞瘤细胞可降低 EM 的抗增殖作用。EM处理会增加易溶铁池(LIP)、消耗谷胱甘肽过氧化物酶4(GPX4)水平和脂质过氧化,这些都是铁变态反应的标志性特征,突出了铁变态反应的诱导作用。铁突变抑制剂(甲磺酸去铁胺和脂氧司他丁-1)可减弱 EM 的细胞毒性作用,进一步证实了铁突变诱导。长春新碱和诺考达唑也会增加神经母细胞瘤细胞的 LIP 并诱导脂质过氧化。这项研究为微管完整性与铁凋亡的耦合提供了证据。研究结果还表明,微管解聚剂可用于开发促进铁变态反应的化疗药物。
{"title":"Microtubule depolymerization induces ferroptosis in neuroblastoma cells","authors":"Mayuri Bandekar, Dulal Panda","doi":"10.1002/iub.2899","DOIUrl":"10.1002/iub.2899","url":null,"abstract":"<p>Estramustine (EM), a clinically successful hormone-refractory anti-prostate cancer drug, exhibited potent anti-proliferative activity, depolymerized microtubules, blocked cells at mitosis, and induced cell death in different cancer cells. Altered iron metabolism is a feature of cancer cells. Using EM, we examined the plausible relationship between microtubule depolymerization and induction of ferroptosis in human neuroblastoma (SH-SY5Y and IMR-32) cells. EM reduced glutathione (GSH) levels and induced reactive oxygen species (ROS) generation. The pre-treatment of neuroblastoma cells with ROS scavengers (N-acetyl cysteine and dithiothreitol) reduced the anti-proliferative effects of EM. EM treatment increased labile iron pool (LIP), depleted glutathione peroxidase 4 (GPX4) levels, and lipid peroxidation, hallmark features of ferroptosis, highlighting ferroptosis induction. Ferroptosis inhibitors (deferoxamine mesylate and liproxstatin-1) abrogated the cytotoxic effects of EM, further confirming ferroptosis induction. Vinblastine and nocodazole also increased LIP and induced lipid peroxidation in neuroblastoma cells. This study provides evidence for the coupling of microtubule integrity to ferroptosis. The results also suggest that microtubule-depolymerizing agents may be considered for developing pro-ferroptosis chemotherapeutics.</p>","PeriodicalId":14728,"journal":{"name":"IUBMB Life","volume":"76 12","pages":"1186-1198"},"PeriodicalIF":3.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}