Pub Date : 2024-12-12DOI: 10.1007/s13353-024-00931-7
Modou Mangan, Katarzyna Połtowicz, Cornelia C Metges, Maria Siwek
A stable gut microbiota promotes a healthy gut and enhances immune function, antioxidant status, and metabolic activities in chickens. The present research work aimed to investigate the modulatory impacts of in ovo delivery of prebiotic and probiotic on oxidative stress, the intestinal transcriptome, and various plasma metabolites in chickens. Fertilized Ross 308 eggs were administered in ovo either with galactooligosaccharide (GOS) (3.5 mg/egg or Lactiplantibacillus plantarum (LP) 1 × 106/egg on the 12th day of egg incubation. Three hundred viable Ross 308 broiler hatching eggs in total were randomly assigned to four groups, namely, the negative control not injected group, the group receiving physiological saline injections as the positive control, GOS, and LP. The analysis of genes associated with immune functions, antioxidants, barrier functions, and free fatty acid receptors were determined via qPCR. The analysis of the selected plasma blood metabolites was performed automatically with Pentra C 400. The antioxidant capacity of the chickens' liver, breast muscle, and spleen was enhanced by the in ovo injection of GOS and LP. The immune-related gene expression levels were upregulated after in ovo stimulation with either GOS or LP which improved the gut health of broiler chickens. In addition, several genes related to gut barrier functions were upregulated, thus ensuring epithelial integrity. As for blood plasma metabolites, no adverse effects were observed. In summary, we report that in ovo stimulation with either GOS or LP stimulates the immune system and improves the antioxidant status and gut health of chickens with no negative impact on plasma blood metabolite indices.
稳定的肠道菌群可以促进健康的肠道,增强鸡的免疫功能、抗氧化能力和代谢活性。本研究旨在探讨益生元和益生菌对蛋鸡氧化应激、肠道转录组和多种血浆代谢物的调节作用。在Ross 308受精卵孵育第12天,分别在卵中添加半乳糖低聚糖(GOS) 3.5 mg/个或植物乳杆菌(LP) 1 × 106个/个。选取活龄罗斯308肉仔鸡孵化蛋300只,随机分为4组,即阴性对照组不注射组、阳性对照组注射生理盐水组、GOS组和LP组。通过qPCR检测与免疫功能、抗氧化剂、屏障功能和游离脂肪酸受体相关的基因。使用Pentra C 400自动分析选定的血浆血液代谢物。蛋中注射GOS和LP可增强鸡肝脏、胸肌和脾脏的抗氧化能力。GOS和LP均可上调蛋内免疫相关基因表达水平,改善肉鸡肠道健康。此外,一些与肠道屏障功能相关的基因被上调,从而确保了上皮的完整性。血浆代谢物未见不良反应。综上所述,在蛋蛋中添加GOS或LP均可刺激鸡的免疫系统,改善鸡的抗氧化状态和肠道健康,但对血浆血液代谢指标没有负面影响。
{"title":"Modulatory effects of in ovo delivery of galactooligosaccharide and Lactiplantibacillus plantarum on antioxidant capacity, gene expression, and selected plasma metabolite parameters of broiler chickens.","authors":"Modou Mangan, Katarzyna Połtowicz, Cornelia C Metges, Maria Siwek","doi":"10.1007/s13353-024-00931-7","DOIUrl":"https://doi.org/10.1007/s13353-024-00931-7","url":null,"abstract":"<p><p>A stable gut microbiota promotes a healthy gut and enhances immune function, antioxidant status, and metabolic activities in chickens. The present research work aimed to investigate the modulatory impacts of in ovo delivery of prebiotic and probiotic on oxidative stress, the intestinal transcriptome, and various plasma metabolites in chickens. Fertilized Ross 308 eggs were administered in ovo either with galactooligosaccharide (GOS) (3.5 mg/egg or Lactiplantibacillus plantarum (LP) 1 × 10<sup>6</sup>/egg on the 12th day of egg incubation. Three hundred viable Ross 308 broiler hatching eggs in total were randomly assigned to four groups, namely, the negative control not injected group, the group receiving physiological saline injections as the positive control, GOS, and LP. The analysis of genes associated with immune functions, antioxidants, barrier functions, and free fatty acid receptors were determined via qPCR. The analysis of the selected plasma blood metabolites was performed automatically with Pentra C 400. The antioxidant capacity of the chickens' liver, breast muscle, and spleen was enhanced by the in ovo injection of GOS and LP. The immune-related gene expression levels were upregulated after in ovo stimulation with either GOS or LP which improved the gut health of broiler chickens. In addition, several genes related to gut barrier functions were upregulated, thus ensuring epithelial integrity. As for blood plasma metabolites, no adverse effects were observed. In summary, we report that in ovo stimulation with either GOS or LP stimulates the immune system and improves the antioxidant status and gut health of chickens with no negative impact on plasma blood metabolite indices.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1007/s13353-024-00919-3
Huachao Yang, Pingping Yu, Jianping Gong
To elucidate the crucial function of MICAL2 as a potential immunotherapeutic target and a predictive biomarker in PAAD. The expression of MICAL2 in pan-cancer was investigated using public database, and the expression of MICAL2 in PAAD was validated using tissue samples. The diagnostic and prognostic significance of MICAL2 in PAAD was assessed through the application of ROC curves and Kaplan-Meier curves. The correlation between MICAL2 and infiltrating immune cells and immune checkpoints in PAAD was researched using the TIMER and TCGA databases. In vitro studies involved the evaluation of the biological functions of MICAL2 in human PAAD cells through the knockdown of MICAL2 expression using shRNA. Compared to corresponding normal tissues, the expression of MICAL2 exhibits significant differences in various cancers. Specifically, the level of MICAL2 expression is significantly increased in PAAD. Moreover, MICAL2 demonstrates considerable diagnostic potential in PAAD patients, and its elevated expression is indicative of an unfavorable prognosis. The differential expression of MICAL2 is related to infiltrating immune cells, immune cell markers, and immune checkpoints in PAAD. In ASPC-1 and PANC-1 cells, when MICAL2 was knocked down, there was a notable suppression of proliferation, migration, and invasion. MICAL2 functions as a significant predictor and promising immunotherapeutic target for prognosis assessment in PAAD. It has a pivotal function in fostering the growth and migration of PAAD cells.
{"title":"Prognostic biomarker MICAL2 and associates with proliferation, migration and immune infiltration in pancreatic adenocarcinoma.","authors":"Huachao Yang, Pingping Yu, Jianping Gong","doi":"10.1007/s13353-024-00919-3","DOIUrl":"https://doi.org/10.1007/s13353-024-00919-3","url":null,"abstract":"<p><p>To elucidate the crucial function of MICAL2 as a potential immunotherapeutic target and a predictive biomarker in PAAD. The expression of MICAL2 in pan-cancer was investigated using public database, and the expression of MICAL2 in PAAD was validated using tissue samples. The diagnostic and prognostic significance of MICAL2 in PAAD was assessed through the application of ROC curves and Kaplan-Meier curves. The correlation between MICAL2 and infiltrating immune cells and immune checkpoints in PAAD was researched using the TIMER and TCGA databases. In vitro studies involved the evaluation of the biological functions of MICAL2 in human PAAD cells through the knockdown of MICAL2 expression using shRNA. Compared to corresponding normal tissues, the expression of MICAL2 exhibits significant differences in various cancers. Specifically, the level of MICAL2 expression is significantly increased in PAAD. Moreover, MICAL2 demonstrates considerable diagnostic potential in PAAD patients, and its elevated expression is indicative of an unfavorable prognosis. The differential expression of MICAL2 is related to infiltrating immune cells, immune cell markers, and immune checkpoints in PAAD. In ASPC-1 and PANC-1 cells, when MICAL2 was knocked down, there was a notable suppression of proliferation, migration, and invasion. MICAL2 functions as a significant predictor and promising immunotherapeutic target for prognosis assessment in PAAD. It has a pivotal function in fostering the growth and migration of PAAD cells.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1007/s13353-024-00926-4
Dominika Adamczak, Michał Fornalik, Anna Małkiewicz, Julia Pestka, Andrzej Pławski, Paweł Piotr Jagodziński, Bartosz Kazimierz Słowikowski
Adenosine deaminase acting on RNA 1 (ADAR1) plays an essential role in the development of malignancies by modifying the expression of different oncogenes. ADAR1 presents three distinct activities: adenosine-to-inosine RNA editing, modulating IFN pathways, and response to cellular stress factors. Following stressors such as heat shock, ADAR1p110 isoform relocates from the nucleus to the cytoplasm, where it suppresses RNA degradation which leads to the arrest of apoptosis and cell survival. In this study, we assessed the expression of ADAR1 across different cancer cell lines. We revealed that the presence of ADAR1 varies between cells of different origins and that a high transcript level does not reflect protein abundance. Additionally, we subjected cells to a heat shock in order to evaluate how cellular stress factors affect the expression of ADAR1. Our results indicate that ADAR1 transcript and protein levels are relatively stable and do not change under heat shock in examined cell lines. This research lays a groundwork for future directions on ADAR1-related studies suggesting in which types of cancer ADAR1 may be a promising target for novel therapeutic approaches.
作用于RNA 1的腺苷脱氨酶(Adenosine deaminase acting on RNA 1, ADAR1)通过改变不同癌基因的表达,在恶性肿瘤的发生发展中起重要作用。ADAR1表现出三种不同的活性:腺苷-肌苷RNA编辑,调节IFN通路,以及对细胞应激因子的反应。在热休克等应激源作用下,ADAR1p110异构体从细胞核迁移到细胞质,抑制RNA降解,从而阻止细胞凋亡和细胞存活。在这项研究中,我们评估了ADAR1在不同癌细胞系中的表达。我们发现ADAR1的存在在不同来源的细胞之间是不同的,高转录水平并不反映蛋白质的丰度。此外,我们对细胞进行热休克,以评估细胞应激因素如何影响ADAR1的表达。我们的研究结果表明,ADAR1转录物和蛋白水平相对稳定,在热休克条件下不发生变化。该研究为未来ADAR1相关研究的方向奠定了基础,表明ADAR1可能是新型治疗方法的有希望的靶点。
{"title":"ADAR1 expression in different cancer cell lines and its change under heat shock.","authors":"Dominika Adamczak, Michał Fornalik, Anna Małkiewicz, Julia Pestka, Andrzej Pławski, Paweł Piotr Jagodziński, Bartosz Kazimierz Słowikowski","doi":"10.1007/s13353-024-00926-4","DOIUrl":"https://doi.org/10.1007/s13353-024-00926-4","url":null,"abstract":"<p><p>Adenosine deaminase acting on RNA 1 (ADAR1) plays an essential role in the development of malignancies by modifying the expression of different oncogenes. ADAR1 presents three distinct activities: adenosine-to-inosine RNA editing, modulating IFN pathways, and response to cellular stress factors. Following stressors such as heat shock, ADAR1p110 isoform relocates from the nucleus to the cytoplasm, where it suppresses RNA degradation which leads to the arrest of apoptosis and cell survival. In this study, we assessed the expression of ADAR1 across different cancer cell lines. We revealed that the presence of ADAR1 varies between cells of different origins and that a high transcript level does not reflect protein abundance. Additionally, we subjected cells to a heat shock in order to evaluate how cellular stress factors affect the expression of ADAR1. Our results indicate that ADAR1 transcript and protein levels are relatively stable and do not change under heat shock in examined cell lines. This research lays a groundwork for future directions on ADAR1-related studies suggesting in which types of cancer ADAR1 may be a promising target for novel therapeutic approaches.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s13353-024-00923-7
Amir Sohail, Chengkai Lu, Peng Xu
Male reproductive development is a complex and highly ordered phenomenon which demands comprehensive understandings of underlying molecular mechanisms to expand its scope for crop improvement. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Although male sterility is not a good trait for the plant itself, its wider application in hybrid rice breeding has made it valuable. The currently widely used male sterile line breeding systems mainly include the following: three-line hybrid rice based on cytoplasmic male sterility and two-line hybrid rice based on environmentally sensitive gene male sterility. The study of male sterility is an excellent thoroughfare to critically understand the regulatory mechanisms essential for the complicated male reproductive developmental process. The unique trait of male sterility also provides valuable resources and convenience for the genetic improvement of rice hybrids. Therefore, deeper and broader understandings about the genetic causes of male sterility are necessary for both basic studies and rice genetic improvement.
{"title":"Genetic and molecular mechanisms underlying the male sterility in rice.","authors":"Amir Sohail, Chengkai Lu, Peng Xu","doi":"10.1007/s13353-024-00923-7","DOIUrl":"https://doi.org/10.1007/s13353-024-00923-7","url":null,"abstract":"<p><p>Male reproductive development is a complex and highly ordered phenomenon which demands comprehensive understandings of underlying molecular mechanisms to expand its scope for crop improvement. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Although male sterility is not a good trait for the plant itself, its wider application in hybrid rice breeding has made it valuable. The currently widely used male sterile line breeding systems mainly include the following: three-line hybrid rice based on cytoplasmic male sterility and two-line hybrid rice based on environmentally sensitive gene male sterility. The study of male sterility is an excellent thoroughfare to critically understand the regulatory mechanisms essential for the complicated male reproductive developmental process. The unique trait of male sterility also provides valuable resources and convenience for the genetic improvement of rice hybrids. Therefore, deeper and broader understandings about the genetic causes of male sterility are necessary for both basic studies and rice genetic improvement.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s13353-024-00917-5
Anna M Różycka-Baczyńska, Igor M Stepaniec, Marta Warzycha, Izabela Zdolińska-Malinowska, Tomasz Oldak, Natalia Rozwadowska, Tomasz J Kolanowski
Mesenchymal stromal cells (MSCs) have a wide range of therapeutic applications due to their multipotency, immunomodulatory, and anti-inflammatory properties. Their ability to migrate and recolonize damaged tissues is also remarkable. However, the controversial occurrence of spontaneous tumorigenesis or malignant transformation of MSCs raises concerns about proposed cell-based therapies for patients that researchers must address. There are several in vitro and in vivo strategies for MSC safety approval, but there is still no described coherent scheme that allows the assessment of MSC oncogenic potential in a simple, robust, and reproducible manner. Here, we have developed a diagnostic panel of molecular markers that allows for the accurate verification of the quality and safety of MSCs. Moreover, presented in this article diagnostic panel that can define the origin and tumorigenicity of MSCs can be easily introduced into the routine quality control processes of MSC-based product manufacturing which will improve further clinical applications of MSCs.
{"title":"Development of a novel gene expression panel for the characterization of MSCs for increased biological safety.","authors":"Anna M Różycka-Baczyńska, Igor M Stepaniec, Marta Warzycha, Izabela Zdolińska-Malinowska, Tomasz Oldak, Natalia Rozwadowska, Tomasz J Kolanowski","doi":"10.1007/s13353-024-00917-5","DOIUrl":"https://doi.org/10.1007/s13353-024-00917-5","url":null,"abstract":"<p><p>Mesenchymal stromal cells (MSCs) have a wide range of therapeutic applications due to their multipotency, immunomodulatory, and anti-inflammatory properties. Their ability to migrate and recolonize damaged tissues is also remarkable. However, the controversial occurrence of spontaneous tumorigenesis or malignant transformation of MSCs raises concerns about proposed cell-based therapies for patients that researchers must address. There are several in vitro and in vivo strategies for MSC safety approval, but there is still no described coherent scheme that allows the assessment of MSC oncogenic potential in a simple, robust, and reproducible manner. Here, we have developed a diagnostic panel of molecular markers that allows for the accurate verification of the quality and safety of MSCs. Moreover, presented in this article diagnostic panel that can define the origin and tumorigenicity of MSCs can be easily introduced into the routine quality control processes of MSC-based product manufacturing which will improve further clinical applications of MSCs.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-20DOI: 10.1007/s13353-024-00893-w
Mohammed Allami, Eman Jassim Mohammed, Zainab Alnaji, Salsabil A Jassim
Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.
{"title":"Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds.","authors":"Mohammed Allami, Eman Jassim Mohammed, Zainab Alnaji, Salsabil A Jassim","doi":"10.1007/s13353-024-00893-w","DOIUrl":"10.1007/s13353-024-00893-w","url":null,"abstract":"<p><p>Klebsiella pneumoniae is the most important species of the Klebsiella genus and often causes hospital infections. These bacteria have a high resistance to most of the available drugs, which has caused concern all over the world. In this study, we investigated the antibiotic resistance profile and the ability to produce extended-spectrum beta-lactamase (ESBL) among K. pneumoniae isolates, and then we investigated the relationship between these two factors with biofilm formation and the prevalence of different virulence genes. In this study, 130 isolates of K. pneumoniae isolated from wounds were investigated. The antibiotic resistance of the isolates was evaluated by the disk diffusion method. The microtiter plate method was used to measure biofilm formation. The prevalence of virulence genes was detected by multiplex PCR. Among the examined isolates, 85.3% showed multidrug resistance. 87.6% of the isolates were ESBL-positive. Imipenem, meropenem, and fosfomycin were the most effective drugs. The ability of the isolates to produce biofilm was strong (80%), moderate (12.3%), and weak (7.6%), respectively. fimH, mrKD, entB, and tolC virulence genes were observed in all isolates. High prevalence of antibiotic resistance (especially multidrug resistance), high prevalence of ESBL-producing isolates, the ability of all isolates to biofilm formation, and the presence of fimH, mrKD, entB, and tolC virulence genes in all isolates show the importance of these factors in the pathogenesis of K. pneumoniae isolates in Iraq.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"925-935"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-16DOI: 10.1007/s13353-024-00892-x
Karoline Leonard Sichalwe, Ismail Kayondo, Richard Edema, Isaac O Dramadri, Emmanuel AAdjei, Heneriko Kulembeka, Wilson Kimani, Doreen Mgonja, Patrick Rubahaiyo, Edward Kanju
Cassava (Manihot esculenta Crantz) holds significant economic importance globally. Evaluating a diverse range of germplasm based on molecular characteristics not only enhances its preservation but also supports its utilization in breeding programs. In this study, we assessed genetic diversity and population structure among 155 cassava genotypes from Uganda using 5247 single nucleotide polymorphism (SNP) markers. Genotyping by sequencing (GBS) was employed for SNP discovery and to evaluate genetic diversity and population structure using the ADMIXTURE software. The cassava accessions comprised two populations: 49 accessions from Ugandan lines and 106 accessions resulting from crosses between South American and Ugandan lines. The average call rate of 96% was utilized to assess marker polymorphism. Polymorphic information content values of the markers ranged from 0.1 to 0.5 with an average of 0.4 which was moderately high. The principal component analysis (PCA) showed that the first two components captured ~ 24.2% of the genetic variation. The average genetic diversity was 0.3. The analysis of molecular variance (AMOVA) indicated that 66.02% and 33.98% of the total genetic variation occurred within accessions and between sub-populations, respectively. Five sub-populations were identified based on ADMIXTURE structure analysis (K = 5). Neighbor-joining tree and hierarchical clustering tree revealed the presence of three different groups which were primarily based on the source of the genotypes. The results suggested that there was considerable genetic variation among the cassava genotypes which is useful in cassava improvement and conservation efforts.
{"title":"Genetic diversity and population structure of Uganda cassava germplasm.","authors":"Karoline Leonard Sichalwe, Ismail Kayondo, Richard Edema, Isaac O Dramadri, Emmanuel AAdjei, Heneriko Kulembeka, Wilson Kimani, Doreen Mgonja, Patrick Rubahaiyo, Edward Kanju","doi":"10.1007/s13353-024-00892-x","DOIUrl":"10.1007/s13353-024-00892-x","url":null,"abstract":"<p><p>Cassava (Manihot esculenta Crantz) holds significant economic importance globally. Evaluating a diverse range of germplasm based on molecular characteristics not only enhances its preservation but also supports its utilization in breeding programs. In this study, we assessed genetic diversity and population structure among 155 cassava genotypes from Uganda using 5247 single nucleotide polymorphism (SNP) markers. Genotyping by sequencing (GBS) was employed for SNP discovery and to evaluate genetic diversity and population structure using the ADMIXTURE software. The cassava accessions comprised two populations: 49 accessions from Ugandan lines and 106 accessions resulting from crosses between South American and Ugandan lines. The average call rate of 96% was utilized to assess marker polymorphism. Polymorphic information content values of the markers ranged from 0.1 to 0.5 with an average of 0.4 which was moderately high. The principal component analysis (PCA) showed that the first two components captured ~ 24.2% of the genetic variation. The average genetic diversity was 0.3. The analysis of molecular variance (AMOVA) indicated that 66.02% and 33.98% of the total genetic variation occurred within accessions and between sub-populations, respectively. Five sub-populations were identified based on ADMIXTURE structure analysis (K = 5). Neighbor-joining tree and hierarchical clustering tree revealed the presence of three different groups which were primarily based on the source of the genotypes. The results suggested that there was considerable genetic variation among the cassava genotypes which is useful in cassava improvement and conservation efforts.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"683-691"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-08DOI: 10.1007/s13353-024-00899-4
Jan Bocianowski, Kamila Nowosad, Dariusz Rejek
Genotype-environment interaction consists of the different response of individual genotypes resulting from changing environmental conditions. Its significance is a phenomenon that makes the breeding process very difficult. On the one hand, the breeder expects stable genotypes, i.e., yielding similarly regardless of environmental conditions. On the other hand, selecting the best genotypes for each region is one of the key challenges for breeders and farmers. The aim of this study was to evaluate genotype-by-environment interaction for grain yield in new maize hybrids developed by Plant Breeding Smolice Co. Ltd., utilizing the additive main effects and multiplicative interaction (AMMI) model. The investigation involved 69 maize (Zea mays L.) hybrids, tested across five locations in a randomized complete block design with three replications. Grain yield varied from 8.76 t ha-1 (SMH_16417 in Smolice) to 16.89 t ha-1 (SMH_16043 in Płaczkowo), with a mean yield of 13.16 t ha-1. AMMI analysis identified significant effects of genotype, environment, and their interaction on grain yield. Analysis of variance indicated that 25.12% of the total variation in grain yield was due to environment factor, 35.20% to genotypic differences, and 21.18% to genotype by environmental interactions. Hybrids SMH_1706 and SMH_1707 are recommended for further breeding programs due to their high stability and superior average grain yield.
{"title":"Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model.","authors":"Jan Bocianowski, Kamila Nowosad, Dariusz Rejek","doi":"10.1007/s13353-024-00899-4","DOIUrl":"10.1007/s13353-024-00899-4","url":null,"abstract":"<p><p>Genotype-environment interaction consists of the different response of individual genotypes resulting from changing environmental conditions. Its significance is a phenomenon that makes the breeding process very difficult. On the one hand, the breeder expects stable genotypes, i.e., yielding similarly regardless of environmental conditions. On the other hand, selecting the best genotypes for each region is one of the key challenges for breeders and farmers. The aim of this study was to evaluate genotype-by-environment interaction for grain yield in new maize hybrids developed by Plant Breeding Smolice Co. Ltd., utilizing the additive main effects and multiplicative interaction (AMMI) model. The investigation involved 69 maize (Zea mays L.) hybrids, tested across five locations in a randomized complete block design with three replications. Grain yield varied from 8.76 t ha<sup>-1</sup> (SMH_16417 in Smolice) to 16.89 t ha<sup>-1</sup> (SMH_16043 in Płaczkowo), with a mean yield of 13.16 t ha<sup>-1</sup>. AMMI analysis identified significant effects of genotype, environment, and their interaction on grain yield. Analysis of variance indicated that 25.12% of the total variation in grain yield was due to environment factor, 35.20% to genotypic differences, and 21.18% to genotype by environmental interactions. Hybrids SMH_1706 and SMH_1707 are recommended for further breeding programs due to their high stability and superior average grain yield.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"653-664"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.
{"title":"Comparative genome analysis of endophytic Bacillus amyloliquefaciens MR4: a potential biocontrol agent isolated from wild medicinal plant root tissue.","authors":"Kaiying Yang, Xianxing Dai, Zulihumar Maitikadir, Huijiang Zhang, Haiting Hao, Chengcai Yan","doi":"10.1007/s13353-024-00905-9","DOIUrl":"10.1007/s13353-024-00905-9","url":null,"abstract":"<p><p>In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"907-923"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-18DOI: 10.1007/s13353-024-00910-y
G Cieleń, E Sell-Kubiak
Reproductive traits are an integral part of the goals of the breeding programs that contribute to the economic success of production. Reproductive phenotypes such as litter size, number of piglets born alive, or litter weight at birth are mainly attributed to females. Thus, the maternal components can be found by default in quantitative genetics' animal models. Still, paternal contribution to variance components should not be discarded. In this review, we indicate the importance of paternal effects in pig breeding by describing both the biology and genetics of boars' traits, the use of (non-)genetic service sire effects in quantitative genetic models for traits measured on females, and genes involved in male reproduction. We start by describing the important biological traits of boars that have the most important effect on their reproductive abilities, i.e., sexual maturity, sperm quality, and testes parameters. Then we move to the possible environmental effects that could affect those traits of boars (e.g., feed, temperature). The main part of the review in detail describes the genetics of boars' reproductive traits (i.e., heritability) and their direct effect on reproductive traits of females (i.e., genetic correlations). We then move to the use of both genetic and non-genetic service sire effects in quantitative models estimated as their percentage in the total variance of traits, which vary depending on the breed from 1 to 4.5% or from 1 to 2%, respectively. Finally, we focus on the description of candidate genes and confirmed mutations affecting male reproduction success: IGF2, Tgm8, ESR1, ZSWIM7, and ELMO1. In conclusion, the observed variance of paternal effects in female reproduction traits might come from various attributes of boars including biological and genetic aspects. Those attributes of boars should not be neglected as they contribute to the success of female reproductive traits.
{"title":"Importance and variability of the paternal component in sow reproductive traits.","authors":"G Cieleń, E Sell-Kubiak","doi":"10.1007/s13353-024-00910-y","DOIUrl":"10.1007/s13353-024-00910-y","url":null,"abstract":"<p><p>Reproductive traits are an integral part of the goals of the breeding programs that contribute to the economic success of production. Reproductive phenotypes such as litter size, number of piglets born alive, or litter weight at birth are mainly attributed to females. Thus, the maternal components can be found by default in quantitative genetics' animal models. Still, paternal contribution to variance components should not be discarded. In this review, we indicate the importance of paternal effects in pig breeding by describing both the biology and genetics of boars' traits, the use of (non-)genetic service sire effects in quantitative genetic models for traits measured on females, and genes involved in male reproduction. We start by describing the important biological traits of boars that have the most important effect on their reproductive abilities, i.e., sexual maturity, sperm quality, and testes parameters. Then we move to the possible environmental effects that could affect those traits of boars (e.g., feed, temperature). The main part of the review in detail describes the genetics of boars' reproductive traits (i.e., heritability) and their direct effect on reproductive traits of females (i.e., genetic correlations). We then move to the use of both genetic and non-genetic service sire effects in quantitative models estimated as their percentage in the total variance of traits, which vary depending on the breed from 1 to 4.5% or from 1 to 2%, respectively. Finally, we focus on the description of candidate genes and confirmed mutations affecting male reproduction success: IGF2, Tgm8, ESR1, ZSWIM7, and ELMO1. In conclusion, the observed variance of paternal effects in female reproduction traits might come from various attributes of boars including biological and genetic aspects. Those attributes of boars should not be neglected as they contribute to the success of female reproductive traits.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"853-866"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}