Pub Date : 2024-12-01Epub Date: 2024-08-08DOI: 10.1007/s13353-024-00899-4
Jan Bocianowski, Kamila Nowosad, Dariusz Rejek
Genotype-environment interaction consists of the different response of individual genotypes resulting from changing environmental conditions. Its significance is a phenomenon that makes the breeding process very difficult. On the one hand, the breeder expects stable genotypes, i.e., yielding similarly regardless of environmental conditions. On the other hand, selecting the best genotypes for each region is one of the key challenges for breeders and farmers. The aim of this study was to evaluate genotype-by-environment interaction for grain yield in new maize hybrids developed by Plant Breeding Smolice Co. Ltd., utilizing the additive main effects and multiplicative interaction (AMMI) model. The investigation involved 69 maize (Zea mays L.) hybrids, tested across five locations in a randomized complete block design with three replications. Grain yield varied from 8.76 t ha-1 (SMH_16417 in Smolice) to 16.89 t ha-1 (SMH_16043 in Płaczkowo), with a mean yield of 13.16 t ha-1. AMMI analysis identified significant effects of genotype, environment, and their interaction on grain yield. Analysis of variance indicated that 25.12% of the total variation in grain yield was due to environment factor, 35.20% to genotypic differences, and 21.18% to genotype by environmental interactions. Hybrids SMH_1706 and SMH_1707 are recommended for further breeding programs due to their high stability and superior average grain yield.
{"title":"Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model.","authors":"Jan Bocianowski, Kamila Nowosad, Dariusz Rejek","doi":"10.1007/s13353-024-00899-4","DOIUrl":"10.1007/s13353-024-00899-4","url":null,"abstract":"<p><p>Genotype-environment interaction consists of the different response of individual genotypes resulting from changing environmental conditions. Its significance is a phenomenon that makes the breeding process very difficult. On the one hand, the breeder expects stable genotypes, i.e., yielding similarly regardless of environmental conditions. On the other hand, selecting the best genotypes for each region is one of the key challenges for breeders and farmers. The aim of this study was to evaluate genotype-by-environment interaction for grain yield in new maize hybrids developed by Plant Breeding Smolice Co. Ltd., utilizing the additive main effects and multiplicative interaction (AMMI) model. The investigation involved 69 maize (Zea mays L.) hybrids, tested across five locations in a randomized complete block design with three replications. Grain yield varied from 8.76 t ha<sup>-1</sup> (SMH_16417 in Smolice) to 16.89 t ha<sup>-1</sup> (SMH_16043 in Płaczkowo), with a mean yield of 13.16 t ha<sup>-1</sup>. AMMI analysis identified significant effects of genotype, environment, and their interaction on grain yield. Analysis of variance indicated that 25.12% of the total variation in grain yield was due to environment factor, 35.20% to genotypic differences, and 21.18% to genotype by environmental interactions. Hybrids SMH_1706 and SMH_1707 are recommended for further breeding programs due to their high stability and superior average grain yield.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"653-664"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.
{"title":"Comparative genome analysis of endophytic Bacillus amyloliquefaciens MR4: a potential biocontrol agent isolated from wild medicinal plant root tissue.","authors":"Kaiying Yang, Xianxing Dai, Zulihumar Maitikadir, Huijiang Zhang, Haiting Hao, Chengcai Yan","doi":"10.1007/s13353-024-00905-9","DOIUrl":"10.1007/s13353-024-00905-9","url":null,"abstract":"<p><p>In this investigation, 396 endophytic bacterial strains from six indigenous medicinal plant species within the Xinjiang Tumor Peak National Nature Reserve were subjected to screening. The strain MR4 emerged as a noteworthy contender, demonstrating pronounced biocontrol capabilities coupled with exceptional cold tolerance. Through morphological scrutiny and comprehensive genomic sequencing, MR4 was identified as Bacillus amyloliquefaciens. Antagonistic assays revealed MR4's efficacy in suppressing the causative agents of cotton wilt and verticillium wilt, achieving inhibition rates surpassing 50%. Analyses, underpinned by PCR methodologies, indicated MR4's capacity to biosynthesize a minimum of eight distinct antimicrobial agents. The whole-genome sequencing data indicated that B. amyloliquefaciens MR4 had the genome size and GC content of 4,017,872 bp and 47.14%, respectively, and 4191 coding genes were identified. The genome consists of a single chromosome and one plasmid. Moreover, it was augmented by annotations from various databases, including GO, KEGG, and COG. The pathogenicity of MR4 undergoes evaluation, while predictions concerning MR4's secondary metabolites have disclosed gene clusters for 13 varieties of these compounds, with particular emphasis on surfactins and fengycin. Comparative analyses with four paradigmatic strains shed light on MR4's genomic composition and its phylogenetic lineage within the Bacillus genus. The genomic data pertaining to MR4 have been duly submitted to the NCBI GenBank, bearing the accession numbers CP146236 (Chr1) and CP146237 (plas1). This study endeavors to furnish potent microbial resources for the biocontrol and enhancement of plant growth, thereby providing a theoretical groundwork for MR4's agronomic utilization.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"907-923"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-18DOI: 10.1007/s13353-024-00910-y
G Cieleń, E Sell-Kubiak
Reproductive traits are an integral part of the goals of the breeding programs that contribute to the economic success of production. Reproductive phenotypes such as litter size, number of piglets born alive, or litter weight at birth are mainly attributed to females. Thus, the maternal components can be found by default in quantitative genetics' animal models. Still, paternal contribution to variance components should not be discarded. In this review, we indicate the importance of paternal effects in pig breeding by describing both the biology and genetics of boars' traits, the use of (non-)genetic service sire effects in quantitative genetic models for traits measured on females, and genes involved in male reproduction. We start by describing the important biological traits of boars that have the most important effect on their reproductive abilities, i.e., sexual maturity, sperm quality, and testes parameters. Then we move to the possible environmental effects that could affect those traits of boars (e.g., feed, temperature). The main part of the review in detail describes the genetics of boars' reproductive traits (i.e., heritability) and their direct effect on reproductive traits of females (i.e., genetic correlations). We then move to the use of both genetic and non-genetic service sire effects in quantitative models estimated as their percentage in the total variance of traits, which vary depending on the breed from 1 to 4.5% or from 1 to 2%, respectively. Finally, we focus on the description of candidate genes and confirmed mutations affecting male reproduction success: IGF2, Tgm8, ESR1, ZSWIM7, and ELMO1. In conclusion, the observed variance of paternal effects in female reproduction traits might come from various attributes of boars including biological and genetic aspects. Those attributes of boars should not be neglected as they contribute to the success of female reproductive traits.
{"title":"Importance and variability of the paternal component in sow reproductive traits.","authors":"G Cieleń, E Sell-Kubiak","doi":"10.1007/s13353-024-00910-y","DOIUrl":"10.1007/s13353-024-00910-y","url":null,"abstract":"<p><p>Reproductive traits are an integral part of the goals of the breeding programs that contribute to the economic success of production. Reproductive phenotypes such as litter size, number of piglets born alive, or litter weight at birth are mainly attributed to females. Thus, the maternal components can be found by default in quantitative genetics' animal models. Still, paternal contribution to variance components should not be discarded. In this review, we indicate the importance of paternal effects in pig breeding by describing both the biology and genetics of boars' traits, the use of (non-)genetic service sire effects in quantitative genetic models for traits measured on females, and genes involved in male reproduction. We start by describing the important biological traits of boars that have the most important effect on their reproductive abilities, i.e., sexual maturity, sperm quality, and testes parameters. Then we move to the possible environmental effects that could affect those traits of boars (e.g., feed, temperature). The main part of the review in detail describes the genetics of boars' reproductive traits (i.e., heritability) and their direct effect on reproductive traits of females (i.e., genetic correlations). We then move to the use of both genetic and non-genetic service sire effects in quantitative models estimated as their percentage in the total variance of traits, which vary depending on the breed from 1 to 4.5% or from 1 to 2%, respectively. Finally, we focus on the description of candidate genes and confirmed mutations affecting male reproduction success: IGF2, Tgm8, ESR1, ZSWIM7, and ELMO1. In conclusion, the observed variance of paternal effects in female reproduction traits might come from various attributes of boars including biological and genetic aspects. Those attributes of boars should not be neglected as they contribute to the success of female reproductive traits.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"853-866"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142465956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-26DOI: 10.1007/s13353-024-00887-8
Konrad Ocalewicz, Marcin Kuciński, Igor Jasielczuk, Artur Gurgul, Mirosław Kucharski, Stefan Dobosz
Expression of the telomerase reverse-transcriptase (TERT) gene and activity of telomerase have been reported in the somatic tissues and gonads in fish irrespective of their age and size. Nevertheless, little is known about TERT expression in the fish eggs. In the current study, the presence of the TERT transcripts was confirmed in the rainbow trout ovulated eggs before and after activation with nonirradiated and UV-irradiated (gynogenesis) sperm. Eggs originating from eight females had high and comparable quality expressed by similar hatching rates. However, survival of the gynogenetic larvae that hatched from eggs activated with UV-irradiated sperm and further exposed to the high hydrostatic pressure (HHP) shock for duplication of the maternal chromosomes varied between females from 2.1 ± 0.4 to 40.5 ± 2.2%. Increased level of TERT transcripts was observed in eggs originating from two females, and gametes from only one of them showed improved competence for gynogenesis (27.3 ± 1.9%). In turn, eggs from the female that exhibited the highest survival after gynogenetic activation were characterized by the lowest expression of the TERT gene. Telomerase in rainbow trout eggs may compensate erosion of the telomeres during early embryonic development; however, its upregulation does not assure better development after gynogenetic activation.
{"title":"Transcript level of telomerase reverse-transcriptase (TERT) gene in the rainbow trout (Oncorhynchus mykiss) eggs with different developmental competence for gynogenesis.","authors":"Konrad Ocalewicz, Marcin Kuciński, Igor Jasielczuk, Artur Gurgul, Mirosław Kucharski, Stefan Dobosz","doi":"10.1007/s13353-024-00887-8","DOIUrl":"10.1007/s13353-024-00887-8","url":null,"abstract":"<p><p>Expression of the telomerase reverse-transcriptase (TERT) gene and activity of telomerase have been reported in the somatic tissues and gonads in fish irrespective of their age and size. Nevertheless, little is known about TERT expression in the fish eggs. In the current study, the presence of the TERT transcripts was confirmed in the rainbow trout ovulated eggs before and after activation with nonirradiated and UV-irradiated (gynogenesis) sperm. Eggs originating from eight females had high and comparable quality expressed by similar hatching rates. However, survival of the gynogenetic larvae that hatched from eggs activated with UV-irradiated sperm and further exposed to the high hydrostatic pressure (HHP) shock for duplication of the maternal chromosomes varied between females from 2.1 ± 0.4 to 40.5 ± 2.2%. Increased level of TERT transcripts was observed in eggs originating from two females, and gametes from only one of them showed improved competence for gynogenesis (27.3 ± 1.9%). In turn, eggs from the female that exhibited the highest survival after gynogenetic activation were characterized by the lowest expression of the TERT gene. Telomerase in rainbow trout eggs may compensate erosion of the telomeres during early embryonic development; however, its upregulation does not assure better development after gynogenetic activation.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"897-905"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human epidermal growth factor receptor 2 (HER2) overexpression and activation are crucial for trastuzumab resistance in HER2-positive breast cancer; however, the potential regulatory mechanism of HER2 is still largely undetermined. In this study, a novel circular RNA derived from peptidylprolyl isomerase D (PPID) is identified as a negative regulator of trastuzumab resistance. Circ-PPID is highly stable and significantly downregulated in trastuzumab-resistant cells and tissues. Restoration of circ-PPID markedly enhances HER2-positive breast cell sensitivity to trastuzumab in vitro and in vivo. Circ-PPID directly binds to N-acetyltransferase 10 (NAT10) in the nucleus and blocks the interaction between NAT10 and HER2 mRNA, reducing N4-acetylcytidine (ac4C) modification on HER2 exon 25, leading to HER2 mRNA decay. Intriguingly, the subcellular localization of circ-PPID differs between trastuzumab-sensitive and -resistant cells. Circ-PPID in trastuzumab-resistant cells is located more in the cytoplasm, mainly due to the upregulation of Exportin 4 (XPO4), which results in the loss of spatial conditions for circ-PPID to bind to nuclear NAT10. Taken together, our data suggest that circ-PPID is a previously unappreciated ac4C-dependent HER2 epigenetic regulator, providing a promising therapeutic direction for overcoming trastuzumab resistance in clinical setting.
{"title":"Peptidylprolyl isomerase D circular RNA sensitizes breast cancer to trastuzumab through remodeling HER2 N4-acetylcytidine modification.","authors":"Shengting Wang, Qian Li, Yufang Wang, Xiaoming Li, Xinghua Feng, Yuxuan Wei, Jiaman Wang, Xin Zhou","doi":"10.1007/s13353-024-00840-9","DOIUrl":"10.1007/s13353-024-00840-9","url":null,"abstract":"<p><p>Human epidermal growth factor receptor 2 (HER2) overexpression and activation are crucial for trastuzumab resistance in HER2-positive breast cancer; however, the potential regulatory mechanism of HER2 is still largely undetermined. In this study, a novel circular RNA derived from peptidylprolyl isomerase D (PPID) is identified as a negative regulator of trastuzumab resistance. Circ-PPID is highly stable and significantly downregulated in trastuzumab-resistant cells and tissues. Restoration of circ-PPID markedly enhances HER2-positive breast cell sensitivity to trastuzumab in vitro and in vivo. Circ-PPID directly binds to N-acetyltransferase 10 (NAT10) in the nucleus and blocks the interaction between NAT10 and HER2 mRNA, reducing N4-acetylcytidine (ac4C) modification on HER2 exon 25, leading to HER2 mRNA decay. Intriguingly, the subcellular localization of circ-PPID differs between trastuzumab-sensitive and -resistant cells. Circ-PPID in trastuzumab-resistant cells is located more in the cytoplasm, mainly due to the upregulation of Exportin 4 (XPO4), which results in the loss of spatial conditions for circ-PPID to bind to nuclear NAT10. Taken together, our data suggest that circ-PPID is a previously unappreciated ac4C-dependent HER2 epigenetic regulator, providing a promising therapeutic direction for overcoming trastuzumab resistance in clinical setting.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"797-807"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
{"title":"Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa.","authors":"Fatemeh Gila, Vahab Alamdari-Palangi, Maedeh Rafiee, Arezoo Jokar, Sajad Ehtiaty, Aria Dianatinasab, Seyyed Hossein Khatami, Mortaza Taheri-Anganeh, Ahmad Movahedpour, Jafar Fallahi","doi":"10.1007/s13353-024-00839-2","DOIUrl":"10.1007/s13353-024-00839-2","url":null,"abstract":"<p><p>Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"705-726"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-28DOI: 10.1007/s13353-024-00915-7
Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń
Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.
{"title":"Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells.","authors":"Artur Gurgul, Jakub Żurowski, Tomasz Szmatoła, Mirosław Kucharski, Sebastian Sawicki, Ewelina Semik-Gurgul, Ewa Ocłoń","doi":"10.1007/s13353-024-00915-7","DOIUrl":"10.1007/s13353-024-00915-7","url":null,"abstract":"<p><p>Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"773-796"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-29DOI: 10.1007/s13353-024-00842-7
Shaokun Liu, Meng Lian, Boxuan Han, Jugao Fang, Zhenlin Wang
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor with significant morbidity and mortality. Understanding the molecular mechanisms of HNSCC and identifying prognostic markers and therapeutic targets are crucial for improving patient outcomes. In this study, we utilized single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data to comprehensively analyze HNSCC at the cellular level. We identified keratinocytes as the predominant cell type in tumor samples, suggesting their potential role in HNSCC development. Through hdWGCNA co-expression network analysis, we identified gene modules associated with HNSCC progression. Furthermore, we constructed a prognostic model based on specific genes and demonstrated its robust predictive performance in multiple datasets. The model exhibited strong correlations with immune cell infiltration patterns and signaling pathways related to tumor progression. Additionally, drug sensitivity analysis revealed potential chemotherapeutic targets for HNSCC treatment. Our findings provide valuable insights into the molecular characteristics and immune microenvironment of HNSCC, offering new perspectives for prognosis prediction and therapeutic interventions in clinical practice. Further research is warranted to validate and expand upon these findings, ultimately improving patient outcomes in HNSCC.
{"title":"Single-cell integrated transcriptomics reveals the role of keratinocytes in head and neck squamous cell carcinoma.","authors":"Shaokun Liu, Meng Lian, Boxuan Han, Jugao Fang, Zhenlin Wang","doi":"10.1007/s13353-024-00842-7","DOIUrl":"10.1007/s13353-024-00842-7","url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor with significant morbidity and mortality. Understanding the molecular mechanisms of HNSCC and identifying prognostic markers and therapeutic targets are crucial for improving patient outcomes. In this study, we utilized single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data to comprehensively analyze HNSCC at the cellular level. We identified keratinocytes as the predominant cell type in tumor samples, suggesting their potential role in HNSCC development. Through hdWGCNA co-expression network analysis, we identified gene modules associated with HNSCC progression. Furthermore, we constructed a prognostic model based on specific genes and demonstrated its robust predictive performance in multiple datasets. The model exhibited strong correlations with immune cell infiltration patterns and signaling pathways related to tumor progression. Additionally, drug sensitivity analysis revealed potential chemotherapeutic targets for HNSCC treatment. Our findings provide valuable insights into the molecular characteristics and immune microenvironment of HNSCC, offering new perspectives for prognosis prediction and therapeutic interventions in clinical practice. Further research is warranted to validate and expand upon these findings, ultimately improving patient outcomes in HNSCC.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"727-745"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-26DOI: 10.1007/s13353-024-00886-9
Monika Rewers, Agnieszka Lojko, Dorota Olszewska, Aleksandra Niklas, Iwona Jedrzejczyk
The Trigonella species possess medicinal, nutraceutical and pharmaceutical properties due to the presence of many bioactive compounds. Its therapeutic effects are mostly valuable in medicine, cosmetics and the functional food industry. Correct genetic characterisation of plant material is needed to increase the potential of Trigonella species by breeding and conservation programs. The aim of this study was to develop a reliable marker system to support the morphological and phytochemical analysis in Trigonella taxonomic research, species identification and characterization as well as determination of the interspecific variation within this genus along with relationships between species. For this purpose, flow cytometry and SCoT molecular markers were combined. Flow cytometric analyses revealed that Trigonella species possess very small and small genomes. The range of genome sizes was from 1.10 to 5.76 pg/2C, with most species possessing very small genomes (< 2.8 pg/2C). In seeds of 14 species endopolyploid nuclei were detected. Flow cytometric analysis of genome size enabled quick identification of four out of 20 species, while combined with endopolyploidy detection in seeds, facilitated distinction of the next seven species. ScoT molecular markers helped to identify closely related species with similar genome size and cell cycle activity. Therefore, flow cytometry was proposed as the first-choice method for quick accession screening, while the more detailed genetic classification was obtained using SCoT molecular markers.
{"title":"Diversity of genome size, endopolyploidy and SCoT markers in 20 Trigonella (Fabaceae) species.","authors":"Monika Rewers, Agnieszka Lojko, Dorota Olszewska, Aleksandra Niklas, Iwona Jedrzejczyk","doi":"10.1007/s13353-024-00886-9","DOIUrl":"10.1007/s13353-024-00886-9","url":null,"abstract":"<p><p>The Trigonella species possess medicinal, nutraceutical and pharmaceutical properties due to the presence of many bioactive compounds. Its therapeutic effects are mostly valuable in medicine, cosmetics and the functional food industry. Correct genetic characterisation of plant material is needed to increase the potential of Trigonella species by breeding and conservation programs. The aim of this study was to develop a reliable marker system to support the morphological and phytochemical analysis in Trigonella taxonomic research, species identification and characterization as well as determination of the interspecific variation within this genus along with relationships between species. For this purpose, flow cytometry and SCoT molecular markers were combined. Flow cytometric analyses revealed that Trigonella species possess very small and small genomes. The range of genome sizes was from 1.10 to 5.76 pg/2C, with most species possessing very small genomes (< 2.8 pg/2C). In seeds of 14 species endopolyploid nuclei were detected. Flow cytometric analysis of genome size enabled quick identification of four out of 20 species, while combined with endopolyploidy detection in seeds, facilitated distinction of the next seven species. ScoT molecular markers helped to identify closely related species with similar genome size and cell cycle activity. Therefore, flow cytometry was proposed as the first-choice method for quick accession screening, while the more detailed genetic classification was obtained using SCoT molecular markers.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"693-703"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561077/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice blast disease, caused by Magnaporthe oryzae, reigns as the top-most cereal killer, jeopardizing global food security. This necessitates the timely scouting of pathogen stress-responsive genes during the early infection stages. Thus, we integrated time-series microarray (GSE95394) and RNA-Seq (GSE131641) datasets to decipher rice transcriptome responses at 12- and 24-h post-infection (Hpi). Our analysis revealed 1580 differentially expressed genes (DEGs) overlapped between datasets. We constructed a protein-protein interaction (PPI) network for these DEGs and identified significant subnetworks using the MCODE plugin. Further analysis with CytoHubba highlighted eight plausible hub genes for pathogenesis: RPL8 (upregulated) and RPL27, OsPRPL3, RPL21, RPL9, RPS5, OsRPS9, and RPL17 (downregulated). We validated the expression levels of these hub genes in response to infection, finding that RPL8 exhibited significantly higher expression compared with other downregulated genes. Remarkably, RPL8 formed a distinct cluster in the co-expression network, whereas other hub genes were interconnected, with RPL9 playing a central role, indicating its pivotal role in coordinating gene expression during infection. Gene Ontology highlighted the enrichment of hub genes in the ribosome and protein translation processes. Prior studies suggested that plant immune defence activation diminishes the energy pool by suppressing ribosomes. Intriguingly, our study aligns with this phenomenon, as the identified ribosomal proteins (RPs) were suppressed, while RPL8 expression was activated. We anticipate that these RPs could be targeted to develop new stress-resistant rice varieties, beyond their housekeeping role. Overall, integrating transcriptomic data revealed more common DEGs, enhancing the reliability of our analysis and providing deeper insights into rice blast disease mechanisms.
{"title":"Deciphering early responsive signature genes in rice blast disease: an integrated temporal transcriptomic study.","authors":"Ajitha Antony, Shanthi Veerappapillai, Ramanathan Karuppasamy","doi":"10.1007/s13353-024-00901-z","DOIUrl":"10.1007/s13353-024-00901-z","url":null,"abstract":"<p><p>Rice blast disease, caused by Magnaporthe oryzae, reigns as the top-most cereal killer, jeopardizing global food security. This necessitates the timely scouting of pathogen stress-responsive genes during the early infection stages. Thus, we integrated time-series microarray (GSE95394) and RNA-Seq (GSE131641) datasets to decipher rice transcriptome responses at 12- and 24-h post-infection (Hpi). Our analysis revealed 1580 differentially expressed genes (DEGs) overlapped between datasets. We constructed a protein-protein interaction (PPI) network for these DEGs and identified significant subnetworks using the MCODE plugin. Further analysis with CytoHubba highlighted eight plausible hub genes for pathogenesis: RPL8 (upregulated) and RPL27, OsPRPL3, RPL21, RPL9, RPS5, OsRPS9, and RPL17 (downregulated). We validated the expression levels of these hub genes in response to infection, finding that RPL8 exhibited significantly higher expression compared with other downregulated genes. Remarkably, RPL8 formed a distinct cluster in the co-expression network, whereas other hub genes were interconnected, with RPL9 playing a central role, indicating its pivotal role in coordinating gene expression during infection. Gene Ontology highlighted the enrichment of hub genes in the ribosome and protein translation processes. Prior studies suggested that plant immune defence activation diminishes the energy pool by suppressing ribosomes. Intriguingly, our study aligns with this phenomenon, as the identified ribosomal proteins (RPs) were suppressed, while RPL8 expression was activated. We anticipate that these RPs could be targeted to develop new stress-resistant rice varieties, beyond their housekeeping role. Overall, integrating transcriptomic data revealed more common DEGs, enhancing the reliability of our analysis and providing deeper insights into rice blast disease mechanisms.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"665-681"},"PeriodicalIF":2.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}