The bird cherry‐oat aphid (Rhopalosiphum padi) and the grain aphid (Sitobion miscanthi) are two destructive wheat pests that have caused severe economic losses in China's main wheat‐producing regions. Although previous studies have focused mainly on the population dynamics of wheat pests in wheat fields, little is known about the trans‐sea migration of both wheat aphid species in eastern China. Here, we conducted 10 years of monitoring from 2012 to 2021 to determine aerial migration patterns utilizing a suction trap on Beihuang Island (BH), a small island in the centre of the Bohai Strait that serves as a seasonal insect migratory pathway in eastern Asia. We also simulated the migration trajectories of these pests using the HYSPLIT model. Overall, a total of 6362 alatae S. miscanthi and 335 alatae R. padi were captured, and both wheat aphid species exhibited regular patterns of comigration across the sea from late April to late October each year. There were significant interannual and seasonal differences in the migratory numbers of both wheat aphids. Notably, the average daily humidity was the most important meteorological factor affecting migration biomass. The seasonal migration trajectories simulated using the HYSPLIT model revealed different source areas for both wheat aphid species, which mostly originated in Northeast, North and East China. Accordingly, our study provides valuable insights into the occurrence and migration route of wheat aphids in eastern Asia, helps fine‐tune forecasting and early warning systems, and thereby guides integrated pest management of wheat aphids in eastern Asia.
{"title":"Interannual and seasonal migratory patterns of wheat aphids across the Bohai Strait in eastern Asia","authors":"Xingya Wang, Haotian Ma, Ying Gao, Mingli Yu, Yuechao Zhao, Kongming Wu","doi":"10.1111/jen.13349","DOIUrl":"https://doi.org/10.1111/jen.13349","url":null,"abstract":"The bird cherry‐oat aphid (<jats:italic>Rhopalosiphum padi</jats:italic>) and the grain aphid (<jats:italic>Sitobion miscanthi</jats:italic>) are two destructive wheat pests that have caused severe economic losses in China's main wheat‐producing regions. Although previous studies have focused mainly on the population dynamics of wheat pests in wheat fields, little is known about the trans‐sea migration of both wheat aphid species in eastern China. Here, we conducted 10 years of monitoring from 2012 to 2021 to determine aerial migration patterns utilizing a suction trap on Beihuang Island (BH), a small island in the centre of the Bohai Strait that serves as a seasonal insect migratory pathway in eastern Asia. We also simulated the migration trajectories of these pests using the HYSPLIT model. Overall, a total of 6362 alatae <jats:italic>S. miscanthi</jats:italic> and 335 alatae <jats:italic>R. padi</jats:italic> were captured, and both wheat aphid species exhibited regular patterns of comigration across the sea from late April to late October each year. There were significant interannual and seasonal differences in the migratory numbers of both wheat aphids. Notably, the average daily humidity was the most important meteorological factor affecting migration biomass. The seasonal migration trajectories simulated using the HYSPLIT model revealed different source areas for both wheat aphid species, which mostly originated in Northeast, North and East China. Accordingly, our study provides valuable insights into the occurrence and migration route of wheat aphids in eastern Asia, helps fine‐tune forecasting and early warning systems, and thereby guides integrated pest management of wheat aphids in eastern Asia.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"39 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeff Ollerton, Emma Coulthard, Sam Tarrant, James Woolford, Leonardo Ré Jorge, André Rodrigo Rech
Plant‐pollinator interactions exist along a continuum from complete specialisation to highly generalised, that may vary in time and space. A long‐held assumption is that large bees are usually the most effective pollinators of generalist plants. We tested this by studying the relative importance of different groups of pollinators of Knautia arvensis (L.) Coult. (Caprifoliaceae: Dipsacoideae). This plant is suitable for such a study because it attracts a diversity of flower visitors, belonging to different functional groups. We asked whether all functional groups of pollinators are equally effective, or if one group is most effective, which has been documented in other species with apparently generalised pollination systems. We studied two subpopulations of K. arvensis, one at low and one at high density in Northampton, UK. To assess pollinator importance we exposed unvisited inflorescences to single visits by different groups of pollinators (butterflies, bumblebees, hoverflies and others) and assessed the proportion of pollinated stigmas. We then multiplied the effectiveness of each pollinator group with their proportional visitation frequency in five different years. For each group we also compared time spent on flowers and flight distance between visits. The relative importance of each pollinator group varied between years, as did their flight distances between flower visits. Butterflies were the best pollinators on a per visit basis (in terms of the proportion of stigmas pollinated) and flew further after visiting an inflorescence. Different measures and proxies of pollinator effectiveness varied between taxa, subpopulations, and years, and no one group of pollinators was consistently more effective than the others. Our results demonstrate the adaptive value of generalised pollination strategies when variation in relative abundance of different types of pollinators is considered. Such strategies may have buffered the ability of plants to reproduce during past periods of environmental change and may do so in the future.
植物与授粉者之间的相互作用存在着一个从完全专业化到高度普遍化的连续统一体,可能在时间和空间上有所不同。一个长期存在的假设是,大型蜜蜂通常是通性植物最有效的授粉者。我们通过研究 Knautia arvensis (L.) Coult.(Caprifoliaceae: Dipsacoideae)的不同传粉媒介群的相对重要性进行了测试。这种植物适合进行此类研究,因为它能吸引属于不同功能群的多种访花者。我们想知道是否所有功能群的授粉者都同样有效,还是某一功能群最有效,这在其他具有明显普遍授粉系统的物种中已有记载。我们研究了英国北安普顿的两个 K. arvensis 亚群,一个密度低,一个密度高。为了评估授粉者的重要性,我们让不同的授粉者群体(蝴蝶、熊蜂、食蚜蝇等)对未经访问的花序进行单次访问,并评估授粉柱头的比例。然后,我们将每个传粉昆虫群的效率与其在五个不同年份的访问频率比例相乘。我们还比较了每种授粉昆虫在花朵上所花费的时间以及两次访问之间的飞行距离。每种授粉昆虫在不同年份的相对重要性各不相同,它们在花朵上的飞行距离也各不相同。蝴蝶是每次访花(就柱头授粉比例而言)的最佳授粉者,并且在访花后飞得更远。不同类群、亚种群和年份的授粉者有效性的不同衡量标准和代用指标各不相同,没有一组授粉者始终比其他授粉者更有效。当考虑到不同类型授粉者相对丰度的变化时,我们的研究结果证明了通用授粉策略的适应价值。在过去的环境变化时期,这种策略可能缓冲了植物的繁殖能力,在未来也可能如此。
{"title":"Butterflies, bumblebees and hoverflies are equally effective pollinators of Knautia arvensis (Caprifoliaceae), a generalist plant species with compound inflorescences","authors":"Jeff Ollerton, Emma Coulthard, Sam Tarrant, James Woolford, Leonardo Ré Jorge, André Rodrigo Rech","doi":"10.1111/jen.13345","DOIUrl":"https://doi.org/10.1111/jen.13345","url":null,"abstract":"Plant‐pollinator interactions exist along a continuum from complete specialisation to highly generalised, that may vary in time and space. A long‐held assumption is that large bees are usually the most effective pollinators of generalist plants. We tested this by studying the relative importance of different groups of pollinators of <jats:italic>Knautia arvensis</jats:italic> (L.) Coult. (Caprifoliaceae: Dipsacoideae). This plant is suitable for such a study because it attracts a diversity of flower visitors, belonging to different functional groups. We asked whether all functional groups of pollinators are equally effective, or if one group is most effective, which has been documented in other species with apparently generalised pollination systems. We studied two subpopulations of <jats:italic>K. arvensis</jats:italic>, one at low and one at high density in Northampton, UK. To assess pollinator importance we exposed unvisited inflorescences to single visits by different groups of pollinators (butterflies, bumblebees, hoverflies and others) and assessed the proportion of pollinated stigmas. We then multiplied the effectiveness of each pollinator group with their proportional visitation frequency in five different years. For each group we also compared time spent on flowers and flight distance between visits. The relative importance of each pollinator group varied between years, as did their flight distances between flower visits. Butterflies were the best pollinators on a per visit basis (in terms of the proportion of stigmas pollinated) and flew further after visiting an inflorescence. Different measures and proxies of pollinator effectiveness varied between taxa, subpopulations, and years, and no one group of pollinators was consistently more effective than the others. Our results demonstrate the adaptive value of generalised pollination strategies when variation in relative abundance of different types of pollinators is considered. Such strategies may have buffered the ability of plants to reproduce during past periods of environmental change and may do so in the future.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"5 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Romain Exilien, Robers Pierre Tescar, Holken Augustin, Dorensky Cadestin, Nicolas Carvil, Predner Duvivier, Gelin Doreus, Jessi Griesheimer
The white grub, Diaprepes abbreviatus L. (Coleoptera: Curculionidae), is a significant pest of yam tubers and the second cause of tuber rot in Haiti. Larval feeding inflicts severe damage to tubers, leading to notable losses due to decreased tuber quality, reduced marketability and increased susceptibility to secondary parasites and pathogens. This study examined the influence of planting and harvesting dates on the vulnerability of yam tubers to white grub infestation and the resulting tuber quality across 24 farmers' fields. At harvest, we assessed the level of tuber infestation, white grub density and the tuber quality index. The results indicated that 85% of grub populations were found in fields planted on the traditional date. In addition, 69.5% of tuber damage occurred in early‐planted fields with fewer tubers damaged (30%) when harvested early. In contrast, in fields planted 30 days after the traditional date, the harvest date did not affect tuber infestation and damage by the pest. Overall, both planting and harvest dates impacted the quality grade of yam tubers. Delayed planting by 30 days and early harvesting (34th–38th week after planting) improved the marketability of yams. These findings highlight the importance of optimising planting and harvest schedules to better manage white grub infestation and enhance the marketability of yam tubers.
{"title":"Impact of planting and harvest dates on yam infestation by white grubs","authors":"Romain Exilien, Robers Pierre Tescar, Holken Augustin, Dorensky Cadestin, Nicolas Carvil, Predner Duvivier, Gelin Doreus, Jessi Griesheimer","doi":"10.1111/jen.13348","DOIUrl":"https://doi.org/10.1111/jen.13348","url":null,"abstract":"The white grub, <jats:italic>Diaprepes abbreviatus</jats:italic> L. (Coleoptera: Curculionidae), is a significant pest of yam tubers and the second cause of tuber rot in Haiti. Larval feeding inflicts severe damage to tubers, leading to notable losses due to decreased tuber quality, reduced marketability and increased susceptibility to secondary parasites and pathogens. This study examined the influence of planting and harvesting dates on the vulnerability of yam tubers to white grub infestation and the resulting tuber quality across 24 farmers' fields. At harvest, we assessed the level of tuber infestation, white grub density and the tuber quality index. The results indicated that 85% of grub populations were found in fields planted on the traditional date. In addition, 69.5% of tuber damage occurred in early‐planted fields with fewer tubers damaged (30%) when harvested early. In contrast, in fields planted 30 days after the traditional date, the harvest date did not affect tuber infestation and damage by the pest. Overall, both planting and harvest dates impacted the quality grade of yam tubers. Delayed planting by 30 days and early harvesting (34th–38th week after planting) improved the marketability of yams. These findings highlight the importance of optimising planting and harvest schedules to better manage white grub infestation and enhance the marketability of yam tubers.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"305 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The diamondback moth (DBM), Plutella xylostella (L.), is responsible for extensive losses in brassicas' production, with its control heavily relying on the use of insecticides. The imbricated brassica's leaves on the stem provide a suitable habitat for the ring‐legged earwig, Euborellia annulipes (Lucas), to attack DBM larvae and pupae. The study focused on the combination of the earwig with indoxacarb and cyantraniliprole against DBM, as these insecticides target chewing and sucking sap pests infesting Brassica crops, respectively. These insecticides were tested against adult earwigs, 5th instar nymphs and predation upon DBM. When exposed to the recommended rates, the survival rates for nymphs were 74%, 100% and 96% in the cyantraniliprole, indoxacarb and control groups, respectively, and over 90% for adults. When 5th instar earwig nymphs were exposed to cyantraniliprole, they took 16.3 days to develop compared to indoxacarb (3.4 days) or the control group (3.2 days). Furthermore, females exposed to cyantraniliprole required more time to initiate oviposition and produced fewer eggs in the first egg batch. Despite that, the egg‐hatching rate was greater than 80% in all treatments. Female earwigs confined to indoxacarb‐ or cyantraniliprole‐treated or untreated leaves and DBM larvae maintained similar survival but lower consumption of DBM larvae when exposed to cyantraniliprole. The findings revealed that cyantraniliprole weakened the potential of the ring‐legged earwig to control DBM. On the other hand, indoxacarb was harmless to the earwig and showed additive mortality for the pest. Therefore, indoxacarb seems compatible with E. annulipes, while cyantraniliprole has a sublethal effect that slows down development and reproduction.
{"title":"Indoxacarb, cyantraniliprole, and Euborellia annulipes as options for integrated control of diamondback moth","authors":"Renilson Pessoa Morato, Deividy Vicente do Nascimento, Gemerson Machado Oliveira, Natalia Carolina Bermúdez, Rogério Lira, Jorge Braz Torres","doi":"10.1111/jen.13347","DOIUrl":"https://doi.org/10.1111/jen.13347","url":null,"abstract":"The diamondback moth (DBM), <jats:italic>Plutella xylostella</jats:italic> (L.), is responsible for extensive losses in brassicas' production, with its control heavily relying on the use of insecticides. The imbricated brassica's leaves on the stem provide a suitable habitat for the ring‐legged earwig, <jats:italic>Euborellia annulipes</jats:italic> (Lucas), to attack DBM larvae and pupae. The study focused on the combination of the earwig with indoxacarb and cyantraniliprole against DBM, as these insecticides target chewing and sucking sap pests infesting Brassica crops, respectively. These insecticides were tested against adult earwigs, 5th instar nymphs and predation upon DBM. When exposed to the recommended rates, the survival rates for nymphs were 74%, 100% and 96% in the cyantraniliprole, indoxacarb and control groups, respectively, and over 90% for adults. When 5th instar earwig nymphs were exposed to cyantraniliprole, they took 16.3 days to develop compared to indoxacarb (3.4 days) or the control group (3.2 days). Furthermore, females exposed to cyantraniliprole required more time to initiate oviposition and produced fewer eggs in the first egg batch. Despite that, the egg‐hatching rate was greater than 80% in all treatments. Female earwigs confined to indoxacarb‐ or cyantraniliprole‐treated or untreated leaves and DBM larvae maintained similar survival but lower consumption of DBM larvae when exposed to cyantraniliprole. The findings revealed that cyantraniliprole weakened the potential of the ring‐legged earwig to control DBM. On the other hand, indoxacarb was harmless to the earwig and showed additive mortality for the pest. Therefore, indoxacarb seems compatible with <jats:italic>E. annulipes</jats:italic>, while cyantraniliprole has a sublethal effect that slows down development and reproduction.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"13 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel Musyoka Mbaka, Sasha Vasconcelos, Mohammad Hosein Rezai, Miriam Frida Karlsson, Mattias Jonsson
Knowledge about cold tolerance of non‐native biological control agents is critical to avoid permanently establishing them in new temperate areas outside of their native range. The cold tolerance of the predatory mites, Amblydromalus limonicus and Iphiseius degenerans, was investigated in the laboratory to assess their establishment potential in northern Europe, particularly Sweden. The lethal time of I. degenerans (the number of days until 100% mortality was reached) declined steeply from 5°C to 0°C and was almost zero at −5°C. The lethal time of A. limonicus did not differ between 5°C and 0°C, but was reduced at −5°C. For both species, LTime50 (the number of days until 50% of the mites died) was longer for fed than for unfed mites. The lethal temperature of A. limonicus (the temperature at which 100% mortality was reached) was −17.75°C, whereas most I. degenerans died at −8.5°C. LTemp50 (the temperature at which 50% of the mites died) was lower for A. limonicus (−9.8°C) than for I. degenerans (−0.1°C). Collectively, these findings suggest that I. degenerans is unlikely to establish in Sweden but that A. limonicus is more cold tolerant. This highlights the risk associated with releasing A. limonicus in Sweden due to concerns about potential establishment.
了解非本地生物防治制剂的耐寒性对于避免在其原生地以外的新温带地区永久性地建立这些制剂至关重要。我们在实验室研究了捕食螨(Amblydromalus limonicus 和 Iphiseius degenerans)的耐寒性,以评估它们在北欧(尤其是瑞典)定居的可能性。I. degenerans的致死时间(达到100%死亡率的天数)从5°C到0°C急剧下降,在-5°C时几乎为零。A.limonicus的致死时间在5°C和0°C之间没有差异,但在-5°C时有所缩短。对这两种螨虫而言,喂食的螨虫的致死时间(LTime50)(50%的螨虫死亡前的天数)比未喂食的螨虫长。A. limonicus的致死温度(达到100%死亡率的温度)为-17.75°C,而大多数I. degenerans在-8.5°C时死亡。LTemp50(50% 的螨虫死亡时的温度)对 A. limonicus 而言(-9.8°C)低于对 I. degenerans 而言(-0.1°C)。总之,这些发现表明,I. degenerans不太可能在瑞典立足,但A. limonicus更耐寒。这凸显了在瑞典放归A. limonicus的风险,因为人们担心它可能会在瑞典立足。
{"title":"Cold tolerance of biological control agents Amblydromalus limonicus and Iphiseius degenerans","authors":"Samuel Musyoka Mbaka, Sasha Vasconcelos, Mohammad Hosein Rezai, Miriam Frida Karlsson, Mattias Jonsson","doi":"10.1111/jen.13346","DOIUrl":"https://doi.org/10.1111/jen.13346","url":null,"abstract":"Knowledge about cold tolerance of non‐native biological control agents is critical to avoid permanently establishing them in new temperate areas outside of their native range. The cold tolerance of the predatory mites, <jats:italic>Amblydromalus limonicus</jats:italic> and <jats:italic>Iphiseius degenerans</jats:italic>, was investigated in the laboratory to assess their establishment potential in northern Europe, particularly Sweden. The lethal time of <jats:italic>I. degenerans</jats:italic> (the number of days until 100% mortality was reached) declined steeply from 5°C to 0°C and was almost zero at −5°C. The lethal time of <jats:italic>A. limonicus</jats:italic> did not differ between 5°C and 0°C, but was reduced at −5°C. For both species, LTime<jats:sub>50</jats:sub> (the number of days until 50% of the mites died) was longer for fed than for unfed mites. The lethal temperature of <jats:italic>A. limonicus</jats:italic> (the temperature at which 100% mortality was reached) was −17.75°C, whereas most <jats:italic>I. degenerans</jats:italic> died at −8.5°C. LTemp<jats:sub>50</jats:sub> (the temperature at which 50% of the mites died) was lower for <jats:italic>A. limonicus</jats:italic> (−9.8°C) than for <jats:italic>I. degenerans</jats:italic> (−0.1°C). Collectively, these findings suggest that <jats:italic>I. degenerans</jats:italic> is unlikely to establish in Sweden but that <jats:italic>A. limonicus</jats:italic> is more cold tolerant. This highlights the risk associated with releasing <jats:italic>A. limonicus</jats:italic> in Sweden due to concerns about potential establishment.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"34 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giorgio Sperandio, Sara Pasquali, Gianfranco Pradolesi, Serena Baiocco, Federico Cavina, Gianni Gilioli
Diapause is a vital survival strategy for insects, enabling them to conserve energy and endure adverse conditions. Understanding how diapause affects insect phenology and population dynamics is crucial for the effective management of insect pests. Predictive pest phenological models can be invaluable tools for providing essential information to support management strategies. This study presents a modelling framework to incorporate diapause into phenological models when biological information on variables regulating and functions describing diapause induction and termination are lacking or limited. In our framework, insect phenology is divided into a set of phases characterized by specific events (diapause induction and termination) and processes (development of diapausing and post‐diapausing biological stages). The phenology is simulated by a stage‐structured model based on the Kolmogorov equation, and the temperature‐dependent development rate functions are described by the Brière functional form. Our modelling framework was tested on a case study involving the prediction of the phenology of the codling moth, (Cydia pomonella L. 1758). Model calibration and validation were performed using four time‐series adult trap catch data collected in the Emilia Romagna Region from 2021 to 2023. The calibration procedure allowed obtaining realistic parameters related to the temperature threshold triggering diapause termination and the development rate function of post‐diapausing larvae and pupae. Model validation proved successful in simulating both the initial emergence and the overall phenological patterns of adults across the three observed generations. The methodological framework proposed here aims to facilitate the introduction of diapause in phenological models improving also their predictive abilities. The model may serve as an accurate and knowledge‐based tool for planning and implementing pest monitoring and control actions based on the realistic predictions provided by the model on the phenological status of the pest.
休眠是昆虫的一种重要生存策略,使它们能够保存能量并忍受不利条件。了解休眠如何影响昆虫物候学和种群动态对于有效管理害虫至关重要。害虫物候预测模型是提供重要信息以支持管理策略的宝贵工具。本研究提出了一个建模框架,用于在缺乏或有限描述停歇诱导和终止的变量和功能的生物信息时,将停歇纳入物候学模型。在我们的框架中,昆虫物候分为一系列阶段,这些阶段以特定事件(休眠诱导和终止)和过程(休眠和休眠后生物阶段的发展)为特征。物候学由基于科尔莫哥罗夫方程的阶段结构模型模拟,与温度相关的发育速率函数由布里埃函数形式描述。我们的建模框架在一个案例研究中进行了测试,该案例研究涉及鳕毒蛾(Cydia pomonella L. 1758)的物候预测。利用 2021 年至 2023 年在艾米利亚-罗马涅地区收集的四个时间序列成虫诱捕器捕获数据对模型进行了校准和验证。校准程序允许获得与触发休眠终止的温度阈值以及休眠后幼虫和蛹的发育率函数相关的现实参数。模型验证成功地模拟了三代成虫的初始出现和整体物候模式。本文提出的方法框架旨在促进在物候模型中引入休眠,同时提高其预测能力。根据模型对害虫物候状态的实际预测,该模型可作为规划和实施害虫监测与控制行动的准确和基于知识的工具。
{"title":"An empirical model for predicting insects' diapause termination and phenology: An application to Cydia pomonella","authors":"Giorgio Sperandio, Sara Pasquali, Gianfranco Pradolesi, Serena Baiocco, Federico Cavina, Gianni Gilioli","doi":"10.1111/jen.13343","DOIUrl":"https://doi.org/10.1111/jen.13343","url":null,"abstract":"Diapause is a vital survival strategy for insects, enabling them to conserve energy and endure adverse conditions. Understanding how diapause affects insect phenology and population dynamics is crucial for the effective management of insect pests. Predictive pest phenological models can be invaluable tools for providing essential information to support management strategies. This study presents a modelling framework to incorporate diapause into phenological models when biological information on variables regulating and functions describing diapause induction and termination are lacking or limited. In our framework, insect phenology is divided into a set of phases characterized by specific events (diapause induction and termination) and processes (development of diapausing and post‐diapausing biological stages). The phenology is simulated by a stage‐structured model based on the Kolmogorov equation, and the temperature‐dependent development rate functions are described by the Brière functional form. Our modelling framework was tested on a case study involving the prediction of the phenology of the codling moth, (<jats:italic>Cydia pomonella</jats:italic> L. 1758). Model calibration and validation were performed using four time‐series adult trap catch data collected in the Emilia Romagna Region from 2021 to 2023. The calibration procedure allowed obtaining realistic parameters related to the temperature threshold triggering diapause termination and the development rate function of post‐diapausing larvae and pupae. Model validation proved successful in simulating both the initial emergence and the overall phenological patterns of adults across the three observed generations. The methodological framework proposed here aims to facilitate the introduction of diapause in phenological models improving also their predictive abilities. The model may serve as an accurate and knowledge‐based tool for planning and implementing pest monitoring and control actions based on the realistic predictions provided by the model on the phenological status of the pest.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"4 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alan Lee Knight, Valentina Mujica, Esteban Basoalto, Michele Preti
Studies of oriental fruit moth (OFM), Grapholita molesta (Busck), and codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), both important pests of pome fruit, evaluated the addition of low‐intensity light‐emitting diode (LED) to delta traps baited with 3 commercial monitoring lures. Studies were conducted in 9 orchards treated with and without sex pheromone mating disruption for one or both species. OFM was monitored with a two‐part pheromone/kairomone lure (OFM Combo Dual), while CM was monitored with either a two‐part kairomone lure (CM Dual 4 K) or a sex pheromone lure (CM PH). Both pests were monitored with or without the addition of three types of a low power LED light with peak intensity at 395 (UV‐A), 458 (blue), and 516 (green) nm. The UV‐A LED was found to be the most effective among the three lights for OFM. Unexpectedly, traps with the OFM Combo Dual lure plus UV‐A LED caught similar numbers of CM as traps baited with the CM Dual 4 K and CM PH lures alone. They also caught other pest species, such as oblique banded leafroller (OBLR), Choristoneura rosaceana (Harris), and peach twig borer (PTB), Anarsia lineatella (Zeller). Interestingly, in different trials the OFM Combo Dual combined with UV‐A LED light caught significantly more OFM and/or CM females compared to the OFM Combo Dual lure without light, opening the perspective for a female‐oriented monitoring and for a “female removal” management approach of these pests. The development of inexpensive, dual‐modality traps adding a light stimulus to a pheromone/kairomone lure may reduce monitoring costs in orchards with multiple moth pests, improving the trapping efficiency.
对东方果蠹(OFM)Grapholita molesta (Busck)和苹果蠹蛾(CM)Cydia pomonella (L.)(鳞翅目:Tortricidae)这两种重要的梨果害虫的研究评估了在使用 3 种商业监测诱饵的三角诱捕器中添加低强度发光二极管(LED)的效果。研究在 9 个果园中进行,对其中一种或两种害虫分别进行了性信息素交配干扰处理和未进行交配干扰处理。使用由信息素/凯洛蒙两部分组成的诱饵(OFM Combo Dual)监测 OFM,而使用由凯洛蒙两部分组成的诱饵(CM Dual 4 K)或性信息素诱饵(CM PH)监测 CM。监测这两种害虫时,可使用或不使用三种类型的低功率 LED 灯,其峰值强度分别为 395(紫外线-A)、458(蓝色)和 516(绿色)纳米。结果发现,UV-A LED 是三种灯中对 OFM 最有效的一种。出乎意料的是,装有 OFM Combo 双诱饵和 UV-A LED 的诱捕器捕获的 CM 数量与单独装有 CM Dual 4 K 和 CM PH 诱饵的诱捕器相似。它们还能捕捉到其他害虫,如斜带卷叶螟(OBLR),Choristoneura rosaceana(Harris)和桃树枝蛀虫(PTB),Anarsia lineatella(Zeller)。有趣的是,在不同的试验中,与不发光的 OFM Combo Dual 引诱剂相比,OFM Combo Dual 与 UV-A LED 灯相结合能捕捉到更多的 OFM 和/或 CM 雌虫,这为以雌虫为导向的监测和这些害虫的 "雌虫清除 "管理方法开辟了前景。开发廉价的双模式诱捕器,在信息素/凯洛蒙诱饵中加入光刺激,可降低多种蛾类害虫果园的监测成本,提高诱捕效率。
{"title":"Simultaneous effective monitoring of Grapholita molesta and Cydia pomonella (Lepidoptera: Tortricidae) in traps with a dual sex pheromone/kairomone lure plus a UV‐A light","authors":"Alan Lee Knight, Valentina Mujica, Esteban Basoalto, Michele Preti","doi":"10.1111/jen.13344","DOIUrl":"https://doi.org/10.1111/jen.13344","url":null,"abstract":"Studies of oriental fruit moth (OFM), <jats:italic>Grapholita molesta</jats:italic> (Busck), and codling moth (CM), <jats:italic>Cydia pomonella</jats:italic> (L.) (Lepidoptera: Tortricidae), both important pests of pome fruit, evaluated the addition of low‐intensity light‐emitting diode (LED) to delta traps baited with 3 commercial monitoring lures. Studies were conducted in 9 orchards treated with and without sex pheromone mating disruption for one or both species. OFM was monitored with a two‐part pheromone/kairomone lure (OFM Combo Dual), while CM was monitored with either a two‐part kairomone lure (CM Dual 4 K) or a sex pheromone lure (CM PH). Both pests were monitored with or without the addition of three types of a low power LED light with peak intensity at 395 (UV‐A), 458 (blue), and 516 (green) nm. The UV‐A LED was found to be the most effective among the three lights for OFM. Unexpectedly, traps with the OFM Combo Dual lure plus UV‐A LED caught similar numbers of CM as traps baited with the CM Dual 4 K and CM PH lures alone. They also caught other pest species, such as oblique banded leafroller (OBLR), <jats:italic>Choristoneura rosaceana</jats:italic> (Harris), and peach twig borer (PTB), <jats:italic>Anarsia lineatella</jats:italic> (Zeller). Interestingly, in different trials the OFM Combo Dual combined with UV‐A LED light caught significantly more OFM and/or CM females compared to the OFM Combo Dual lure without light, opening the perspective for a female‐oriented monitoring and for a “female removal” management approach of these pests. The development of inexpensive, dual‐modality traps adding a light stimulus to a pheromone/kairomone lure may reduce monitoring costs in orchards with multiple moth pests, improving the trapping efficiency.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nancy Mwende Munyoki, James Muthomi, Dora Kilalo, David Bautze, Milka Kiboi, Edwin Mwangi, Edward Karanja, Felix Matheri, Noah Adamtey, Komivi S. Akutse, Xavier Cheseto
Bean flower thrips (Megalurothrips usitatus) is a major French bean (Phaseolus vulgaris L.) pest. Small‐scale farmers manage the pest using mixed plant extracts although their efficacy has not been scientifically validated. We evaluated the efficacy of mixed plant extracts comprising; Capsicum frutescens, Allium sativum, Lantana camara, Tagetes minuta and Azadirachta indica, against M. usitatus under laboratory and screenhouse. We identified and quantified the secondary metabolites associated with insecticidal activity using spectrophotometry and liquid chromatography–mass spectrometry (LC–MS). The plant combinations included PE1 (C. frutescens + A. sativum + L. camara + T. minuta extracts infused for 14 days), PE2 (same as PE1 but infused for 24 h) and PE + N (the five plant extracts infused for 24 h) in distilled water. We used an organic commercial botanical (Pyneem) as a positive control and distilled water as a negative control. Pyneem and PE + N induced the highest mortality at 88% and 77%, respectively, in the laboratory, and 68% and 71%, respectively, in the screenhouse. Phenolics, terpenoids and organosulfur compounds were identified in PE + N and individual plant extracts in varied quantities. These compounds were significantly higher (p < 0.001) in PE + N compared to individual plant extracts. The study showed that PE + N efficiently manages bean flower thrips, and mixing different plant extracts amplifies the secondary metabolites' abundance. The use of mixed plant extracts could be incorporated into integrated pest management strategies for thrips management in legumes. The specific compounds identified in PE + N should be investigated further to understand their modes of action against the pest.
豆花蓟马(Megalurothrips usitatus)是法国豆(Phaseolus vulgaris L.)的主要害虫。小规模农户使用混合植物提取物来防治这种害虫,但其功效尚未得到科学验证。我们在实验室和筛房中评估了由辣椒、薤白、香茶菜、万寿菊和 Azadirachta indica 组成的混合植物提取物对法国豆角虫的功效。我们采用分光光度法和液相色谱-质谱法(LC-MS)对与杀虫活性相关的次生代谢物进行了鉴定和定量。植物组合包括 PE1(将 C. frutescens + A. sativum + L. camara + T. minuta 的提取物浸泡 14 天)、PE2(与 PE1 相同,但浸泡 24 小时)和 PE + N(将五种植物提取物浸泡 24 小时)。我们使用一种有机商业植物药(Pyneem)作为阳性对照,蒸馏水作为阴性对照。在实验室中,Pyneem 和 PE + N 诱导的死亡率最高,分别为 88% 和 77%,在筛房中分别为 68% 和 71%。在 PE + N 和单个植物提取物中发现了不同数量的酚类、萜类和有机硫化合物。与单个植物提取物相比,PE + N 中的这些化合物含量明显更高(p < 0.001)。研究表明,PE + N 能有效防治豆花蓟马,混合使用不同的植物提取物能提高次生代谢物的含量。混合植物提取物的使用可纳入豆科植物蓟马害虫综合防治策略。应进一步研究 PE + N 中发现的特定化合物,以了解它们对害虫的作用模式。
{"title":"Scientific validation of plant extracts used by farmers in the management of bean flower thrips on French beans in Kenya","authors":"Nancy Mwende Munyoki, James Muthomi, Dora Kilalo, David Bautze, Milka Kiboi, Edwin Mwangi, Edward Karanja, Felix Matheri, Noah Adamtey, Komivi S. Akutse, Xavier Cheseto","doi":"10.1111/jen.13342","DOIUrl":"https://doi.org/10.1111/jen.13342","url":null,"abstract":"Bean flower thrips (<jats:italic>Megalurothrips usitatus</jats:italic>) is a major French bean (<jats:italic>Phaseolus vulgaris</jats:italic> L.) pest. Small‐scale farmers manage the pest using mixed plant extracts although their efficacy has not been scientifically validated. We evaluated the efficacy of mixed plant extracts comprising; <jats:italic>Capsicum frutescens</jats:italic>, <jats:italic>Allium sativum</jats:italic>, <jats:italic>Lantana camara</jats:italic>, <jats:italic>Tagetes minuta</jats:italic> and <jats:italic>Azadirachta indica</jats:italic>, against <jats:italic>M. usitatus</jats:italic> under laboratory and screenhouse. We identified and quantified the secondary metabolites associated with insecticidal activity using spectrophotometry and liquid chromatography–mass spectrometry (LC–MS). The plant combinations included PE1 (<jats:italic>C. frutescens + A. sativum + L. camara</jats:italic> + <jats:italic>T. minuta</jats:italic> extracts infused for 14 days), PE2 (same as PE1 but infused for 24 h) and PE + N (the five plant extracts infused for 24 h) in distilled water. We used an organic commercial botanical (Pyneem) as a positive control and distilled water as a negative control. Pyneem and PE + N induced the highest mortality at 88% and 77%, respectively, in the laboratory, and 68% and 71%, respectively, in the screenhouse. Phenolics, terpenoids and organosulfur compounds were identified in PE + N and individual plant extracts in varied quantities. These compounds were significantly higher (<jats:italic>p</jats:italic> < 0.001) in PE + N compared to individual plant extracts. The study showed that PE + N efficiently manages bean flower thrips, and mixing different plant extracts amplifies the secondary metabolites' abundance. The use of mixed plant extracts could be incorporated into integrated pest management strategies for thrips management in legumes. The specific compounds identified in PE + N should be investigated further to understand their modes of action against the pest.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"28 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanhui Wang, Huirong Mai, Jingxian Zhou, Yuhan Zhang, Yanmin Liu, Yan Zou, Fajun Chen
The three ecologically similar species of hemipteran sucking insects, brown planthopper (BPH) Nilaparvata lugens, small brown planthopper (SBPH) Laodelphax striatellus and white‐backed planthopper (WBPH) Sogatella furcifera are destructive pests causing severe damage to rice throughout Asia, but they have different host plants that BPH is monophagous insect just feeding rice, WBPH and SBPH are oligophagous insects additionally feeding wheat and barley and SBPH can also feed maize. This study was investigated the gut bacterial communities in BPH, WBPH and SBPH by high‐throughput amplicon sequencing in order to explain the differences in host range (SBPH>WBPH>BPH) and feeding habit (BPH with monophagy vs. WBPH and SBPH with oligophagy) of the three ecologically similar species of planthoppers. It was revealed that the gut bacterial flora in BPH was the most complex, and that in SBPH was the simplest. The diversity of the gut bacterial community in BPH was significantly higher than that in WBPH and SBPH, respectively, there was not only significant difference in α‐diversity metrics but also in β‐diversity metrics. KEGG enrichment analysis furtherly indicated that there was significantly different in the relative abundance of some functional categories (including those related to the biosynthesis of amino acids, fatty acids, lipids and carbohydrate) among BPH, WBPH and SBPH, which were closely related to their nutrient absorption and metabolism. It is presumed that the differences in abundance and composition of the gut bacteria in BPH, WBPH and SBPH may lead to different nutrient absorption and metabolism, which furtherly alter their host range and feeding habit.
{"title":"Specificity of gut microbial community in three ecologically similar species of planthoppers with different host plant ranges","authors":"Yanhui Wang, Huirong Mai, Jingxian Zhou, Yuhan Zhang, Yanmin Liu, Yan Zou, Fajun Chen","doi":"10.1111/jen.13341","DOIUrl":"https://doi.org/10.1111/jen.13341","url":null,"abstract":"The three ecologically similar species of hemipteran sucking insects, brown planthopper (BPH) <jats:italic>Nilaparvata lugens</jats:italic>, small brown planthopper (SBPH) <jats:italic>Laodelphax striatellus</jats:italic> and white‐backed planthopper (WBPH) <jats:italic>Sogatella furcifera</jats:italic> are destructive pests causing severe damage to rice throughout Asia, but they have different host plants that BPH is monophagous insect just feeding rice, WBPH and SBPH are oligophagous insects additionally feeding wheat and barley and SBPH can also feed maize. This study was investigated the gut bacterial communities in BPH, WBPH and SBPH by high‐throughput amplicon sequencing in order to explain the differences in host range (SBPH>WBPH>BPH) and feeding habit (BPH with monophagy vs. WBPH and SBPH with oligophagy) of the three ecologically similar species of planthoppers. It was revealed that the gut bacterial flora in BPH was the most complex, and that in SBPH was the simplest. The diversity of the gut bacterial community in BPH was significantly higher than that in WBPH and SBPH, respectively, there was not only significant difference in α‐diversity metrics but also in β‐diversity metrics. KEGG enrichment analysis furtherly indicated that there was significantly different in the relative abundance of some functional categories (including those related to the biosynthesis of amino acids, fatty acids, lipids and carbohydrate) among BPH, WBPH and SBPH, which were closely related to their nutrient absorption and metabolism. It is presumed that the differences in abundance and composition of the gut bacteria in BPH, WBPH and SBPH may lead to different nutrient absorption and metabolism, which furtherly alter their host range and feeding habit.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"7 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The twospotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae) is a major pest of field and greenhouse crops leading to qualitative and quantitative losses. Various chemical‐based acaricides are being used for its management that pose risks to human health, environment and non‐targeted organisms besides the development of resistance and resurgence of the pests. Therefore, alternative mite management practices are being promoted and implemented. Amongst them, entomopathogenic fungi (EPF) like Beauveria bassiana and Metarhizium spp. are being used globally, although new alternative EPF are required. Keeping this in mind, the present study was comprehended to determine the pathogenicity of native EPF, viz., Tolypocladium inflatum (Hypocreales: Ophiocordycipitaceae) and Clonostachys krabiensis (Hypocreales: Bionectriaceae) against different life stages of TSSM under laboratory conditions. The results indicated that adults are more vulnerable to studied fungi followed by nymphs and eggs of TSSM. The combined application of T. inflatum and C. krabiensis was significantly effective in controlling TSSM adults (99.33%) followed by T. inflatum (93.34%) and C. krabiensis (85.33%). According to the probit analysis, the combined application of studied EPF was found to be more effective against TSSM adults (LC50 = 6.72 × 104 conidia/mL) followed by T. inflatum (LC50 = 1.92 × 106 conidia/mL) and C. krabiensis (LC50 = 7.90 × 106 conidia/mL). All three treatments at higher concentrations significantly reduced the adult and nymph populations. Morphological investigations using scanning electron microscopy revealed the successful conidial adhesion, germination and penetration of native T. inflatum and C. krabiensis conidia on TSSM adults. Thus, the acaricidal potential of isolated native fungi can further be explored for developing fungal‐based formulations for the sustainable management of mites.
双斑蜘蛛螨(TSSM),Tetranychus urticae Koch(Acari: Tetranychidae)是田间和温室作物的主要害虫,会造成质量和数量上的损失。目前使用的各种化学杀螨剂除了会产生抗药性和害虫死灰复燃外,还会对人类健康、环境和非目标生物造成危害。因此,目前正在推广和实施替代性螨虫管理方法。其中,昆虫病原真菌(EPF)如 Beauveria bassiana 和 Metarhizium spp.考虑到这一点,本研究旨在确定本地 EPF,即 Tolypocladium inflatum(Hypocreales: Ophiocordycipitaceae)和 Clonostachys krabiensis(Hypocreales: Bionectriaceae)在实验室条件下对不同生命阶段的 TSSM 的致病性。结果表明,成虫更容易受到所研究真菌的侵害,其次是天牛的若虫和卵。联合施用 T. inflatum 和 C. krabiensis 能显著有效地控制 TSSM 成虫(99.33%),其次是 T. inflatum(93.34%)和 C. krabiensis(85.33%)。根据 probit 分析,发现联合施用所研究的 EPF 对 TSSM 成虫更有效(LC50 = 6.72 × 104 分生孢子/毫升),其次是 T. inflatum(LC50 = 1.92 × 106 分生孢子/毫升)和 C. krabiensis(LC50 = 7.90 × 106 分生孢子/毫升)。浓度较高的三种处理方法都能显著减少成虫和若虫数量。使用扫描电子显微镜进行的形态学调查显示,本地 T. inflatum 和 C. krabiensis 分生孢子成功粘附、发芽并穿透了 TSSM 成虫。因此,可以进一步探索分离的本地真菌的杀螨潜力,以开发基于真菌的配方,实现对螨虫的可持续管理。
{"title":"Pathogenicity and compatibility studies of native Tolypocladium inflatum and Clonostachys krabiensis against Tetranychus urticae","authors":"Aditya Singh Ranout, Rupinder Kaur, Rahul Kumar, Gireesh Nadda","doi":"10.1111/jen.13339","DOIUrl":"https://doi.org/10.1111/jen.13339","url":null,"abstract":"The twospotted spider mite (TSSM), <jats:italic>Tetranychus urticae</jats:italic> Koch (Acari: Tetranychidae) is a major pest of field and greenhouse crops leading to qualitative and quantitative losses. Various chemical‐based acaricides are being used for its management that pose risks to human health, environment and non‐targeted organisms besides the development of resistance and resurgence of the pests. Therefore, alternative mite management practices are being promoted and implemented. Amongst them, entomopathogenic fungi (EPF) like <jats:italic>Beauveria bassiana</jats:italic> and <jats:italic>Metarhizium</jats:italic> spp. are being used globally, although new alternative EPF are required. Keeping this in mind, the present study was comprehended to determine the pathogenicity of native EPF, viz., <jats:italic>Tolypocladium inflatum</jats:italic> (Hypocreales: Ophiocordycipitaceae) and <jats:italic>Clonostachys krabiensis</jats:italic> (Hypocreales: Bionectriaceae) against different life stages of TSSM under laboratory conditions. The results indicated that adults are more vulnerable to studied fungi followed by nymphs and eggs of TSSM. The combined application of <jats:italic>T</jats:italic>. <jats:italic>inflatum</jats:italic> and <jats:italic>C</jats:italic>. <jats:italic>krabiensis</jats:italic> was significantly effective in controlling TSSM adults (99.33%) followed by <jats:italic>T</jats:italic>. <jats:italic>inflatum</jats:italic> (93.34%) and <jats:italic>C</jats:italic>. <jats:italic>krabiensis</jats:italic> (85.33%). According to the probit analysis, the combined application of studied EPF was found to be more effective against TSSM adults (LC<jats:sub>50</jats:sub> = 6.72 × 10<jats:sup>4</jats:sup> conidia/mL) followed by <jats:italic>T</jats:italic>. <jats:italic>inflatum</jats:italic> (LC<jats:sub>50</jats:sub> = 1.92 × 10<jats:sup>6</jats:sup> conidia/mL) and <jats:italic>C</jats:italic>. <jats:italic>krabiensis</jats:italic> (LC<jats:sub>50</jats:sub> = 7.90 × 10<jats:sup>6</jats:sup> conidia/mL). All three treatments at higher concentrations significantly reduced the adult and nymph populations. Morphological investigations using scanning electron microscopy revealed the successful conidial adhesion, germination and penetration of native <jats:italic>T</jats:italic>. <jats:italic>inflatum</jats:italic> and <jats:italic>C</jats:italic>. <jats:italic>krabiensis</jats:italic> conidia on TSSM adults. Thus, the acaricidal potential of isolated native fungi can further be explored for developing fungal‐based formulations for the sustainable management of mites.","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":"13 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}