Pub Date : 2024-10-01DOI: 10.1186/s13036-024-00450-3
Samuel Amintas, Grégoire Cullot, Mehdi Boubaddi, Julie Rébillard, Laura Karembe, Béatrice Turcq, Valérie Prouzet-Mauléon, Aurélie Bedel, François Moreau-Gaudry, David Cappellen, Sandrine Dabernat
Background: The clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas13a system has strong potential for highly sensitive detection of exogenous sequences. The detection of KRASG12 point mutations with low allele frequencies may prove powerful for the formal diagnosis of pancreatic ductal adenocarcinoma (PDAC).
Results: We implemented preamplification of KRAS alleles (wild-type and mutant) to reveal the presence of mutant KRAS with CRISPR-Cas13a. The discrimination of KRASG12D from KRASWT was poor for the generic KRAS preamplification templates and depended on the crRNA design, the secondary structure of the target templates, and the nature of the mismatches between the guide and the templates. To improve the specificity, we used an allele-specific PCR preamplification method called CASPER (Cas13a Allele-Specific PCR Enzyme Recognition). CASPER enabled specific and sensitive detection of KRASG12D with low DNA input. CASPER detected KRAS mutations in DNA extracted from patients' pancreatic ultrasound-guided fine-needle aspiration fluid.
Conclusion: CASPER is easy to implement and is a versatile and reliable method that is virtually adaptable to any point mutation.
{"title":"Integrating allele-specific PCR with CRISPR-Cas13a for sensitive KRAS mutation detection in pancreatic cancer.","authors":"Samuel Amintas, Grégoire Cullot, Mehdi Boubaddi, Julie Rébillard, Laura Karembe, Béatrice Turcq, Valérie Prouzet-Mauléon, Aurélie Bedel, François Moreau-Gaudry, David Cappellen, Sandrine Dabernat","doi":"10.1186/s13036-024-00450-3","DOIUrl":"10.1186/s13036-024-00450-3","url":null,"abstract":"<p><strong>Background: </strong>The clustered regulatory interspaced short palindromic repeats (CRISPR)-Cas13a system has strong potential for highly sensitive detection of exogenous sequences. The detection of KRAS<sup>G12</sup> point mutations with low allele frequencies may prove powerful for the formal diagnosis of pancreatic ductal adenocarcinoma (PDAC).</p><p><strong>Results: </strong>We implemented preamplification of KRAS alleles (wild-type and mutant) to reveal the presence of mutant KRAS with CRISPR-Cas13a. The discrimination of KRAS<sup>G12D</sup> from KRAS<sup>WT</sup> was poor for the generic KRAS preamplification templates and depended on the crRNA design, the secondary structure of the target templates, and the nature of the mismatches between the guide and the templates. To improve the specificity, we used an allele-specific PCR preamplification method called CASPER (Cas13a Allele-Specific PCR Enzyme Recognition). CASPER enabled specific and sensitive detection of KRAS<sup>G12D</sup> with low DNA input. CASPER detected KRAS mutations in DNA extracted from patients' pancreatic ultrasound-guided fine-needle aspiration fluid.</p><p><strong>Conclusion: </strong>CASPER is easy to implement and is a versatile and reliable method that is virtually adaptable to any point mutation.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"53"},"PeriodicalIF":5.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1186/s13036-024-00448-x
Roswitha Dolcemascolo, Raúl Ruiz, Sara Baldanta, Lucas Goiriz, María Heras-Hernández, Roser Montagud-Martínez, Guillermo Rodrigo
RNA recognition motifs (RRMs) are widespread RNA-binding protein domains in eukaryotes, which represent promising synthetic biology tools due to their compact structure and efficient activity. Yet, their use in prokaryotes is limited and their functionality poorly characterized. Recently, we repurposed a mammalian Musashi protein containing two RRMs as a translation regulator in Escherichia coli. Here, employing high-throughput RNA sequencing, we explored the impact of Musashi expression on the transcriptomic and translatomic profiles of E. coli, revealing certain metabolic interference, induction of post-transcriptional regulatory processes, and spurious protein-RNA interactions. Engineered Musashi protein mutants displayed compromised regulatory activity, emphasizing the importance of both RRMs for specific and sensitive RNA binding. We found that a mutation known to impede allosteric regulation led to similar translation control activity. Evolutionary experiments disclosed a loss of function of the synthetic circuit in about 40 generations, with the gene coding for the Musashi protein showing a stability comparable to other heterologous genes. Overall, this work expands our understanding of RRMs for post-transcriptional regulation in prokaryotes and highlight their potential for biotechnological and biomedical applications.
{"title":"Probing the orthogonality and robustness of the mammalian RNA-binding protein Musashi-1 in Escherichia coli.","authors":"Roswitha Dolcemascolo, Raúl Ruiz, Sara Baldanta, Lucas Goiriz, María Heras-Hernández, Roser Montagud-Martínez, Guillermo Rodrigo","doi":"10.1186/s13036-024-00448-x","DOIUrl":"10.1186/s13036-024-00448-x","url":null,"abstract":"<p><p>RNA recognition motifs (RRMs) are widespread RNA-binding protein domains in eukaryotes, which represent promising synthetic biology tools due to their compact structure and efficient activity. Yet, their use in prokaryotes is limited and their functionality poorly characterized. Recently, we repurposed a mammalian Musashi protein containing two RRMs as a translation regulator in Escherichia coli. Here, employing high-throughput RNA sequencing, we explored the impact of Musashi expression on the transcriptomic and translatomic profiles of E. coli, revealing certain metabolic interference, induction of post-transcriptional regulatory processes, and spurious protein-RNA interactions. Engineered Musashi protein mutants displayed compromised regulatory activity, emphasizing the importance of both RRMs for specific and sensitive RNA binding. We found that a mutation known to impede allosteric regulation led to similar translation control activity. Evolutionary experiments disclosed a loss of function of the synthetic circuit in about 40 generations, with the gene coding for the Musashi protein showing a stability comparable to other heterologous genes. Overall, this work expands our understanding of RRMs for post-transcriptional regulation in prokaryotes and highlight their potential for biotechnological and biomedical applications.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"52"},"PeriodicalIF":5.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1186/s13036-024-00451-2
Mohammad Hosseini Hooshiar, Masoud Amiri Moghaddam, Mohammad Kiarashi, Athraa Y Al-Hijazi, Abbas Fadel Hussein, Hareth A Alrikabi, Sara Salari, Samar Esmaelian, Hassan Mesgari, Saman Yasamineh
{"title":"Editorial Expression of Concern: Recent advances in nanomaterial-based biosensor for periodontitis detection.","authors":"Mohammad Hosseini Hooshiar, Masoud Amiri Moghaddam, Mohammad Kiarashi, Athraa Y Al-Hijazi, Abbas Fadel Hussein, Hareth A Alrikabi, Sara Salari, Samar Esmaelian, Hassan Mesgari, Saman Yasamineh","doi":"10.1186/s13036-024-00451-2","DOIUrl":"https://doi.org/10.1186/s13036-024-00451-2","url":null,"abstract":"","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"51"},"PeriodicalIF":5.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1186/s13036-024-00444-1
Lexi DeFord, Jeong-Yeol Yoon
Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.
{"title":"Soil microbiome characterization and its future directions with biosensing","authors":"Lexi DeFord, Jeong-Yeol Yoon","doi":"10.1186/s13036-024-00444-1","DOIUrl":"https://doi.org/10.1186/s13036-024-00444-1","url":null,"abstract":"Soil microbiome characterization is typically achieved with next-generation sequencing (NGS) techniques. Metabarcoding is very common, and meta-omics is growing in popularity. These techniques have been instrumental in microbiology, but they have limitations. They require extensive time, funding, expertise, and computing power to be effective. Moreover, these techniques are restricted to controlled laboratory conditions; they are not applicable in field settings, nor can they rapidly generate data. This hinders using NGS as an environmental monitoring tool or an in-situ checking device. Biosensing technology can be applied to soil microbiome characterization to overcome these limitations and to complement NGS techniques. Biosensing has been used in biomedical applications for decades, and many successful commercial products are on the market. Given its previous success, biosensing has much to offer soil microbiome characterization. There is a great variety of biosensors and biosensing techniques, and a few in particular are better suited for soil field studies. Aptamers are more stable than enzymes or antibodies and are more ready for field-use biosensors. Given that any microbiome is complex, a multiplex sensor will be needed, and with large, complicated datasets, machine learning might benefit these analyses. If the signals from the biosensors are optical, a smartphone can be used as a portable optical reader and potential data-analyzing device. Biosensing is a rich field that couples engineering and biology, and applying its toolset to help advance soil microbiome characterization would be a boon to microbiology more broadly.","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"65 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1186/s13036-024-00443-2
Anna S. Baber, Baviththira Suganthan, Ramaraja P. Ramasamy
Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected.
{"title":"Current advances in Hepatitis C diagnostics","authors":"Anna S. Baber, Baviththira Suganthan, Ramaraja P. Ramasamy","doi":"10.1186/s13036-024-00443-2","DOIUrl":"https://doi.org/10.1186/s13036-024-00443-2","url":null,"abstract":"Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected. ","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"57 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1186/s13036-024-00445-0
Reza Maleki, Mohammad Khedri, Sima Rezvantalab, Nima Beheshtizadeh
Before embarking on any experimental research endeavor, it is advisable to do a mathematical computation and thoroughly examine the methodology. Despite the use of polymeric nanocarriers, the regulation of bioavailability and drug release at the disease site remains insufficient. Several effective methods have been devised to address this issue, including the creation of polymeric nanocarriers that can react to stimuli such as redox potential, temperature, pH, and light. The present study has been utilized all-atom molecular dynamics (AA-MD) and coarse-grained molecular dynamics (CG-MD) methods and illustrated the drug release mechanism, which is influenced by pH, for Chitosan-Eudragit bioresponsive nanocarriers. The aim of current work is to study the molecular mechanism and atomistic interactions of PAX delivery using a Chitosan-Eudragit carrier. The ability of Eudragit polymers to dissolve in various organic solvents employed in the process of solvent evaporation is a crucial benefit in enhancing the solubility of pharmaceuticals. This study investigated the use of Chitosan-Eudragit nanocarriers for delivering an anti-tumor drug, namely Paclitaxel (PAX). Upon analyzing several significant factors affecting the stability of the drug and nanocarrier, it has been shown that the level of stability is more significant in the neutral state than the acidic state. Furthermore, the system exhibits higher stability in the neutral state. The used Chitosan-Eudragit nanocarriers exhibit a stable structure under alkaline conditions, but undergo deformation and release their payloads under acidic conditions. It was demonstrated that the in silico analysis of anti-tumor drugs and carriers’ integration could be quantified and validated by experimental results (from previous works) at an acceptable level.
{"title":"Investigation of pH-dependent Paclitaxel delivery mechanism employing Chitosan-Eudragit bioresponsive nanocarriers: a molecular dynamics simulation","authors":"Reza Maleki, Mohammad Khedri, Sima Rezvantalab, Nima Beheshtizadeh","doi":"10.1186/s13036-024-00445-0","DOIUrl":"https://doi.org/10.1186/s13036-024-00445-0","url":null,"abstract":"Before embarking on any experimental research endeavor, it is advisable to do a mathematical computation and thoroughly examine the methodology. Despite the use of polymeric nanocarriers, the regulation of bioavailability and drug release at the disease site remains insufficient. Several effective methods have been devised to address this issue, including the creation of polymeric nanocarriers that can react to stimuli such as redox potential, temperature, pH, and light. The present study has been utilized all-atom molecular dynamics (AA-MD) and coarse-grained molecular dynamics (CG-MD) methods and illustrated the drug release mechanism, which is influenced by pH, for Chitosan-Eudragit bioresponsive nanocarriers. The aim of current work is to study the molecular mechanism and atomistic interactions of PAX delivery using a Chitosan-Eudragit carrier. The ability of Eudragit polymers to dissolve in various organic solvents employed in the process of solvent evaporation is a crucial benefit in enhancing the solubility of pharmaceuticals. This study investigated the use of Chitosan-Eudragit nanocarriers for delivering an anti-tumor drug, namely Paclitaxel (PAX). Upon analyzing several significant factors affecting the stability of the drug and nanocarrier, it has been shown that the level of stability is more significant in the neutral state than the acidic state. Furthermore, the system exhibits higher stability in the neutral state. The used Chitosan-Eudragit nanocarriers exhibit a stable structure under alkaline conditions, but undergo deformation and release their payloads under acidic conditions. It was demonstrated that the in silico analysis of anti-tumor drugs and carriers’ integration could be quantified and validated by experimental results (from previous works) at an acceptable level. ","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"319 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1186/s13036-024-00442-3
Ivana Pajic-Lijakovic, Milan Milivojevic, Peter V E McClintock
Epithelial tissues respond strongly to the mechanical stress caused by collective cell migration and are able to regulate it, which is important for biological processes such as morphogenesis, wound healing, and suppression of the spread of cancer. Compressive, tensional, and shear stress components are produced in cells when epithelial monolayers on substrate matrices are actively or passively wetted or de-wetted. Increased compressive stress on cells leads to enhanced cell-cell interactions by increasing the frequency of change the cell-cell distances, triggering various signalling pathways within the cells. This can ultimately lead either to cell jamming or to the extrusion of live cells. Despite extensive research in this field, it remains unclear how cells decide whether to jam, or to extrude a cell or cells, and how cells can reduce the compressive mechanical stress. Live cell extrusion from the overcrowded regions of the monolayers is associated with the presence of topological defects of cell alignment, induced by an interplay between the cell compressive and shear stress components. These topological defects stimulate cell re-alignment, as a part of the cells' tendency to re-establish an ordered trend of cell migration, by intensifying the glancing interactions in overcrowded regions. In addition to individual cell extrusion, collective cell extrusion has also been documented during monolayer active de-wetting, depending on the cell type, matrix stiffness, and boundary conditions. Cell jamming has been discussed in the context of the cells' contact inhibition of locomotion caused by cell head-on interactions. Since cell-cell interactions play a crucial role in cell rearrangement in an overcrowded environment, this review is focused on physical aspects of these interactions in order to stimulate further biological research in the field.
{"title":"Epithelial cell-cell interactions in an overcrowded environment: jamming or live cell extrusion.","authors":"Ivana Pajic-Lijakovic, Milan Milivojevic, Peter V E McClintock","doi":"10.1186/s13036-024-00442-3","DOIUrl":"10.1186/s13036-024-00442-3","url":null,"abstract":"<p><p>Epithelial tissues respond strongly to the mechanical stress caused by collective cell migration and are able to regulate it, which is important for biological processes such as morphogenesis, wound healing, and suppression of the spread of cancer. Compressive, tensional, and shear stress components are produced in cells when epithelial monolayers on substrate matrices are actively or passively wetted or de-wetted. Increased compressive stress on cells leads to enhanced cell-cell interactions by increasing the frequency of change the cell-cell distances, triggering various signalling pathways within the cells. This can ultimately lead either to cell jamming or to the extrusion of live cells. Despite extensive research in this field, it remains unclear how cells decide whether to jam, or to extrude a cell or cells, and how cells can reduce the compressive mechanical stress. Live cell extrusion from the overcrowded regions of the monolayers is associated with the presence of topological defects of cell alignment, induced by an interplay between the cell compressive and shear stress components. These topological defects stimulate cell re-alignment, as a part of the cells' tendency to re-establish an ordered trend of cell migration, by intensifying the glancing interactions in overcrowded regions. In addition to individual cell extrusion, collective cell extrusion has also been documented during monolayer active de-wetting, depending on the cell type, matrix stiffness, and boundary conditions. Cell jamming has been discussed in the context of the cells' contact inhibition of locomotion caused by cell head-on interactions. Since cell-cell interactions play a crucial role in cell rearrangement in an overcrowded environment, this review is focused on physical aspects of these interactions in order to stimulate further biological research in the field.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"47"},"PeriodicalIF":5.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1186/s13036-024-00440-5
Hyo Won Jeon, Jun Seop Lee, Chan Hee Lee, Dain Kim, Hye Sun Lee, Ee Taek Hwang
Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.
{"title":"Hyperactivation of crosslinked lipases in elastic hydroxyapatite microgel and their properties.","authors":"Hyo Won Jeon, Jun Seop Lee, Chan Hee Lee, Dain Kim, Hye Sun Lee, Ee Taek Hwang","doi":"10.1186/s13036-024-00440-5","DOIUrl":"10.1186/s13036-024-00440-5","url":null,"abstract":"<p><p>Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"46"},"PeriodicalIF":5.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1186/s13036-024-00441-4
Claudia Dittfeld, Florian Schmieder, Stephan Behrens, Anett Jannasch, Klaus Matschke, Frank Sonntag, Sems-Malte Tugtekin
Introduction: Microphysiological systems (MPS) offer simulation of (patho)physiological parameters. Investigation includes items which lead to fibrosis and calcification in development and progress of calcific aortic valve disease, based e.g. on culturing of isolated valvular interstitial cells (VICs). Hypoxia regulated by hypoxia inducible factors impacts pathological differentiation in aortic valve (AV) disease. This is mimicked via an MPS implemented oxygenator in combination with calcification inducing medium supplementation.
Methods: Human valvular interstitial cells were isolated and dynamically cultured in MPS at hypoxic, normoxic, arterial blood oxygen concentration and cell incubator condition. Expression profile of fibrosis and calcification markers was monitored and calcification was quantified in induction and control media with and without hypoxia and in comparison to statically cultured counterparts.
Results: Hypoxic 24-hour culture of human VICs leads to HIF1α nuclear localization and induction of EGLN1, EGLN3 and LDHA mRNA expression but does not directly impact expression of fibrosis and calcification markers. Dependent on medium formulation, induction medium induces monolayer calcification and elevates RUNX2, ACTA2 and FN1 but reduces SOX9 mRNA expression in dynamic and static MPS culture. But combining hypoxic oxygen concentration leads to higher calcification potential of human VICs in calcification and standard medium formulation dynamically cultured for 96 h.
Conclusion: In hypoxic oxygen concentration an increased human VIC calcification in 2D VIC culture in an oxygenator assisted MPS was detected. Oxygen regulation therefore can be combined with calcification induction media to monitor additional effects of pathological marker expression. Validation of oxygenator dependent VIC behavior envisions future advancement and transfer to long term aortic valve tissue culture MPS.
{"title":"Oxygenator assisted dynamic microphysiological culture elucidates the impact of hypoxia on valvular interstitial cell calcification.","authors":"Claudia Dittfeld, Florian Schmieder, Stephan Behrens, Anett Jannasch, Klaus Matschke, Frank Sonntag, Sems-Malte Tugtekin","doi":"10.1186/s13036-024-00441-4","DOIUrl":"10.1186/s13036-024-00441-4","url":null,"abstract":"<p><strong>Introduction: </strong>Microphysiological systems (MPS) offer simulation of (patho)physiological parameters. Investigation includes items which lead to fibrosis and calcification in development and progress of calcific aortic valve disease, based e.g. on culturing of isolated valvular interstitial cells (VICs). Hypoxia regulated by hypoxia inducible factors impacts pathological differentiation in aortic valve (AV) disease. This is mimicked via an MPS implemented oxygenator in combination with calcification inducing medium supplementation.</p><p><strong>Methods: </strong>Human valvular interstitial cells were isolated and dynamically cultured in MPS at hypoxic, normoxic, arterial blood oxygen concentration and cell incubator condition. Expression profile of fibrosis and calcification markers was monitored and calcification was quantified in induction and control media with and without hypoxia and in comparison to statically cultured counterparts.</p><p><strong>Results: </strong>Hypoxic 24-hour culture of human VICs leads to HIF1α nuclear localization and induction of EGLN1, EGLN3 and LDHA mRNA expression but does not directly impact expression of fibrosis and calcification markers. Dependent on medium formulation, induction medium induces monolayer calcification and elevates RUNX2, ACTA2 and FN1 but reduces SOX9 mRNA expression in dynamic and static MPS culture. But combining hypoxic oxygen concentration leads to higher calcification potential of human VICs in calcification and standard medium formulation dynamically cultured for 96 h.</p><p><strong>Conclusion: </strong>In hypoxic oxygen concentration an increased human VIC calcification in 2D VIC culture in an oxygenator assisted MPS was detected. Oxygen regulation therefore can be combined with calcification induction media to monitor additional effects of pathological marker expression. Validation of oxygenator dependent VIC behavior envisions future advancement and transfer to long term aortic valve tissue culture MPS.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"45"},"PeriodicalIF":5.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342540/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1186/s13036-024-00439-y
El-Sayed R El-Sayed, Shaimaa A Mousa, Tomasz Strzała, Filip Boratyński
Considerable attention has been paid to exploring the biotechnological applications of several Monascus sp. for pigment production. In this study, our focus is on enhancing the bioprocessing of red pigment (RP) derived from the endophytic fungus Monascus ruber SRZ112. To achieve this, we developed a stable mutant strain with improved productivity through gamma irradiation. This mutant was then employed in the immobilization technique using various entrapment carriers. Subsequently, we optimized the culture medium for maximal RP production using the Response Surface Methodology. Finally, these immobilized cultures were successfully utilized for RP production using a semi-continuous mode of fermentation. After eight cycles of fermentation, the highest RP yield by immobilized mycelia reached 309.17 CV mL-1, a significant increase compared to the original titer. Importantly, this study marks the first report on the successful production of Monascus RP in a semi-continuous mode using gamma rays' mutant strain, offering prospects for commercial production.
人们对探索几种用于生产色素的蒙那斯古斯菌的生物技术应用给予了极大的关注。在本研究中,我们的重点是提高从内生真菌 Monascus ruber SRZ112 中提取的红色素(RP)的生物加工能力。为此,我们开发了一种稳定的突变菌株,通过伽马射线照射提高了生产率。然后,我们使用各种夹持载体将这种突变株用于固定化技术中。随后,我们利用响应面方法优化了培养基,以获得最大的 RP 产量。最后,我们利用半连续发酵模式成功地将这些固定化培养物用于 RP 生产。经过八个周期的发酵,固定化菌丝体的最高 RP 产量达到了 309.17 CV mL-1,与原始滴度相比有了显著提高。重要的是,这项研究首次报道了利用伽马射线突变菌株在半连续模式下成功生产莫纳氏菌可溶性磷酸酯,为商业化生产提供了前景。
{"title":"Enhancing bioprocessing of red pigment from immobilized culture of gamma rays mutant of the endophytic fungus Monascus ruber SRZ112.","authors":"El-Sayed R El-Sayed, Shaimaa A Mousa, Tomasz Strzała, Filip Boratyński","doi":"10.1186/s13036-024-00439-y","DOIUrl":"10.1186/s13036-024-00439-y","url":null,"abstract":"<p><p>Considerable attention has been paid to exploring the biotechnological applications of several Monascus sp. for pigment production. In this study, our focus is on enhancing the bioprocessing of red pigment (RP) derived from the endophytic fungus Monascus ruber SRZ112. To achieve this, we developed a stable mutant strain with improved productivity through gamma irradiation. This mutant was then employed in the immobilization technique using various entrapment carriers. Subsequently, we optimized the culture medium for maximal RP production using the Response Surface Methodology. Finally, these immobilized cultures were successfully utilized for RP production using a semi-continuous mode of fermentation. After eight cycles of fermentation, the highest RP yield by immobilized mycelia reached 309.17 CV mL<sup>-1</sup>, a significant increase compared to the original titer. Importantly, this study marks the first report on the successful production of Monascus RP in a semi-continuous mode using gamma rays' mutant strain, offering prospects for commercial production.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"44"},"PeriodicalIF":5.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}