Pub Date : 2025-06-01Epub Date: 2025-02-17DOI: 10.1177/07487304241313149
Milene G Jannetti, Veronica S Valentinuzzi, Gisele A Oda
Activity rhythms of laboratory rodents are usually measured by running wheels, and although wheel running activity-or-rest data enable straightforward rhythmic analyses, it provides limited behavioral information. In subterranean rodents (tuco-tucos), we used bio-loggers (accelerometers) to measure activity rhythms in both lab and field conditions, detecting diverse movements that compose activity. However, understanding these different accelerometer-detected activity components requires more complex analytical tools. Here we used supervised hidden Markov models (HMMs) as a machine learning analysis, to identify behavioral patterns in accelerometer data of tuco-tucos from field enclosures and characterize their behavioral rhythms in this condition. Activity of tuco-tucos was previously video-recorded in the laboratory with simultaneous accelerometer measurements. Video-obtained behavioral data were used in HMM models to refine (train) the classification of accelerometer recordings into different behavioral states. The classification obtained by HMM matched in 93% the one obtained by the video-observed method. Trained models were then used to automatically extract behavior information from accelerometers attached to 20 unobserved tuco-tucos first maintained in field enclosures and then transferred to the laboratory. Activity bouts associated with digging and locomotion were responsible for the diurnal rhythm in field enclosures and the nocturnal rhythm in the laboratory. Bouts of activity spread throughout day and night (cathemeral) were present in both conditions and were associated with feeding, coprophagy, and grooming. Finally, while rest occurs throughout day and night in the laboratory setting, tuco-tucos restrict rest episodes to nighttime under field enclosures, possibly as a behavioral adjustment to challenging environments. HMM models provide more behavioral information from accelerometry data, expanding the scope of activity pattern studies in small mammals under natural conditions.
{"title":"Use of Hidden Markov Models to Identify Behavioral Patterns in Accelerometry Data of Subterranean Rodents in Field Enclosures.","authors":"Milene G Jannetti, Veronica S Valentinuzzi, Gisele A Oda","doi":"10.1177/07487304241313149","DOIUrl":"10.1177/07487304241313149","url":null,"abstract":"<p><p>Activity rhythms of laboratory rodents are usually measured by running wheels, and although wheel running activity-or-rest data enable straightforward rhythmic analyses, it provides limited behavioral information. In subterranean rodents (tuco-tucos), we used bio-loggers (accelerometers) to measure activity rhythms in both lab and field conditions, detecting diverse movements that compose activity. However, understanding these different accelerometer-detected activity components requires more complex analytical tools. Here we used supervised hidden Markov models (HMMs) as a machine learning analysis, to identify behavioral patterns in accelerometer data of tuco-tucos from field enclosures and characterize their behavioral rhythms in this condition. Activity of tuco-tucos was previously video-recorded in the laboratory with simultaneous accelerometer measurements. Video-obtained behavioral data were used in HMM models to refine (train) the classification of accelerometer recordings into different behavioral states. The classification obtained by HMM matched in 93% the one obtained by the video-observed method. Trained models were then used to automatically extract behavior information from accelerometers attached to 20 unobserved tuco-tucos first maintained in field enclosures and then transferred to the laboratory. Activity bouts associated with digging and locomotion were responsible for the diurnal rhythm in field enclosures and the nocturnal rhythm in the laboratory. Bouts of activity spread throughout day and night (cathemeral) were present in both conditions and were associated with feeding, coprophagy, and grooming. Finally, while rest occurs throughout day and night in the laboratory setting, tuco-tucos restrict rest episodes to nighttime under field enclosures, possibly as a behavioral adjustment to challenging environments. HMM models provide more behavioral information from accelerometry data, expanding the scope of activity pattern studies in small mammals under natural conditions.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"287-300"},"PeriodicalIF":2.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-07DOI: 10.1177/07487304251315596
Kristen L Knutson, Kathryn J Reid, Mandy Wong, Shaina J Alexandria, S Justin Thomas, Cora E Lewis, Pamela J Schreiner, Stephen Sidney, Kiarri Kershaw, Mercedes R Carnethon
Chronotype indicates a person's "circadian preference," that is, the time of day when they prefer to perform certain activities (e.g. a "morning" vs "evening" person). Sleep timing is related to chronotype but is also constrained by social requirements. When sleep timing does not align with chronotype, circadian disruption can occur, and circadian disruption impairs cardiometabolic health. There are well-known racial disparities in cardiometabolic health whereby Black adults are at higher risk. It is not well-known, however, whether sleep timing within each chronotype varies between Black and White adults, which was the focus of these analyses. These data are from a cross-sectional sleep study conducted in 2020 to 2023 as an ancillary to the Coronary Artery Risk Development in Young Adults (CARDIA) cohort study, in the United States. The Morningness-Eveningness Questionnaire (MEQ) captured chronotype in 2,373 participants aged 52-70 years. Chronotype was based on both overall MEQ score and question 19 categories. A subset of participants wore a wrist actigraphy monitor for ~7 days to assess sleep timing (n = 720). Our sample included 27% Black women, 17% Black men, 33% White women, and 24% White men. Mean MEQ score and chronotype distribution did not differ among race-gender groups. Among morning types, Black women and men had a later sleep start and midpoint than White women (23-34 minutes later for Black women, 32-53 minutes for Black men). Among intermediate types, Black women had significantly later sleep start (55 minutes later) and midpoint (44 minutes later), and Black men had a later sleep start (50 minutes later) than White women adjusting for age and study site. In summary, regardless of chronotype, Black adults had later sleep timing than White adults.
{"title":"Chronotype and Sleep Timing by Race-Gender: The CARDIA Sleep Study.","authors":"Kristen L Knutson, Kathryn J Reid, Mandy Wong, Shaina J Alexandria, S Justin Thomas, Cora E Lewis, Pamela J Schreiner, Stephen Sidney, Kiarri Kershaw, Mercedes R Carnethon","doi":"10.1177/07487304251315596","DOIUrl":"10.1177/07487304251315596","url":null,"abstract":"<p><p>Chronotype indicates a person's \"circadian preference,\" that is, the time of day when they prefer to perform certain activities (e.g. a \"morning\" vs \"evening\" person). Sleep timing is related to chronotype but is also constrained by social requirements. When sleep timing does not align with chronotype, circadian disruption can occur, and circadian disruption impairs cardiometabolic health. There are well-known racial disparities in cardiometabolic health whereby Black adults are at higher risk. It is not well-known, however, whether sleep timing within each chronotype varies between Black and White adults, which was the focus of these analyses. These data are from a cross-sectional sleep study conducted in 2020 to 2023 as an ancillary to the Coronary Artery Risk Development in Young Adults (CARDIA) cohort study, in the United States. The Morningness-Eveningness Questionnaire (MEQ) captured chronotype in 2,373 participants aged 52-70 years. Chronotype was based on both overall MEQ score and question 19 categories. A subset of participants wore a wrist actigraphy monitor for ~7 days to assess sleep timing (<i>n</i> = 720). Our sample included 27% Black women, 17% Black men, 33% White women, and 24% White men. Mean MEQ score and chronotype distribution did not differ among race-gender groups. Among morning types, Black women and men had a later sleep start and midpoint than White women (23-34 minutes later for Black women, 32-53 minutes for Black men). Among intermediate types, Black women had significantly later sleep start (55 minutes later) and midpoint (44 minutes later), and Black men had a later sleep start (50 minutes later) than White women adjusting for age and study site. In summary, regardless of chronotype, Black adults had later sleep timing than White adults.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"171-180"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-27DOI: 10.1177/07487304251321021
Maya Purday
{"title":"The Mouse Estrus and Circadian Cycles Interact to Influence Behavioral Rhythms: Relevance to the Menstrual Cycle in Humans.","authors":"Maya Purday","doi":"10.1177/07487304251321021","DOIUrl":"10.1177/07487304251321021","url":null,"abstract":"","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"115-116"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-08DOI: 10.1177/07487304241311328
Qing Zhang, Christopher Litwin, Kristi Dietert, Ioannis Tsialtas, Wan Hsi Chen, Zhihong Li, Kevin B Koronowski
Circadian disruption is pervasive in modern society and associated with increased risk of disease. Chronic jet lag paradigms are popular experimental tools aiming to emulate human circadian disruption experienced during rotating and night shift work. Chronic jet lag induces metabolic phenotypes tied to liver and systemic functions, yet lack of a clear definition for how rhythmic physiology is impaired under these conditions hinders the ability to identify the underlying molecular mechanisms. Here, we compared 2 common chronic jet lag paradigms and found that neither induced arrythmicity of the liver and each had distinct effects on rhythmicity. Instead, more frequent 8-h forward shifts of the light schedule induced more severe misalignment and non-fasted hyperglycemia. Every other day shifts eventually uncoupled behavioral and hepatic rhythms from the light cycle, reminiscent of free-running conditions. These results point to misalignment, not arrhythmicity, as the initial disturbance tied to metabolic dysfunction in environmental circadian disruption and highlight considerations for the interpretation and design of chronic jet lag studies.
{"title":"Frequent Shifts During Chronic Jet Lag Uncouple Liver Rhythms From the Light Cycle in Male Mice.","authors":"Qing Zhang, Christopher Litwin, Kristi Dietert, Ioannis Tsialtas, Wan Hsi Chen, Zhihong Li, Kevin B Koronowski","doi":"10.1177/07487304241311328","DOIUrl":"10.1177/07487304241311328","url":null,"abstract":"<p><p>Circadian disruption is pervasive in modern society and associated with increased risk of disease. Chronic jet lag paradigms are popular experimental tools aiming to emulate human circadian disruption experienced during rotating and night shift work. Chronic jet lag induces metabolic phenotypes tied to liver and systemic functions, yet lack of a clear definition for how rhythmic physiology is impaired under these conditions hinders the ability to identify the underlying molecular mechanisms. Here, we compared 2 common chronic jet lag paradigms and found that neither induced arrythmicity of the liver and each had distinct effects on rhythmicity. Instead, more frequent 8-h forward shifts of the light schedule induced more severe misalignment and non-fasted hyperglycemia. Every other day shifts eventually uncoupled behavioral and hepatic rhythms from the light cycle, reminiscent of free-running conditions. These results point to misalignment, not arrhythmicity, as the initial disturbance tied to metabolic dysfunction in environmental circadian disruption and highlight considerations for the interpretation and design of chronic jet lag studies.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"194-207"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-19DOI: 10.1177/07487304251316916
Sergio Hidalgo, Yao D Cai
{"title":"Focusing on Excellence: An Interview With Dr. Charlotte Helfrich-Förster.","authors":"Sergio Hidalgo, Yao D Cai","doi":"10.1177/07487304251316916","DOIUrl":"10.1177/07487304251316916","url":null,"abstract":"","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"117-119"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-08DOI: 10.1177/07487304241311652
Lauren E Hartstein, Kenneth P Wright, Cecilia Diniz Behn, Shelby R Stowe, Monique K LeBourgeois
Although the sensitivity of the circadian system to the characteristics of light (e.g., biological timing, intensity, duration, spectrum) has been well studied in adults, data in early childhood remain limited. Utilizing a crossover, within-subjects design, we examined differences in the circadian response to evening light exposure at two different correlated color temperatures (CCT) in preschool-aged children. Healthy, good sleeping children (n = 10, 3.0-5.9 years) completed two 10-day protocols. In each protocol, after maintaining a stable sleep schedule for 7 days, a 3-day in-home dim-light circadian assessment was performed. On the first and third evenings of the in-home protocol, dim-light melatonin onset (DLMO) was assessed. On the second evening, children received a 1-h light exposure of 20 lux from either 2700 K (low CCT) or 5000 K (high CCT) (~9 and ~16 melanopic equivalent daylight illuminance (mEDI lux), respectively) centered around their habitual bedtime. Children received the remaining light condition during their second protocol, with the order counterbalanced across participants. Salivary melatonin was collected to compute melatonin suppression and circadian phase shift resulting from each experimental light condition. Melatonin suppression across the 1-h light stimulus was significantly greater during exposure to the high CCT light (M = 56.3%, SD = 19.25%) than during the low CCT light (M = 23.90%, SD = 41.06%). Both light conditions resulted in marked delays of circadian timing, but only a small difference (d = -0.25) was observed in the delay between the 5000 K (M = 35.3 min, SD = 34.3 min) and 2700 K (M = 26.7 min, SD = 15.9 min) conditions. Together, these findings add to a growing literature demonstrating high responsivity of the circadian clock to evening light exposure in early childhood and provide preliminary evidence of melatonin suppression sensitivity to differences in light spectrum in preschool-aged children.
{"title":"The Circadian Response to Evening Light Spectra in Early Childhood: Preliminary Insights.","authors":"Lauren E Hartstein, Kenneth P Wright, Cecilia Diniz Behn, Shelby R Stowe, Monique K LeBourgeois","doi":"10.1177/07487304241311652","DOIUrl":"10.1177/07487304241311652","url":null,"abstract":"<p><p>Although the sensitivity of the circadian system to the characteristics of light (e.g., biological timing, intensity, duration, spectrum) has been well studied in adults, data in early childhood remain limited. Utilizing a crossover, within-subjects design, we examined differences in the circadian response to evening light exposure at two different correlated color temperatures (CCT) in preschool-aged children. Healthy, good sleeping children (<i>n</i> = 10, 3.0-5.9 years) completed two 10-day protocols. In each protocol, after maintaining a stable sleep schedule for 7 days, a 3-day in-home dim-light circadian assessment was performed. On the first and third evenings of the in-home protocol, dim-light melatonin onset (DLMO) was assessed. On the second evening, children received a 1-h light exposure of 20 lux from either 2700 K (low CCT) or 5000 K (high CCT) (~9 and ~16 melanopic equivalent daylight illuminance (mEDI lux), respectively) centered around their habitual bedtime. Children received the remaining light condition during their second protocol, with the order counterbalanced across participants. Salivary melatonin was collected to compute melatonin suppression and circadian phase shift resulting from each experimental light condition. Melatonin suppression across the 1-h light stimulus was significantly greater during exposure to the high CCT light (<i>M</i> = 56.3%, <i>SD</i> = 19.25%) than during the low CCT light (<i>M</i> = 23.90%, <i>SD</i> = 41.06%). Both light conditions resulted in marked delays of circadian timing, but only a small difference (<i>d</i> = -0.25) was observed in the delay between the 5000 K (<i>M</i> = 35.3 min, <i>SD</i> = 34.3 min) and 2700 K (<i>M</i> = 26.7 min, <i>SD</i> = 15.9 min) conditions. Together, these findings add to a growing literature demonstrating high responsivity of the circadian clock to evening light exposure in early childhood and provide preliminary evidence of melatonin suppression sensitivity to differences in light spectrum in preschool-aged children.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"181-193"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2024-11-11DOI: 10.1177/07487304241290861
Charlotte Helfrich-Förster
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
{"title":"The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects.","authors":"Charlotte Helfrich-Förster","doi":"10.1177/07487304241290861","DOIUrl":"10.1177/07487304241290861","url":null,"abstract":"<p><p>My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was <i>Period</i>, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect <i>Drosophila melanogaster</i>. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of <i>D. melanogaster</i> for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"120-142"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-29DOI: 10.1177/07487304241310923
Severine Soltani, Jamison H Burks, Benjamin L Smarr
The nature of biological research is changing, driven by the emergence of big data, and new computational models to parse out the information therein. Traditional methods remain the core of biological research but are increasingly either augmented or sometimes replaced by emerging data science tools. This presents a profound opportunity for those circadian researchers interested in incorporating big data and related analyses into their plans. Here, we discuss the emergence of novel sources of big data that could be used to gain real-world insights into circadian biology. We further discuss technical considerations for the biologist interested in including data science approaches in their research. We conversely discuss the biological considerations for data scientists so that they can more easily identify the nuggets of biological rhythms insight that might too easily be lost through application of standard data science approaches done without an appreciation of the way biological rhythms shape the variance of complex data objects. Our hope is that this review will make bridging disciplines in both directions (biology to computational and vice versa) easier. There has never been such rapid growth of cheap, accessible, real-world research opportunities in biology as now; collaborations between biological experts and skilled data scientists have the potential to mine out new insights with transformative impact.
{"title":"Augmenting Circadian Biology Research With Data Science.","authors":"Severine Soltani, Jamison H Burks, Benjamin L Smarr","doi":"10.1177/07487304241310923","DOIUrl":"10.1177/07487304241310923","url":null,"abstract":"<p><p>The nature of biological research is changing, driven by the emergence of big data, and new computational models to parse out the information therein. Traditional methods remain the core of biological research but are increasingly either augmented or sometimes replaced by emerging data science tools. This presents a profound opportunity for those circadian researchers interested in incorporating big data and related analyses into their plans. Here, we discuss the emergence of novel sources of big data that could be used to gain real-world insights into circadian biology. We further discuss technical considerations for the biologist interested in including data science approaches in their research. We conversely discuss the biological considerations for data scientists so that they can more easily identify the nuggets of biological rhythms insight that might too easily be lost through application of standard data science approaches done without an appreciation of the way biological rhythms shape the variance of complex data objects. Our hope is that this review will make bridging disciplines in both directions (biology to computational and vice versa) easier. There has never been such rapid growth of cheap, accessible, real-world research opportunities in biology as now; collaborations between biological experts and skilled data scientists have the potential to mine out new insights with transformative impact.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"143-170"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143059160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-09DOI: 10.1177/07487304241312461
Abigail L Tice, Choogon Lee, Robert C Hickner, Jennifer L Steiner
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
暴饮暴食和长期饮酒损害骨骼肌和肝脏生物钟。建议定期锻炼,以防止昼夜节律失调,如酒精引起的。研究人员测试了定期的、自愿的每日轮转是否能保护腓肠肌和肝脏时钟免受酒精引起的干扰。雌性C57BL6/Hsd小鼠分为4组:对照组-久坐(CON SED, n = 26)、对照组-运动(CON EX, n = 28)、酒精-久坐(ETOH SED, n = 27)或酒精-运动(ETOH EX, n = 25)。运动小鼠每天2小时(ZT13-15)进入跑步轮,而ETOH小鼠连续6周食用含酒精的液体饮食。从ZT12开始每4 h收集4-5只/组小鼠的组织,用于RNA/cDNA/RT-PCR(腓肠肌和肝脏)和Western blotting(腓肠肌)。第二组小鼠戒掉酒精,给予常规食物,并继续每天运动(每天2小时),持续约2周。然后,所有小鼠(EX和SED)给予24小时轮式通道,持续1周,以评估禁食期间的循环跑步行为。虽然酒精对久坐小鼠的肌肉和肝脏时钟的影响有所不同,但运动组之间的差异微乎其微。与久坐组相比,两个运动组的腓肠肌核富集部分的BMAL1蛋白表达均有所增加。在第二组中,与黑暗循环中的ETOH SED相比,ETOH EX组的车轮运动增加。在光照周期中,尽管所有小鼠均饲喂鼠粮且不饲喂ETOH,但ETOH小鼠比CON小鼠跑得少,EX小鼠比SED小鼠跑得少。总的来说,定期的车轮运动部分抵消了酒精引起的肌肉和肝脏时钟的扰动,而ETOH和EX都影响了饮食干预结束后后续活动的时间。
{"title":"Scheduled Exercise Partially Offsets Alcohol-Induced Clock Dysfunction in Skeletal Muscle and Liver of Female Mice.","authors":"Abigail L Tice, Choogon Lee, Robert C Hickner, Jennifer L Steiner","doi":"10.1177/07487304241312461","DOIUrl":"10.1177/07487304241312461","url":null,"abstract":"<p><p>Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, <i>n</i> = 26), control-exercise (CON EX, <i>n</i> = 28), alcohol-sedentary (ETOH SED, <i>n</i> = 27), or alcohol-exercise (ETOH EX, <i>n</i> = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"208-228"},"PeriodicalIF":2.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-24DOI: 10.1177/07487304241306851
Beatriz Aleixo, Sooyeon Yoon, José F F Mendes, Alexander V Goltsev
The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time. If jet lag brings the SCN state into this region, it will take a long time to leave it and restore synchronization among oscillators. We show that the population of oscillators in the core responds quickly to a rapid phase shift of the light-dark cycle, in contrast to the shell, which responds slowly. A slow recovery of the synchronization among the shell oscillators in transient states may strongly affect reentrainment in peripheral tissues and behavioral rhythms. We discuss the relationship between molecular, electrical, and behavioral rhythms. We also describe how light pulses affect the SCN and analyze the efficiency of the light treatment in facilitating the adaptation of the SCN to a new time zone. Light pulses of a moderate duration and intensity reduce the recovery time after traveling east, but not west. However, long duration and high intensity of light pulses are more detrimental than beneficial for speeding up reentrainment. The results of the core-shell model are compared with experimental data and other biologically motivated models of the SCN.
{"title":"Modeling of Jet Lag and Searching for an Optimal Light Treatment.","authors":"Beatriz Aleixo, Sooyeon Yoon, José F F Mendes, Alexander V Goltsev","doi":"10.1177/07487304241306851","DOIUrl":"10.1177/07487304241306851","url":null,"abstract":"<p><p>The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time. If jet lag brings the SCN state into this region, it will take a long time to leave it and restore synchronization among oscillators. We show that the population of oscillators in the core responds quickly to a rapid phase shift of the light-dark cycle, in contrast to the shell, which responds slowly. A slow recovery of the synchronization among the shell oscillators in transient states may strongly affect reentrainment in peripheral tissues and behavioral rhythms. We discuss the relationship between molecular, electrical, and behavioral rhythms. We also describe how light pulses affect the SCN and analyze the efficiency of the light treatment in facilitating the adaptation of the SCN to a new time zone. Light pulses of a moderate duration and intensity reduce the recovery time after traveling east, but not west. However, long duration and high intensity of light pulses are more detrimental than beneficial for speeding up reentrainment. The results of the core-shell model are compared with experimental data and other biologically motivated models of the SCN.</p>","PeriodicalId":15056,"journal":{"name":"Journal of Biological Rhythms","volume":" ","pages":"36-61"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}