Solomon E Owumi, Uche O Arunsi, Moses T Otunla, Imisioluwa O Oluwasuji
Lead (Pb) and furan are toxic agents, and persistent exposure may impair human and animal reproductive function. We therefore explored the effects of Pb and furan on male rat hypothalamic-pituitary-gonadal reproductive status, oxidative stress, inflammation, and genomic integrity. We found that co-exposure to Pb and furan reduced the activities of testicular function enzymes, endogenous antioxidant levels, total sulfhydryl group, and glutathione. Sperm abnormality, biomarkers of oxidative stress, inflammation, and p53 expression were increased in a dose-dependent manner by treatment with furan and Pb. Typical rat gonad histoarchitecture features were also damaged. Conclusively, co-exposure to Pb and furan induced male reproductive function derangement by decreasing the antioxidant defences in rats, increasing abnormalities in spermatozoa morphology, and reducing reproductive hormone in circulation. These pathophysiological alterations, if persistent, might provide a permissive environment for potentiating reproductive dysfunction and infertility.
{"title":"Exposure to lead and dietary furan intake aggravates hypothalamus-pituitary-testicular axis toxicity in chronic experimental rats.","authors":"Solomon E Owumi, Uche O Arunsi, Moses T Otunla, Imisioluwa O Oluwasuji","doi":"10.7555/JBR.36.20220108","DOIUrl":"https://doi.org/10.7555/JBR.36.20220108","url":null,"abstract":"<p><p>Lead (Pb) and furan are toxic agents, and persistent exposure may impair human and animal reproductive function. We therefore explored the effects of Pb and furan on male rat hypothalamic-pituitary-gonadal reproductive status, oxidative stress, inflammation, and genomic integrity. We found that co-exposure to Pb and furan reduced the activities of testicular function enzymes, endogenous antioxidant levels, total sulfhydryl group, and glutathione. Sperm abnormality, biomarkers of oxidative stress, inflammation, and p53 expression were increased in a dose-dependent manner by treatment with furan and Pb. Typical rat gonad histoarchitecture features were also damaged. Conclusively, co-exposure to Pb and furan induced male reproductive function derangement by decreasing the antioxidant defences in rats, increasing abnormalities in spermatozoa morphology, and reducing reproductive hormone in circulation. These pathophysiological alterations, if persistent, might provide a permissive environment for potentiating reproductive dysfunction and infertility.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"37 2","pages":"100-114"},"PeriodicalIF":2.3,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9517376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lupus nephritis (LN) has a high incidence in systemic lupus erythematosus (SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4 +CD8 + double positive T (DPT) lymphocytes and LN. The study included patients with SLE without renal impairment (SLE-NRI), LN, nephritic syndrome (NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed with peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in the LN group were significantly higher than that in the SLE-NRI group ( t=4.012, P<0.001), NS group ( t=3.240, P=0.001), and nephritis group ( t=2.57, P=0.011). In the LN group, the risk of renal impairment increased significantly in a DPT cells proportion-dependent manner. The risk of LN was 5.136 times (95% confidence interval, 2.115-12.473) higher in cases with a high proportion of DPT cells than those whose proportion of DPT cells within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cell proportion.
狼疮性肾炎(LN)在系统性红斑狼疮(SLE)患者中发病率很高,但却缺乏敏感的预测标志物。本研究旨在探讨 CD4 +CD8 + 双阳性 T(DPT)淋巴细胞与 LN 之间的关联。研究对象包括无肾功能损害的系统性红斑狼疮(SLE-NRI)、LN、肾炎综合征(NS)或肾炎患者。外周血淋巴细胞亚群通过流式细胞术进行分析。根据美国国家临床实验室中心(National Center for Clinical Laboratories)的建议对外周血进行生化测定。LN组的DPT细胞比例明显高于SLE-NRI组(t=4.012,Pt=3.240,P=0.001)和肾炎组(t=2.57,P=0.011)。在 LN 组中,肾功能损害的风险以 DPT 细胞比例依赖的方式显著增加。DPT细胞比例高的病例发生LN的风险是DPT细胞比例在正常范围内的病例的5.136倍(95%置信区间,2.115-12.473)。这些研究结果表明,DPT细胞比例可作为评估LN易感性的潜在标志物,在用DPT细胞比例评估系统性红斑狼疮肾功能损害风险时,可有效排除NS和肾炎的干扰。
{"title":"Peripheral CD4 <sup>+</sup>CD8 <sup>+</sup> double positive T cells: A potential marker to evaluate renal impairment susceptibility during systemic lupus erythematosus.","authors":"Kai Chang, Wanlin Na, Chenxia Liu, Hongxuan Xu, Yuan Liu, Yanyan Wang, Zhongyong Jiang","doi":"10.7555/JBR.36.20220094","DOIUrl":"10.7555/JBR.36.20220094","url":null,"abstract":"<p><p>Lupus nephritis (LN) has a high incidence in systemic lupus erythematosus (SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4 <sup>+</sup>CD8 <sup>+</sup> double positive T (DPT) lymphocytes and LN. The study included patients with SLE without renal impairment (SLE-NRI), LN, nephritic syndrome (NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed with peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in the LN group were significantly higher than that in the SLE-NRI group ( <i>t</i>=4.012, <i>P</i><0.001), NS group ( <i>t</i>=3.240, <i>P</i>=0.001), and nephritis group ( <i>t</i>=2.57, <i>P</i>=0.011). In the LN group, the risk of renal impairment increased significantly in a DPT cells proportion-dependent manner. The risk of LN was 5.136 times (95% confidence interval, 2.115-12.473) higher in cases with a high proportion of DPT cells than those whose proportion of DPT cells within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cell proportion.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":" ","pages":"59-68"},"PeriodicalIF":2.3,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898043/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10680286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wen, Tingyu Pan, Hongyan Li, Haixia Fan, Jinhua Liu, Zhiyou Cai, Bin Zhao
Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in functions that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging, while mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effects of mitophagy on aging and emphasize the associations between mitophagy and other signs of aging, including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effects of these elements on aging is still limited. And although the understanding of relationship between mitophagy and aging has been long-awaited, to analyze details of such a relationship remains the main challenge in aging studies.
{"title":"Role of mitophagy in the hallmarks of aging.","authors":"Jie Wen, Tingyu Pan, Hongyan Li, Haixia Fan, Jinhua Liu, Zhiyou Cai, Bin Zhao","doi":"10.7555/JBR.36.20220045","DOIUrl":"https://doi.org/10.7555/JBR.36.20220045","url":null,"abstract":"<p><p>Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in functions that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging, while mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effects of mitophagy on aging and emphasize the associations between mitophagy and other signs of aging, including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effects of these elements on aging is still limited. And although the understanding of relationship between mitophagy and aging has been long-awaited, to analyze details of such a relationship remains the main challenge in aging studies.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"37 1","pages":"1-14"},"PeriodicalIF":2.3,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9236354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia V Naryzhnaya, Leonid N Maslov, Sergey V Popov, Alexandr V Mukhomezyanov, Vyacheslav V Ryabov, Boris K Kurbatov, Alexandra E Gombozhapova, Nirmal Singh, Feng Fu, Jian-Ming Pei, Sergey V Logvinov
Acute myocardial infarction (AMI) is one of the main reasons of cardiovascular disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanisms of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, and mitigates cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin Ⅱ receptor blockers, and traditional Chinese herbal medicines.
{"title":"Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy.","authors":"Natalia V Naryzhnaya, Leonid N Maslov, Sergey V Popov, Alexandr V Mukhomezyanov, Vyacheslav V Ryabov, Boris K Kurbatov, Alexandra E Gombozhapova, Nirmal Singh, Feng Fu, Jian-Ming Pei, Sergey V Logvinov","doi":"10.7555/JBR.36.20220123","DOIUrl":"https://doi.org/10.7555/JBR.36.20220123","url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is one of the main reasons of cardiovascular disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanisms of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, and mitigates cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin Ⅱ receptor blockers, and traditional Chinese herbal medicines.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"36 6","pages":"375-389"},"PeriodicalIF":2.3,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10529077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liver diseases with the central pathogenetic mechanism of oxidative stress are one of the main causes of mortality worldwide. Therefore, dihydroquinoline derivatives, which are precursors of hepatoprotectors and have antioxidant activity, are of interest. We have previously found that some compounds in this class have the ability to normalize redox homeostasis under experimental conditions. Here, we initially analyzed the hepatoprotective potential of the dihydroquinoline derivative 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) for carbon tetrachloride (CCl 4)-induced liver injury in rats. Results suggested that BHDQ normalized the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in serum. We also observed an improvement in liver tissue morphology related to BHDQ. Animals with CCl 4-induced liver injuries treated with BHDQ had less oxidative stress compared to animals with CCl 4-induced liver injury. BHDQ promoted activation changes in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase on control values in animals with CCl 4-induced liver injury. BHDQ also activated gene transcription in Sod1 and Gpx1via nuclear factor erythroid 2-related factor 2 and forkhead box protein O1 factors. Therefore, the compound of concern has a hepatoprotective effect by inhibiting the development of necrotic processes in the liver tissue, through antioxidation.
{"title":"The new antioxidant 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline has a protective effect against carbon tetrachloride-induced hepatic injury in rats.","authors":"Evgenii Dmitrievich Kryl'skii, Darya Andreevna Sinitsyna, Tatyana Nikolaevna Popova, Khidmet Safarovich Shikhaliev, Svetlana Mikhajlovna Medvedeva, Larisa Vladimirovna Matasova, Valentina Olegovna Mittova","doi":"10.7555/JBR.36.20220098","DOIUrl":"https://doi.org/10.7555/JBR.36.20220098","url":null,"abstract":"<p><p>Liver diseases with the central pathogenetic mechanism of oxidative stress are one of the main causes of mortality worldwide. Therefore, dihydroquinoline derivatives, which are precursors of hepatoprotectors and have antioxidant activity, are of interest. We have previously found that some compounds in this class have the ability to normalize redox homeostasis under experimental conditions. Here, we initially analyzed the hepatoprotective potential of the dihydroquinoline derivative 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) for carbon tetrachloride (CCl <sub>4</sub>)-induced liver injury in rats. Results suggested that BHDQ normalized the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in serum. We also observed an improvement in liver tissue morphology related to BHDQ. Animals with CCl <sub>4</sub>-induced liver injuries treated with BHDQ had less oxidative stress compared to animals with CCl <sub>4</sub>-induced liver injury. BHDQ promoted activation changes in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase on control values in animals with CCl <sub>4</sub>-induced liver injury. BHDQ also activated gene transcription in <i>Sod1</i> and <i>Gpx1</i> <i>via</i> nuclear factor erythroid 2-related factor 2 and forkhead box protein O1 factors. Therefore, the compound of concern has a hepatoprotective effect by inhibiting the development of necrotic processes in the liver tissue, through antioxidation.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"36 6","pages":"423-434"},"PeriodicalIF":2.3,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10529078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
{"title":"Acquired immunity and Alzheimer's disease.","authors":"Weixi Feng, Yanli Zhang, Peng Sun, Ming Xiao","doi":"10.7555/JBR.36.20220083","DOIUrl":"https://doi.org/10.7555/JBR.36.20220083","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades <i>via</i> a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"37 1","pages":"15-29"},"PeriodicalIF":2.3,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10681965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Right heart thrombus (RHTh) with concurrent acute pulmonary embolism (PE) is rare and can seriously destabilize hemodynamics, leading to an emergency situation with high mortality. Diagnosis and treatment of RHTh with acute PE are not yet standardized. There are few reports of acute PE concurrent with RHTh and even less is known about patients with a right heart mural thrombus. For physicians, the diagnostic choice and treatment of these patients are particularly difficult due to the lack of knowledge. Here, we report a rare case of partial mural RHTh (type C RHTh) with acute PE. The mural mass in the right heart was initially diagnosed as atrial myxoma according to transthoracic echocardiography (TTE), and both pulmonary embolus and the mural mass were completely absorbed after administering Rivaroxiban. This case suggests that TTE alone is insufficient to identify and diagnoses a right heart mural mass such as this. However, novel oral anticoagulants may be effective at alleviating PE with type C RHTh.
{"title":"Anticoagulation therapy for pulmonary embolism involving a myxoma mimicking, giant type C thrombus: A case report.","authors":"Yinhe Feng, Yubin Wang, Xiaolong Li, Hui Mao","doi":"10.7555/JBR.36.20220118","DOIUrl":"https://doi.org/10.7555/JBR.36.20220118","url":null,"abstract":"<p><p>Right heart thrombus (RHTh) with concurrent acute pulmonary embolism (PE) is rare and can seriously destabilize hemodynamics, leading to an emergency situation with high mortality. Diagnosis and treatment of RHTh with acute PE are not yet standardized. There are few reports of acute PE concurrent with RHTh and even less is known about patients with a right heart mural thrombus. For physicians, the diagnostic choice and treatment of these patients are particularly difficult due to the lack of knowledge. Here, we report a rare case of partial mural RHTh (type C RHTh) with acute PE. The mural mass in the right heart was initially diagnosed as atrial myxoma according to transthoracic echocardiography (TTE), and both pulmonary embolus and the mural mass were completely absorbed after administering Rivaroxiban. This case suggests that TTE alone is insufficient to identify and diagnoses a right heart mural mass such as this. However, novel oral anticoagulants may be effective at alleviating PE with type C RHTh.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"37 2","pages":"148-152"},"PeriodicalIF":2.3,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9516857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.
{"title":"SIRT3 regulates mitochondrial biogenesis in aging-related diseases.","authors":"Hong-Yan Li, Zhi-You Cai","doi":"10.7555/JBR.36.20220078","DOIUrl":"https://doi.org/10.7555/JBR.36.20220078","url":null,"abstract":"<p><p>Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis <i>via</i> lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of <i>SIRT3</i> has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"37 2","pages":"77-88"},"PeriodicalIF":2.3,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9513836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaochen Lu, Quan Wen, Bota Cui, Qianqian Li, Faming Zhang
Amyotrophic lateral sclerosis (ALS) is known as a progressive paralysis disorder characterized by degeneration of upper and lower motor neurons, and has an average survival time of three to five years. Growing evidence has suggested a bidirectional link between gut microbiota and neurodegeneration. Here we aimed to report one female case with ALS, who benefited from washed microbiota transplantation (WMT), an improved fecal microbiota transplantation (FMT), through a transendoscopic enteral tube during a 12-month follow-up. Notedly, the accidental scalp trauma the patient suffered later was treated with prescribed antibiotics that caused ALS deterioration. The subsequent rescue WMTs successfully stopped the progression of the disease with a quick improvement. The plateaus and reversals occurred during the whole course of WMT. The stool and blood samples from the first WMT to the last were collected for dynamic microbial and metabolomic analysis. We observed the microbial and metabolomic changing trend consistent with the disease status. This case report for the first time shows the direct clinical evidence on using WMT for treating ALS, indicating that WMT may be the novel treatment strategy for controlling this so-called incurable disease.
{"title":"Washed microbiota transplantation stopped the deterioration of amyotrophic lateral sclerosis: The first case report and narrative review.","authors":"Gaochen Lu, Quan Wen, Bota Cui, Qianqian Li, Faming Zhang","doi":"10.7555/JBR.36.20220088","DOIUrl":"https://doi.org/10.7555/JBR.36.20220088","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is known as a progressive paralysis disorder characterized by degeneration of upper and lower motor neurons, and has an average survival time of three to five years. Growing evidence has suggested a bidirectional link between gut microbiota and neurodegeneration. Here we aimed to report one female case with ALS, who benefited from washed microbiota transplantation (WMT), an improved fecal microbiota transplantation (FMT), through a transendoscopic enteral tube during a 12-month follow-up. Notedly, the accidental scalp trauma the patient suffered later was treated with prescribed antibiotics that caused ALS deterioration. The subsequent rescue WMTs successfully stopped the progression of the disease with a quick improvement. The plateaus and reversals occurred during the whole course of WMT. The stool and blood samples from the first WMT to the last were collected for dynamic microbial and metabolomic analysis. We observed the microbial and metabolomic changing trend consistent with the disease status. This case report for the first time shows the direct clinical evidence on using WMT for treating ALS, indicating that WMT may be the novel treatment strategy for controlling this so-called incurable disease.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"37 1","pages":"69-76"},"PeriodicalIF":2.3,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10738351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.
{"title":"Medical image translation using an edge-guided generative adversarial network with global-to-local feature fusion.","authors":"Hamed Amini Amirkolaee, Hamid Amini Amirkolaee","doi":"10.7555/JBR.36.20220037","DOIUrl":"https://doi.org/10.7555/JBR.36.20220037","url":null,"abstract":"<p><p>In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.</p>","PeriodicalId":15061,"journal":{"name":"Journal of Biomedical Research","volume":"36 6","pages":"409-422"},"PeriodicalIF":2.3,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10582932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}