首页 > 最新文献

Journal of Bacteriology最新文献

英文 中文
Probing the core metabolism of Cereibacter sphaeroides by transposon mutagenesis. 转座子诱变法研究球形cereebacter sphaeroides核心代谢。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-30 DOI: 10.1128/jb.00306-25
Birgit E Alber, Jessica A Adair, Marie Asao, Suzy Bangudi, Samuel N Kotran, Kathleen Sandman

During phototrophic growth, Cereibacter sphaeroides can use several carbon substrates that are central carbon intermediates (e.g., succinate and L-malate) or that require only a few steps to enter central carbon metabolism (e.g., acetate and D-malate). In addition, with light as the energy source, the carbon substrate provided will function as a carbon source for cell carbon synthesis only. Therefore, C. sphaeroides is ideally suited to understand the changes necessary to switch between different carbon sources and, consequently, to redirect carbon flow in central carbon metabolism. This study describes C. sphaeroides transposon mutants that have lost the ability to use one or more of the organic carbon sources 3-hydroxypropionate, acetate, L-malate, propionate/HCO3-, butyrate/HCO3, L-lactate, D-lactate, D-malate, and L-glutamate. Pyruvate carboxylase and pyruvate dehydrogenase were confirmed to connect the precursor metabolite pools of pyruvate and oxaloacetate or acetyl-CoA, respectively, as was the ethylmalonyl-CoA pathway connecting acetyl-CoA and oxaloacetate pools. Transposon and in-frame deletion mutants suggest that 3-hydroxypropionate is oxidized to CO2 and acetyl-CoA, involving a malonate semialdehyde dehydrogenase. The presence of this oxidative route makes pyruvate dehydrogenase dispensable during 3-hydroxypropionatedependent growth. Therefore, acetyl-CoA represents a second entry point into central carbon metabolism for 3-hydroxypropionate besides succinyl-CoA, and it is proposed that the simultaneous functioning of the two routes minimizes transiently produced CO2/HCO3-. Another significant outcome of this study is the identification of genes encoding a L-glutamate TRipartite ATP-independent transporter, which was characterized biochemically 30 years ago.IMPORTANCESeveral aspects of the process of carbon assimilation, defined as the conversion of a carbon source into cell carbon, are conserved throughout life. For example, common building blocks give rise to proteins and nucleic acids, and the carbon for building blocks, cofactors, and secondary metabolites is derived from common precursor metabolites such as acetyl-CoA, pyruvate, or oxaloacetate. Using carbon substrates that require only one or a few steps to enter central carbon metabolism facilitates insights into the changes that occur to accommodate growth with different carbon substrates. In this study, transposon mutants that affect carbon flow in the core metabolism of Cereibacter sphaeroides were identified. Apparent redundancies of pathways can be explained by the need to maintain overall redox balance.

光养生长期间,Cereibacter sphaeroides可以使用几个中央碳的碳底物中间体(如琥珀酸和L-malate),或者只需要几个步骤进入中心碳代谢(如醋酸和D-malate)。此外,以光为能量源,所提供的碳衬底将仅作为细胞碳合成的碳源。因此,球藻非常适合理解不同碳源之间转换所需的变化,从而重新定向中心碳代谢中的碳流。本研究描述了C. sphaeroides转座子突变体失去了使用一种或多种有机碳源的能力- 3-羟基丙酸盐、醋酸盐、l -苹果酸盐、丙酸/HCO3-、丁酸盐/HCO3、l -乳酸盐、d -乳酸盐、d -苹果酸盐和l -谷氨酸盐。丙酮酸羧化酶和丙酮酸脱氢酶分别连接丙酮酸和草酰乙酸或乙酰辅酶a的前体代谢物池,乙基丙二酰辅酶a途径连接乙酰辅酶a和草酰乙酸池。转座子和框内缺失突变表明3-羟丙酸被氧化为CO2和乙酰辅酶a,涉及丙二酸半醛脱氢酶。这种氧化途径的存在使得丙酮酸脱氢酶在3-羟基丙酸依赖性生长过程中是不可缺少的。因此,乙酰辅酶a是除了琥珀酰辅酶a之外进入3-羟丙酸中心碳代谢的第二个入口点,并且提出这两个途径同时起作用可以最大限度地减少瞬时产生的CO2/HCO3-。本研究的另一个重要结果是鉴定了编码l -谷氨酸三方atp不依赖转运体的基因,该转运体在30年前被生物化学表征。碳同化过程的几个方面,定义为碳源转化为细胞碳,在整个生命过程中是守恒的。例如,共同的构建单元产生蛋白质和核酸,构建单元、辅助因子和次级代谢物的碳来源于共同的前体代谢物,如乙酰辅酶a、丙酮酸或草酰乙酸。使用只需要一个或几个步骤就可以进入中心碳代谢的碳底物,有助于了解不同碳底物为适应生长而发生的变化。本研究鉴定了影响球形Cereibacter sphaeroides核心代谢碳流的转座子突变体。通路的明显冗余可以解释为需要维持整体氧化还原平衡。
{"title":"Probing the core metabolism of <i>Cereibacter sphaeroides</i> by transposon mutagenesis.","authors":"Birgit E Alber, Jessica A Adair, Marie Asao, Suzy Bangudi, Samuel N Kotran, Kathleen Sandman","doi":"10.1128/jb.00306-25","DOIUrl":"10.1128/jb.00306-25","url":null,"abstract":"<p><p>During phototrophic growth, <i>Cereibacter sphaeroides</i> can use several carbon substrates that are central carbon intermediates (e.g., succinate and L-malate) or that require only a few steps to enter central carbon metabolism (e.g., acetate and D-malate). In addition, with light as the energy source, the carbon substrate provided will function as a carbon source for cell carbon synthesis only. Therefore, <i>C. sphaeroides</i> is ideally suited to understand the changes necessary to switch between different carbon sources and, consequently, to redirect carbon flow in central carbon metabolism. This study describes <i>C. sphaeroides</i> transposon mutants that have lost the ability to use one or more of the organic carbon sources 3-hydroxypropionate, acetate, L-malate, propionate/HCO<sub>3</sub><sup>-</sup>, butyrate/HCO<sub>3</sub>, L-lactate, D-lactate, D-malate, and L-glutamate. Pyruvate carboxylase and pyruvate dehydrogenase were confirmed to connect the precursor metabolite pools of pyruvate and oxaloacetate or acetyl-CoA, respectively, as was the ethylmalonyl-CoA pathway connecting acetyl-CoA and oxaloacetate pools. Transposon and in-frame deletion mutants suggest that 3-hydroxypropionate is oxidized to CO<sub>2</sub> and acetyl-CoA, involving a malonate semialdehyde dehydrogenase. The presence of this oxidative route makes pyruvate dehydrogenase dispensable during 3-hydroxypropionatedependent growth. Therefore, acetyl-CoA represents a second entry point into central carbon metabolism for 3-hydroxypropionate besides succinyl-CoA, and it is proposed that the simultaneous functioning of the two routes minimizes transiently produced CO<sub>2</sub>/HCO<sub>3</sub><sup>-</sup>. Another significant outcome of this study is the identification of genes encoding a L-glutamate TRipartite ATP-independent transporter, which was characterized biochemically 30 years ago.IMPORTANCESeveral aspects of the process of carbon assimilation, defined as the conversion of a carbon source into cell carbon, are conserved throughout life. For example, common building blocks give rise to proteins and nucleic acids, and the carbon for building blocks, cofactors, and secondary metabolites is derived from common precursor metabolites such as acetyl-CoA, pyruvate, or oxaloacetate. Using carbon substrates that require only one or a few steps to enter central carbon metabolism facilitates insights into the changes that occur to accommodate growth with different carbon substrates. In this study, transposon mutants that affect carbon flow in the core metabolism of <i>Cereibacter sphaeroides</i> were identified. Apparent redundancies of pathways can be explained by the need to maintain overall redox balance.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0030625"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145401080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular glutamine fluctuates with nitrogen availability and regulates Mycobacterium smegmatis biofilm formation. 细胞内谷氨酰胺随氮有效性波动并调节耻垢分枝杆菌生物膜的形成。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-08 DOI: 10.1128/jb.00252-25
Elizabeth Varner, Mitchell Meyer, Jocelyn Whalen, Yu-Hao Wang, Carlos Rodriguez, Ifra Malik, Steven J Mullet, Stacy L Gelhaus, William H DePas

Nontuberculous mycobacteria (NTM) can form biofilms during human infection and in household plumbing systems, so understanding biofilm regulation could help us better treat and prevent NTM infections. Glucose drives NTM aggregation in vitro, and ammonium inhibits it, but the regulatory systems controlling this early step in biofilm formation are not understood. Here, in the model NTM Mycobacterium smegmatis, we show that multiple carbon and nitrogen sources have similar impacts on aggregation as glucose and ammonium , suggesting that the response to these nutrients is general and likely sensed through downstream, integrated signals. Next, we performed a transposon screen in M. smegmatis to uncover these putative regulatory nodes. Our screen revealed that mutating specific genes in the purine and pyrimidine biosynthesis pathways caused an aggregation defect, but supplementing with adenosine and guanosine had no impact on aggregation either in a purF mutant or WT. Realizing that the only genes we hit in purine or pyrimidine biosynthesis were those that utilized glutamine as a nitrogen donor, we pivoted to the hypothesis that intracellular glutamine could be a nitrogen-responsive node affecting aggregation. We tested this hypothesis in a defined M63 medium using targeted mass spectrometry. Indeed, intracellular glutamine increased with nitrogen availability and correlated with planktonic growth. Furthermore, a garA mutant, which has an artificially expanded glutamine pool in the growth phase, grew solely as planktonic cells even without nitrogen supplementation. Altogether, these results establish that intracellular glutamine controls M. smegmatis aggregation, and they introduce flux-dependent sensors as key components of the NTM biofilm regulatory system.IMPORTANCEA subset of nontuberculous mycobacteria (NTM), including Mycobacterium abscessus, are opportunistic pathogens that can cause severe pulmonary infections. Biofilm formation renders M. abscessus more tolerant to antibiotics; hence, the ability to inhibit NTM biofilm formation could help us better prevent and treat NTM infections. However, the regulatory systems controlling NTM biofilm formation, which could include targets for anti-biofilm therapeutics, are poorly understood. The significance of this work is that it reveals intracellular glutamine as an important node controlling the initiation of biofilm formation in the model NTM Mycobacterium smegmatis. Building on this foundation, future studies will investigate how NTM biofilms can be dispersed by altering glutamine levels and will describe how NTM translates intracellular glutamine to the alteration of surface adhesins.

非结核分枝杆菌(NTM)可以在人类感染和家庭管道系统中形成生物膜,因此了解生物膜调控可以帮助我们更好地治疗和预防NTM感染。葡萄糖在体外驱动NTM聚集,而铵则抑制它,但控制这一生物膜形成早期步骤的调控系统尚不清楚。在这里,在NTM耻垢分枝杆菌模型中,我们发现多种碳和氮源对聚集的影响与葡萄糖和铵类似,这表明对这些营养物质的反应是普遍的,可能通过下游的综合信号被感知。接下来,我们对耻垢分枝杆菌进行转座子筛选,以发现这些假定的调控节点。我们的筛选显示,突变嘌呤和嘧啶生物合成途径中的特定基因会导致聚集缺陷,但在purF突变体或WT中补充腺苷和鸟苷对聚集没有影响。意识到我们在嘌呤或嘧啶生物合成中唯一撞击的基因是那些利用谷氨酰胺作为氮供体的基因,我们转向了细胞内谷氨酰胺可能是影响聚集的氮响应节点的假设。我们在确定的M63介质中使用靶向质谱法验证了这一假设。事实上,细胞内谷氨酰胺随着氮的可用性而增加,并与浮游生物的生长相关。此外,在生长阶段人工扩大谷氨酰胺池的garA突变体即使不补充氮,也能以浮游细胞的形式生长。总之,这些结果确定细胞内谷氨酰胺控制耻垢分枝杆菌聚集,并引入通量依赖传感器作为NTM生物膜调节系统的关键组成部分。重要性非结核分枝杆菌(NTM)的一个子集,包括脓肿分枝杆菌,是可引起严重肺部感染的机会性病原体。生物膜的形成使脓肿分枝杆菌对抗生素更具耐受性;因此,抑制NTM生物膜形成的能力可以帮助我们更好地预防和治疗NTM感染。然而,控制NTM生物膜形成的调控系统,其中可能包括抗生物膜治疗的靶点,知之甚少。这项工作的意义在于它揭示了细胞内谷氨酰胺是控制NTM模型耻垢分枝杆菌生物膜形成起始的重要节点。在此基础上,未来的研究将探讨NTM生物膜如何通过改变谷氨酰胺水平来分散,并将描述NTM如何将细胞内谷氨酰胺转化为表面粘附素的改变。
{"title":"Intracellular glutamine fluctuates with nitrogen availability and regulates <i>Mycobacterium smegmatis</i> biofilm formation.","authors":"Elizabeth Varner, Mitchell Meyer, Jocelyn Whalen, Yu-Hao Wang, Carlos Rodriguez, Ifra Malik, Steven J Mullet, Stacy L Gelhaus, William H DePas","doi":"10.1128/jb.00252-25","DOIUrl":"10.1128/jb.00252-25","url":null,"abstract":"<p><p>Nontuberculous mycobacteria (NTM) can form biofilms during human infection and in household plumbing systems, so understanding biofilm regulation could help us better treat and prevent NTM infections. Glucose drives NTM aggregation <i>in vitro</i>, and ammonium inhibits it, but the regulatory systems controlling this early step in biofilm formation are not understood. Here, in the model NTM <i>Mycobacterium smegmatis</i>, we show that multiple carbon and nitrogen sources have similar impacts on aggregation as glucose and ammonium , suggesting that the response to these nutrients is general and likely sensed through downstream, integrated signals. Next, we performed a transposon screen in <i>M. smegmatis</i> to uncover these putative regulatory nodes. Our screen revealed that mutating specific genes in the purine and pyrimidine biosynthesis pathways caused an aggregation defect, but supplementing with adenosine and guanosine had no impact on aggregation either in a <i>purF</i> mutant or WT. Realizing that the only genes we hit in purine or pyrimidine biosynthesis were those that utilized glutamine as a nitrogen donor, we pivoted to the hypothesis that intracellular glutamine could be a nitrogen-responsive node affecting aggregation. We tested this hypothesis in a defined M63 medium using targeted mass spectrometry. Indeed, intracellular glutamine increased with nitrogen availability and correlated with planktonic growth. Furthermore, a <i>garA</i> mutant, which has an artificially expanded glutamine pool in the growth phase, grew solely as planktonic cells even without nitrogen supplementation. Altogether, these results establish that intracellular glutamine controls <i>M. smegmatis</i> aggregation, and they introduce flux-dependent sensors as key components of the NTM biofilm regulatory system.IMPORTANCEA subset of nontuberculous mycobacteria (NTM), including <i>Mycobacterium abscessus</i>, are opportunistic pathogens that can cause severe pulmonary infections. Biofilm formation renders <i>M. abscessus</i> more tolerant to antibiotics; hence, the ability to inhibit NTM biofilm formation could help us better prevent and treat NTM infections. However, the regulatory systems controlling NTM biofilm formation, which could include targets for anti-biofilm therapeutics, are poorly understood. The significance of this work is that it reveals intracellular glutamine as an important node controlling the initiation of biofilm formation in the model NTM <i>Mycobacterium smegmatis</i>. Building on this foundation, future studies will investigate how NTM biofilms can be dispersed by altering glutamine levels and will describe how NTM translates intracellular glutamine to the alteration of surface adhesins.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0025225"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escherichia coli is poised to grow using 5'-deoxynucleosides via MtnR and CRP regulation of DHAP shunt gene expression. 大肠杆菌已准备好通过MtnR和CRP调节DHAP分流基因表达,利用5'-脱氧核苷生长。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-16 DOI: 10.1128/jb.00280-25
Katherine A Huening, Caitlin C Wingerd, Joshua T Groves, Katelyn T Kapusta, Laiba Khan, F Robert Tabita, Justin A North

The dihydroxyacetone phosphate (DHAP) shunt is a multifunctional pathway for the metabolism of 5'-deoxynucleosides and 5-deoxypentose sugars, such as 5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5dAdo), into DHAP and an aldehyde species depending on the substrate. Previous work revealed that Escherichia coli strains with the DHAP shunt can utilize exogenous MTA, 5dAdo, and derivatives thereof as sole carbon and energy sources for growth. However, if and how the DHAP shunt was regulated for 5'-deoxynucleoside and 5-deoxypentose sugar metabolism remained unknown. In the present work, the DHAP shunt genes (mtnK, mtnA, and ald2) and a putative transporter gene of E. coli ATCC 25922 are observed to form an operon, which can be expressed from two separate transcription start sites (TSSs). The distal, low-activity TSS appears to be constitutive, while the proximal primary TSS is regulated based on the identity of available growth substrates by at least two transcriptional regulators. First, YjhU, a deoxyribonucleoside operon repressor family regulator previously of unknown function that we designate as MtnR, functions as a repressor of the DHAP shunt operon when DHAP shunt substrates are absent. Further, the cyclic AMP receptor protein imposes carbon catabolite repression while glucose is available. Based on comparative sequence analysis, the E. coli DHAP shunt promoter region is highly conserved, including strains of the globally disseminated ST131 lineage of extraintestinal pathogenic E. coli, indicating a similar regulatory paradigm. Thus, the E. coli DHAP shunt is a previously unrecognized pathway for the use of 5'-deoxynucleosides and 5-deoxypentose sugars as alternative carbon sources when glucose is scarce.IMPORTANCEWhile not found in all Escherichia coli strains, the dihydroxyacetone phosphate (DHAP) shunt pathway is present in multiple lineages of extraintestinal pathogenic E. coli. The DHAP shunt allows E. coli strains to use a range of 5'-deoxynucleosides and 5-deoxypentose sugars as carbon and energy sources. These metabolites were previously considered waste products of cellular metabolism. This study identifies two transcriptional regulators that regulate the DHAP shunt operon, only allowing full expression when a DHAP shunt substrate is present and when glucose, a more-preferred carbon substrate, is absent. This demonstrates that the DHAP shunt is a genuine carbon metabolism pathway in E. coli and is placed under the hierarchy of carbon catabolite repression.

二羟基丙酮磷酸(DHAP)分流是5'-脱氧核苷和5-脱氧戊糖代谢的多功能途径,如5'-甲基硫腺苷(MTA)和5'-脱氧腺苷(5dAdo),根据底物转化为DHAP和醛类。先前的研究表明,具有DHAP分流的大肠杆菌菌株可以利用外源MTA, 5dAdo及其衍生物作为唯一的碳和能量来源进行生长。然而,DHAP分流是否以及如何调节5'-脱氧核苷和5-脱氧戊糖代谢仍不清楚。在本研究中,研究人员观察到DHAP分流基因(mtnK、mtnA和ald2)和大肠杆菌ATCC 25922的一个推定转运基因形成一个操纵子,该操纵子可以在两个独立的转录起始位点(tss)上表达。远端低活性的TSS似乎是组成性的,而近端主要的TSS则受到至少两种转录调节因子的调节,这是基于可用生长基质的特性。首先,YjhU是一种脱氧核糖核苷操纵子抑制子家族调节剂,以前功能未知,我们称之为MtnR,当DHAP分流底物缺失时,它作为dhp分流操纵子的抑制子发挥作用。此外,当葡萄糖可用时,环AMP受体蛋白施加碳分解代谢抑制。基于比较序列分析,大肠杆菌DHAP分流启动子区域高度保守,包括全球传播的肠外致病性大肠杆菌ST131谱系的菌株,表明类似的调控模式。因此,大肠杆菌DHAP分流是一种以前未被认识的途径,当葡萄糖缺乏时,它使用5'-脱氧核苷和5-脱氧戊糖作为替代碳源。重要性:虽然不是在所有大肠杆菌菌株中都发现,但在肠外致病性大肠杆菌的多个谱系中都存在二羟丙酮磷酸(DHAP)分流途径。DHAP分流允许大肠杆菌菌株使用一系列5'-脱氧核苷和5-脱氧戊糖作为碳和能量来源。这些代谢物以前被认为是细胞代谢的废物。本研究确定了两种调控dhp分流操纵子的转录调控因子,仅在dhp分流底物存在和葡萄糖(一种更优选的碳底物)不存在时才允许完全表达。这表明DHAP分流是大肠杆菌中一个真正的碳代谢途径,并被置于碳分解代谢抑制的层次之下。
{"title":"<i>Escherichia coli</i> is poised to grow using 5'-deoxynucleosides via MtnR and CRP regulation of DHAP shunt gene expression.","authors":"Katherine A Huening, Caitlin C Wingerd, Joshua T Groves, Katelyn T Kapusta, Laiba Khan, F Robert Tabita, Justin A North","doi":"10.1128/jb.00280-25","DOIUrl":"10.1128/jb.00280-25","url":null,"abstract":"<p><p>The dihydroxyacetone phosphate (DHAP) shunt is a multifunctional pathway for the metabolism of 5'-deoxynucleosides and 5-deoxypentose sugars, such as 5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5dAdo), into DHAP and an aldehyde species depending on the substrate. Previous work revealed that <i>Escherichia coli</i> strains with the DHAP shunt can utilize exogenous MTA, 5dAdo, and derivatives thereof as sole carbon and energy sources for growth. However, if and how the DHAP shunt was regulated for 5'-deoxynucleoside and 5-deoxypentose sugar metabolism remained unknown. In the present work, the DHAP shunt genes (<i>mtnK</i>, <i>mtnA</i>, and <i>ald2</i>) and a putative transporter gene of <i>E. coli</i> ATCC 25922 are observed to form an operon, which can be expressed from two separate transcription start sites (TSSs). The distal, low-activity TSS appears to be constitutive, while the proximal primary TSS is regulated based on the identity of available growth substrates by at least two transcriptional regulators. First, YjhU, a deoxyribonucleoside operon repressor family regulator previously of unknown function that we designate as MtnR, functions as a repressor of the DHAP shunt operon when DHAP shunt substrates are absent. Further, the cyclic AMP receptor protein imposes carbon catabolite repression while glucose is available. Based on comparative sequence analysis, the <i>E. coli</i> DHAP shunt promoter region is highly conserved, including strains of the globally disseminated ST131 lineage of extraintestinal pathogenic <i>E. coli</i>, indicating a similar regulatory paradigm. Thus, the <i>E. coli</i> DHAP shunt is a previously unrecognized pathway for the use of 5'-deoxynucleosides and 5-deoxypentose sugars as alternative carbon sources when glucose is scarce.IMPORTANCEWhile not found in all <i>Escherichia coli</i> strains, the dihydroxyacetone phosphate (DHAP) shunt pathway is present in multiple lineages of extraintestinal pathogenic <i>E. coli</i>. The DHAP shunt allows <i>E. coli</i> strains to use a range of 5'-deoxynucleosides and 5-deoxypentose sugars as carbon and energy sources. These metabolites were previously considered waste products of cellular metabolism. This study identifies two transcriptional regulators that regulate the DHAP shunt operon, only allowing full expression when a DHAP shunt substrate is present and when glucose, a more-preferred carbon substrate, is absent. This demonstrates that the DHAP shunt is a genuine carbon metabolism pathway in <i>E. coli</i> and is placed under the hierarchy of carbon catabolite repression.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0028025"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145300782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flow equilibrium model controlling cytoplasmic transition metal cation pools and preventing mis-metalation as exemplified for zinc homeostasis. 流动平衡模型控制细胞质过渡金属阳离子池和防止错金属化,例如锌的动态平衡。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-09 DOI: 10.1128/jb.00228-25
Dietrich H Nies

The metal cations of the first transition period fill up their 3d orbitals from 3d5 for Mn(II) to 3d10 for Zn(II). Enzymes use these cations as cofactors and exploit their individual chemical features for important catalytic reactions. A prerequisite for this process is metalation of the respective enzyme with the correct cation to form metal complexes, despite the presence of other competing transition metal cations. The first step to avoid mis-metalation requires maintenance of cytoplasmic cation homeostasis, which adjusts not only the concentration of an individual cation but also that of the overall metal-ion pools. This is achieved via a flow equilibrium of metal cation uptake by importers with broad substrate specificity combined with export of unwanted cations by efflux systems. A third group of cation importers with high substrate affinity contributes under metal starvation conditions. Experimental evidence for the existence of such a flow equilibrium comes from studies using the metal-resistant beta-proteobacterium Cupriavidus metallidurans. Central to the calibration of the pool of an individual metal cation are the regulators that control expression of the genes for the import and export pumps. A theoretical model that deduces how metal-cation discrimination may be performed by the respective regulator and the pathway from uptake of an external cation to correct metalation provides new insight into these processes.

第一个过渡周期的金属阳离子填充它们的三维轨道,从Mn(II)的3d5到Zn(II)的3d10。酶利用这些阳离子作为辅助因子,利用它们各自的化学特征进行重要的催化反应。这一过程的先决条件是,尽管存在其他竞争的过渡金属阳离子,但相应的酶与正确的阳离子金属化形成金属配合物。避免错金属化的第一步需要维持细胞质阳离子稳态,这不仅可以调节单个阳离子的浓度,还可以调节整个金属离子池的浓度。这是通过进口金属阳离子吸收的流动平衡实现的,具有广泛的底物特异性,并结合外排系统输出不需要的阳离子。第三组具有高底物亲和力的阳离子输入在金属饥饿条件下起作用。这种流动平衡存在的实验证据来自于使用抗金属铜变形杆菌的研究。校准单个金属阳离子池的核心是控制进出口泵基因表达的调节器。一个理论模型,推断如何金属阳离子辨别可能由各自的调节和途径,从摄取外部阳离子正确的金属化提供了新的见解,这些过程。
{"title":"A flow equilibrium model controlling cytoplasmic transition metal cation pools and preventing mis-metalation as exemplified for zinc homeostasis.","authors":"Dietrich H Nies","doi":"10.1128/jb.00228-25","DOIUrl":"10.1128/jb.00228-25","url":null,"abstract":"<p><p>The metal cations of the first transition period fill up their 3d orbitals from 3d<sup>5</sup> for Mn(II) to 3d<sup>10</sup> for Zn(II). Enzymes use these cations as cofactors and exploit their individual chemical features for important catalytic reactions. A prerequisite for this process is metalation of the respective enzyme with the correct cation to form metal complexes, despite the presence of other competing transition metal cations. The first step to avoid mis-metalation requires maintenance of cytoplasmic cation homeostasis, which adjusts not only the concentration of an individual cation but also that of the overall metal-ion pools. This is achieved via a flow equilibrium of metal cation uptake by importers with broad substrate specificity combined with export of unwanted cations by efflux systems. A third group of cation importers with high substrate affinity contributes under metal starvation conditions. Experimental evidence for the existence of such a flow equilibrium comes from studies using the metal-resistant beta-proteobacterium <i>Cupriavidus metallidurans</i>. Central to the calibration of the pool of an individual metal cation are the regulators that control expression of the genes for the import and export pumps. A theoretical model that deduces how metal-cation discrimination may be performed by the respective regulator and the pathway from uptake of an external cation to correct metalation provides new insight into these processes.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0022825"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas aeruginosa-secreted respiratory toxin HQNO triggers fatty acid accumulation in respiring Staphylococcus aureus, decreasing SaeRS-dependent transcriptional regulation. 铜绿假单胞菌分泌的呼吸毒素HQNO触发呼吸性金黄色葡萄球菌的脂肪酸积累,降低saers依赖的转录调节。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-08 DOI: 10.1128/jb.00395-25
Franklin Roman-Rodriguez, Nupur Tyagi, Hassan Al-Tameemi, Jeffrey M Boyd

Staphylococcus aureus and Pseudomonas aeruginosa are the two pathogens that colonize the airway of cystic fibrosis patients. As patients age, P. aeruginosa outcompetes S. aureus to become the predominant organism in the airway, which overlaps with worsening symptoms. This inverse correlation is partly due to the ability of P. aeruginosa to secrete secondary metabolites and virulence factors that are antagonistic to the host cells and other bacteria present. Several of these secondary metabolites inhibit S. aureus respiration. SaeRS is a two-component regulatory system that promotes the transcription of numerous virulence genes in S. aureus. The transcription of SaeRS-regulated genes is decreased as a function of respiratory status. The accumulation of intracellular fatty acids also negatively impacts the activity of SaeRS. Incubation of S. aureus with P. aeruginosa cell-free conditioned culture medium decreased the transcriptional output of the SaeRS system. Further analyses using P. aeruginosa mutant strains and chemical genetics determined that 2-heptyl-4-quinolone N-oxide (HQNO) was responsible for the SaeRS-dependent changes in gene regulation. Treatment with HQNO increased the abundance of cell-associated fatty acids. HQNO inhibits cell respiration, and the SaeRS system did not respond to HQNO treatment in a respiration-impaired S. aureus strain, which accumulates fatty acids. The data presented are consistent with a working model wherein treatment of S. aureus with HQNO inhibits respiration, increasing free fatty acid accumulation, which negatively impacts SaeRS signaling. This results in decreased expression of the SaeRS regulon, which has significant roles in pathogenesis.IMPORTANCEPseudomonas aeruginosa and Staphylococcus aureus are often co-isolated from the airways of cystic fibrosis patients. P. aeruginosa secretes non-essential metabolites that alter S. aureus physiology, providing P. aeruginosa with a competitive advantage. S. aureus can adapt to the presence of these metabolites, but the genetic mechanisms used to sense these P. aeruginosa-produced metabolites and/or the induced physiological changes are largely unknown. The S. aureus SaeRS two-component regulatory system positively regulates the expression of various virulence factors, including toxins and proteases, that facilitate adaptation to and survival in hostile host environments. This study demonstrates that the P. aeruginosa-produced respiratory toxin 2-heptyl-4-quinolone N-oxide inhibits respiration, decreasing the transcription of SaeRS-regulated genes and thereby decreasing virulence factor production. These findings could be exploited to decrease the ability of S. aureus to express virulence factors in various infection settings.

金黄色葡萄球菌和铜绿假单胞菌是囊性纤维化患者气道中的两种病原体。随着患者年龄的增长,铜绿假单胞菌胜过金黄色葡萄球菌,成为气道内的主要微生物,与症状恶化重叠。这种负相关部分是由于铜绿假单胞菌分泌次生代谢物和毒力因子的能力,这些因子对宿主细胞和其他存在的细菌是拮抗的。这些次生代谢物中有几种抑制金黄色葡萄球菌呼吸。SaeRS是一个双组分调控系统,可促进金黄色葡萄球菌许多毒力基因的转录。saers调节基因的转录随着呼吸状态的变化而减少。细胞内脂肪酸的积累也会对SaeRS的活性产生负面影响。金黄色葡萄球菌与铜绿假单胞菌无细胞条件培养基的孵育降低了SaeRS系统的转录输出。利用铜绿假单胞菌突变株和化学遗传学进一步分析确定,2-庚基-4-喹诺酮n -氧化物(HQNO)是导致saers依赖性基因调控变化的原因。用HQNO处理增加了细胞相关脂肪酸的丰度。HQNO抑制细胞呼吸,SaeRS系统对呼吸受损的金黄色葡萄球菌菌株(积累脂肪酸)HQNO治疗没有反应。所提供的数据与一个工作模型一致,即用HQNO处理金黄色葡萄球菌会抑制呼吸,增加游离脂肪酸积累,从而对SaeRS信号传导产生负面影响。这导致在发病机制中起重要作用的SaeRS调控子表达减少。重要性:铜绿假单胞菌和金黄色葡萄球菌常从囊性纤维化患者的气道中共同分离。铜绿假单胞菌分泌非必需代谢物,改变金黄色葡萄球菌的生理机能,为铜绿假单胞菌提供竞争优势。金黄色葡萄球菌可以适应这些代谢物的存在,但用于感知这些铜绿假单胞菌产生的代谢物和/或诱导的生理变化的遗传机制在很大程度上是未知的。金黄色葡萄球菌SaeRS双组分调节系统正向调节各种毒力因子的表达,包括毒素和蛋白酶,促进对敌对宿主环境的适应和生存。本研究表明,P. aeruginosa产生的呼吸毒素2-庚基-4-喹诺酮n -氧化物抑制呼吸,减少saers调控基因的转录,从而减少毒力因子的产生。这些发现可以用来降低金黄色葡萄球菌在各种感染环境中表达毒力因子的能力。
{"title":"<i>Pseudomonas aeruginosa-</i>secreted respiratory toxin HQNO triggers fatty acid accumulation in respiring <i>Staphylococcus aureus,</i> decreasing SaeRS-dependent transcriptional regulation.","authors":"Franklin Roman-Rodriguez, Nupur Tyagi, Hassan Al-Tameemi, Jeffrey M Boyd","doi":"10.1128/jb.00395-25","DOIUrl":"10.1128/jb.00395-25","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> are the two pathogens that colonize the airway of cystic fibrosis patients. As patients age, <i>P. aeruginosa</i> outcompetes <i>S. aureus</i> to become the predominant organism in the airway, which overlaps with worsening symptoms. This inverse correlation is partly due to the ability of <i>P. aeruginosa</i> to secrete secondary metabolites and virulence factors that are antagonistic to the host cells and other bacteria present. Several of these secondary metabolites inhibit <i>S. aureus</i> respiration. SaeRS is a two-component regulatory system that promotes the transcription of numerous virulence genes in <i>S. aureus</i>. The transcription of SaeRS-regulated genes is decreased as a function of respiratory status. The accumulation of intracellular fatty acids also negatively impacts the activity of SaeRS. Incubation of <i>S. aureus</i> with <i>P. aeruginosa</i> cell-free conditioned culture medium decreased the transcriptional output of the SaeRS system. Further analyses using <i>P. aeruginosa</i> mutant strains and chemical genetics determined that 2-heptyl-4-quinolone N-oxide (HQNO) was responsible for the SaeRS-dependent changes in gene regulation. Treatment with HQNO increased the abundance of cell-associated fatty acids. HQNO inhibits cell respiration, and the SaeRS system did not respond to HQNO treatment in a respiration-impaired <i>S. aureus</i> strain, which accumulates fatty acids. The data presented are consistent with a working model wherein treatment of <i>S. aureus</i> with HQNO inhibits respiration, increasing free fatty acid accumulation, which negatively impacts SaeRS signaling. This results in decreased expression of the SaeRS regulon, which has significant roles in pathogenesis.IMPORTANCE<i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i> are often co-isolated from the airways of cystic fibrosis patients. <i>P. aeruginosa</i> secretes non-essential metabolites that alter <i>S. aureus</i> physiology, providing <i>P. aeruginosa</i> with a competitive advantage. <i>S. aureus</i> can adapt to the presence of these metabolites, but the genetic mechanisms used to sense these <i>P. aeruginosa</i>-produced metabolites and/or the induced physiological changes are largely unknown. The <i>S. aureus</i> SaeRS two-component regulatory system positively regulates the expression of various virulence factors, including toxins and proteases, that facilitate adaptation to and survival in hostile host environments. This study demonstrates that the <i>P. aeruginosa</i>-produced respiratory toxin 2-heptyl-4-quinolone N-oxide inhibits respiration, decreasing the transcription of SaeRS-regulated genes and thereby decreasing virulence factor production. These findings could be exploited to decrease the ability of <i>S. aureus</i> to express virulence factors in various infection settings.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0039525"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas aeruginosa differentially influences antibiotic-resistant Staphylococcus aureus emergence and expansion in hyperglycemic environments. 铜绿假单胞菌对耐药金黄色葡萄球菌在高血糖环境中的出现和扩张的差异影响。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-16 DOI: 10.1128/jb.00333-25
Benjamin P Darwitz, Zachary J Lifschin, Claire M Miller, Christopher J Genito, Casei A Gossett, Kyla E Augustine, Lance R Thurlow

Individuals with poorly controlled diabetes mellitus often develop multispecies skin and soft tissue infections, with Staphylococcus aureus and Pseudomonas aeruginosa among the most prevalent bacteria isolated from infection sites worldwide. Diabetic infections are recalcitrant to conventional antibiotic regimens and may be a reservoir for emergent antibiotic-resistant bacterial strains. Supporting this, we have previously shown that rifampicin treatment elicits the emergence and expansion of rifampicin-resistant (Rif-r) S. aureus only in diabetic mice, potentially due to greater bacterial outgrowth increasing the frequency of resistance-conferring mutations. However, whether S. aureus exhibits altered resistance outcomes during multispecies diabetic infections is unclear. During co-infection with P. aeruginosa under normoglycemic conditions, S. aureus exhibits reduced growth and altered susceptibility to several antibiotics. In contrast, we previously observed that glucose availability allows S. aureus to largely overcome P. aeruginosa-mediated growth inhibition. Here, we explored S. aureus resistance outcomes under hyperglycemic conditions in the context of co-infection with P. aeruginosa during antibiotic challenge. We found that P. aeruginosa exoproducts regulated by the Pseudomonas quinolone signal quorum sensing system inhibit the emergence but not the expansion of Rif-r S. aureus in vitro under glucose-replete conditions. In contrast, we recovered equivalent Rif-r S. aureus burdens from diabetic mice during mono- and co-infection with P. aeruginosa. These results demonstrate that the diabetic infection microenvironment is conducive to emergent Rif-r S. aureus despite external pressures elicited by P. aeruginosa.IMPORTANCEPoorly controlled diabetes mellitus confers an increased susceptibility to bacterial infections, with Staphylococcus aureus and Pseudomonas aeruginosa frequently isolated from diabetic skin wounds. S. aureus readily develops antibiotic resistance during diabetic mono-infection under antibiotic pressure, but whether this occurs during diabetic co-infection is unclear. Under normoglycemic conditions, secreted P. aeruginosa factors alter S. aureus tolerance to several antibiotics. Here, we show that these P. aeruginosa exoproducts further inhibit the emergence of antibiotic-resistant S. aureus regardless of glucose availability in vitro, but this does not occur during subcutaneous co-infection in diabetic mice. These results provide initial insights regarding conditions that may inhibit S. aureus resistance development in hyperglycemic environments but underscore the influence of the host infection microenvironment in shaping resistance outcomes.

糖尿病控制不佳的个体经常发生多种皮肤和软组织感染,从感染部位分离出的金黄色葡萄球菌和铜绿假单胞菌是最常见的细菌。糖尿病感染对传统的抗生素治疗方案是不耐受的,并且可能是新出现的耐药细菌菌株的储存库。为了支持这一点,我们之前的研究表明,利福平治疗仅在糖尿病小鼠中引起利福平耐药(Rif-r)金黄色葡萄球菌的出现和扩大,这可能是由于细菌生长增加了耐药突变的频率。然而,金黄色葡萄球菌在多物种糖尿病感染中是否表现出改变的耐药结果尚不清楚。在正常血糖条件下与铜绿假单胞菌合并感染时,金黄色葡萄球菌表现出生长减少和对几种抗生素的易感性改变。相反,我们之前观察到葡萄糖的可用性允许金黄色葡萄球菌在很大程度上克服铜绿假单胞菌介导的生长抑制。在这里,我们探讨了在抗生素挑战期间与铜绿假单胞菌共感染的背景下,高血糖条件下金黄色葡萄球菌的耐药性结果。我们发现,在葡萄糖充满条件下,由喹诺酮假单胞菌信号群体感应系统调节的铜绿假单胞菌外产物抑制金黄色葡萄球菌Rif-r的出现,但不抑制金黄色葡萄球菌的扩增。相比之下,我们从糖尿病小鼠单感染和合并感染铜绿假单胞菌的过程中恢复了相同的Rif-r金黄色葡萄球菌负荷。这些结果表明,尽管铜绿假单胞菌引起了外部压力,但糖尿病感染微环境有利于新生金黄色葡萄球菌Rif-r的产生。糖尿病控制不良会增加对细菌感染的易感性,金黄色葡萄球菌和铜绿假单胞菌经常从糖尿病皮肤伤口中分离出来。在抗生素压力下,金黄色葡萄球菌在糖尿病单感染期间容易产生抗生素耐药性,但这种情况是否发生在糖尿病合并感染期间尚不清楚。在血糖正常的情况下,分泌铜绿假单胞菌因子改变金黄色葡萄球菌对几种抗生素的耐受性。在这里,我们发现这些铜绿假单胞菌的外产物进一步抑制耐抗生素金黄色葡萄球菌的出现,而不管体外葡萄糖的可用性如何,但在糖尿病小鼠的皮下联合感染中不会发生这种情况。这些结果提供了关于在高血糖环境中可能抑制金黄色葡萄球菌耐药发展的条件的初步见解,但强调了宿主感染微环境对形成耐药结果的影响。
{"title":"<i>Pseudomonas aeruginosa</i> differentially influences antibiotic-resistant <i>Staphylococcus aureus</i> emergence and expansion in hyperglycemic environments.","authors":"Benjamin P Darwitz, Zachary J Lifschin, Claire M Miller, Christopher J Genito, Casei A Gossett, Kyla E Augustine, Lance R Thurlow","doi":"10.1128/jb.00333-25","DOIUrl":"10.1128/jb.00333-25","url":null,"abstract":"<p><p>Individuals with poorly controlled diabetes mellitus often develop multispecies skin and soft tissue infections, with <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> among the most prevalent bacteria isolated from infection sites worldwide. Diabetic infections are recalcitrant to conventional antibiotic regimens and may be a reservoir for emergent antibiotic-resistant bacterial strains. Supporting this, we have previously shown that rifampicin treatment elicits the emergence and expansion of rifampicin-resistant (Rif-r) <i>S. aureus</i> only in diabetic mice, potentially due to greater bacterial outgrowth increasing the frequency of resistance-conferring mutations. However, whether <i>S. aureus</i> exhibits altered resistance outcomes during multispecies diabetic infections is unclear. During co-infection with <i>P. aeruginosa</i> under normoglycemic conditions, <i>S. aureus</i> exhibits reduced growth and altered susceptibility to several antibiotics. In contrast, we previously observed that glucose availability allows <i>S. aureus</i> to largely overcome <i>P. aeruginosa</i>-mediated growth inhibition. Here, we explored <i>S. aureus</i> resistance outcomes under hyperglycemic conditions in the context of co-infection with <i>P. aeruginosa</i> during antibiotic challenge. We found that <i>P. aeruginosa</i> exoproducts regulated by the <i>Pseudomonas</i> quinolone signal quorum sensing system inhibit the emergence but not the expansion of Rif-r <i>S. aureus in vitro</i> under glucose-replete conditions. In contrast, we recovered equivalent Rif-r <i>S. aureus</i> burdens from diabetic mice during mono- and co-infection with <i>P. aeruginosa</i>. These results demonstrate that the diabetic infection microenvironment is conducive to emergent Rif-r <i>S. aureus</i> despite external pressures elicited by <i>P. aeruginosa</i>.IMPORTANCEPoorly controlled diabetes mellitus confers an increased susceptibility to bacterial infections, with <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> frequently isolated from diabetic skin wounds. <i>S. aureus</i> readily develops antibiotic resistance during diabetic mono-infection under antibiotic pressure, but whether this occurs during diabetic co-infection is unclear. Under normoglycemic conditions, secreted <i>P. aeruginosa</i> factors alter <i>S. aureus</i> tolerance to several antibiotics. Here, we show that these <i>P. aeruginosa</i> exoproducts further inhibit the emergence of antibiotic-resistant <i>S. aureus</i> regardless of glucose availability <i>in vitro</i>, but this does not occur during subcutaneous co-infection in diabetic mice. These results provide initial insights regarding conditions that may inhibit <i>S. aureus</i> resistance development in hyperglycemic environments but underscore the influence of the host infection microenvironment in shaping resistance outcomes.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0033325"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145300792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of MurM and a branched cell wall structure on penicillin resistance in Streptococcus pneumoniae. MurM和分枝细胞壁结构对肺炎链球菌青霉素耐药的影响。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-08 DOI: 10.1128/jb.00141-25
Ragnhild Sødal Gjennestad, Maria Victoria Heggenhougen, Anja Ruud Winther, Johanne Moldstad, Vegard Eldholm, Morten Kjos, Leiv Sigve Håvarstein, Daniel Straume

The aminoacyltransferase MurM is an important penicillin resistance determinant in Streptococcus pneumoniae. This enzyme attaches a serine or alanine to the side chain of lysine, the third residue of the pentapeptide of lipid II, resulting in branched muropeptides that can be crosslinked to stem peptides in peptidoglycan by penicillin binding proteins (PBPs). Deletion of murM results in only linear muropeptides, and more importantly, a significant reduction in resistance. Highly penicillin-resistant pneumococci express low-affinity PBPs, an altered MurM protein, and possess a highly branched cell wall. It has therefore been hypothesized that MurM, and thus branched muropeptides, are essential for resistance because they are better substrates for low-affinity PBPs. In this study, we found that neither the version of murM nor elevated levels of cell wall branching affected resistance levels. To further support this, we investigated whether branched muropeptide substrates compete better than linear versions with penicillin at the active site of low-affinity PBPs and quantified changes to the stem peptide composition of the resistant Pen6 strain in response to subinhibitory concentrations of penicillin. We found that the level of cell wall branching decreased during penicillin exposure. Together, our results do not support the idea that elevated levels of branched muropeptides (more active MurM) are important for either the function of low-affinity PBPs or the cell's response to penicillin. Nevertheless, since a functional MurM enzyme is important for resistance, we speculate that it might indirectly influence other functions related to cell wall synthesis and remodeling needed for a resistant phenotype.IMPORTANCEA fundamental understanding of the mechanisms behind antibiotic resistance is needed to find strategies to extend the clinical relevance of existing drugs. This study explores the relationship between cell wall composition and penicillin resistance in Streptococcus pneumoniae. Here, we confirm that branched peptide crosslinks in the cell wall are crucial for resistance but found no correlation between elevated branching levels and resistance. Our data suggest that the function of low-affinity penicillin binding proteins is not influenced by the lack of branched cell wall precursors. Instead, a branched cell wall might contribute to resistance via other cell wall biosynthesis and remodeling mechanisms. These insights could offer new perspectives on why a branched cell wall is important for penicillin resistance in pneumococci.

氨基酰基转移酶是肺炎链球菌对青霉素耐药的重要决定因素。这种酶将丝氨酸或丙氨酸附着在赖氨酸的侧链上,赖氨酸是脂质II的五肽的第三个残基,产生支链多肽,可以通过青霉素结合蛋白(PBPs)与肽聚糖中的茎肽交联。murM的缺失只导致线性多肽,更重要的是,耐药性显著降低。高度耐青霉素肺炎球菌表达低亲和力PBPs,一种改变的MurM蛋白,并具有高度分枝的细胞壁。因此,我们假设MurM和支链多肽对耐药性至关重要,因为它们是低亲和力PBPs的更好底物。在这项研究中,我们发现murM的版本和细胞壁分支水平的升高都不会影响抗性水平。为了进一步支持这一点,我们研究了分支多肽底物是否比线性多肽底物在低亲和力PBPs的活性位点与青霉素竞争更好,并量化了耐药Pen6菌株的茎肽组成在青霉素亚抑制浓度下的变化。我们发现在青霉素暴露期间细胞壁分支水平下降。总之,我们的结果不支持支化多肽(更活跃的MurM)水平升高对低亲和力PBPs的功能或细胞对青霉素的反应很重要的观点。然而,由于功能性MurM酶对抗性很重要,我们推测它可能间接影响抗性表型所需的细胞壁合成和重塑相关的其他功能。重要意义:需要对抗生素耐药性背后的机制有一个基本的了解,以找到扩大现有药物临床相关性的策略。本研究探讨肺炎链球菌细胞壁组成与青霉素耐药的关系。在这里,我们证实细胞壁上的支链肽交联对抗性至关重要,但没有发现分支水平升高与抗性之间的相关性。我们的数据表明,低亲和力青霉素结合蛋白的功能不受缺乏分枝细胞壁前体的影响。相反,分支细胞壁可能通过其他细胞壁生物合成和重塑机制促进抗性。这些见解可以为为什么分枝细胞壁对肺炎球菌的青霉素耐药性很重要提供新的视角。
{"title":"The effect of MurM and a branched cell wall structure on penicillin resistance in <i>Streptococcus pneumoniae</i>.","authors":"Ragnhild Sødal Gjennestad, Maria Victoria Heggenhougen, Anja Ruud Winther, Johanne Moldstad, Vegard Eldholm, Morten Kjos, Leiv Sigve Håvarstein, Daniel Straume","doi":"10.1128/jb.00141-25","DOIUrl":"10.1128/jb.00141-25","url":null,"abstract":"<p><p>The aminoacyltransferase MurM is an important penicillin resistance determinant in <i>Streptococcus pneumoniae</i>. This enzyme attaches a serine or alanine to the side chain of lysine, the third residue of the pentapeptide of lipid II, resulting in branched muropeptides that can be crosslinked to stem peptides in peptidoglycan by penicillin binding proteins (PBPs). Deletion of <i>murM</i> results in only linear muropeptides, and more importantly, a significant reduction in resistance. Highly penicillin-resistant pneumococci express low-affinity PBPs, an altered MurM protein, and possess a highly branched cell wall. It has therefore been hypothesized that MurM, and thus branched muropeptides, are essential for resistance because they are better substrates for low-affinity PBPs. In this study, we found that neither the version of <i>murM</i> nor elevated levels of cell wall branching affected resistance levels. To further support this, we investigated whether branched muropeptide substrates compete better than linear versions with penicillin at the active site of low-affinity PBPs and quantified changes to the stem peptide composition of the resistant Pen6 strain in response to subinhibitory concentrations of penicillin. We found that the level of cell wall branching decreased during penicillin exposure. Together, our results do not support the idea that elevated levels of branched muropeptides (more active MurM) are important for either the function of low-affinity PBPs or the cell's response to penicillin. Nevertheless, since a functional MurM enzyme is important for resistance, we speculate that it might indirectly influence other functions related to cell wall synthesis and remodeling needed for a resistant phenotype.IMPORTANCEA fundamental understanding of the mechanisms behind antibiotic resistance is needed to find strategies to extend the clinical relevance of existing drugs. This study explores the relationship between cell wall composition and penicillin resistance in <i>Streptococcus pneumoniae</i>. Here, we confirm that branched peptide crosslinks in the cell wall are crucial for resistance but found no correlation between elevated branching levels and resistance. Our data suggest that the function of low-affinity penicillin binding proteins is not influenced by the lack of branched cell wall precursors. Instead, a branched cell wall might contribute to resistance via other cell wall biosynthesis and remodeling mechanisms. These insights could offer new perspectives on why a branched cell wall is important for penicillin resistance in pneumococci.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0014125"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PA2803-encoded PcrP exhibits a novel non-catalytic function and contributes to polymyxin B resistance in P. aeruginosa. pa2803编码的PcrP显示出一种新的非催化功能,并参与铜绿假单胞菌对多粘菌素B的抗性。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-17 DOI: 10.1128/jb.00189-25
T Salpadoru, S Khanam, V A Borin, Ma A Achour, Denise Oh, M Kanik, P C Gallage, A Khanov, M Hull, S P Pitre, P K Agarwal, M J Franklin, M A Patrauchan

The opportunistic human pathogen Pseudomonas aeruginosa (Pa), a leading cause of severe infections, becomes increasingly resistant to antibiotics, including the last resort antibiotic, polymyxin B (PMB). Previous studies have shown that calcium (Ca2+) at the levels encountered during infections increases Pa resistance to PMB. However, the mechanisms of this Ca2+ regulation are not known. Here, we identified three novel genes (PA2803, PA3237, and PA5317) that contribute to the Ca2+-dependent PMB resistance in Pa. PA2803, the focus of this work, encodes a putative phosphonatase and is a founding member of the PA2803 subfamily from the Haloacid Dehalogenase Superfamily. Since the transcription of this gene is regulated by both Ca2+ and inorganic phosphate (Pi), we named it "Pi and Ca2+-regulated protein, PcrP." Congruent with sequence-based predictions, we showed that PcrP lacks catalytic activity and instead binds protein partners, revealing a novel non-catalytic function. By using pull-down assays and bacterial two-hybrid systems, we identified and validated two protein partners of PcrP: Acp3 and PA3518. We showed that PcrP is involved in oxidative stress responses in Pa, which are likely mediated by its interactions with Acp3 and may support its role in PMB resistance. In addition, PcrP imparts a Ca2+-dependent growth advantage during Pi starvation and plays a role in polyphosphate accumulation in a Ca2+-dependent manner. Overall, this study identified a novel protein-binding function for the PA2803 subfamily representative, which mediates Pa responses to elevated Ca2+ and Pi starvation and enhances PMB resistance.IMPORTANCEPseudomonas aeruginosa (Pa) is a critical human pathogen that presents significant clinical challenges, underscoring the urgent need for understanding its resistance mechanisms. Previous studies have shown that calcium (Ca2+) at the levels detected during infections increases Pa resistance to the last resort antibiotic polymyxin B (PMB). For the first time, we identified three novel genes, whose products are required for the Ca2+-dependent PMB resistance in Pa. One of them, PA2803, regulated by Ca2+ and phosphate, was named phosphate and Ca2+-regulated protein, PcrP. This study discovered a novel protein-binding function of PcrP and identified two protein partners. Given the high level of sequence conservation within the PA2803 subfamily, the protein-binding function may be shared by other members of the PA2803 subfamily.

机会性人类病原体铜绿假单胞菌(Pa)是严重感染的主要原因,对抗生素的耐药性越来越强,包括最后的抗生素多粘菌素B (PMB)。先前的研究表明,在感染期间遇到的钙(Ca2+)水平会增加Pa对PMB的抵抗力。然而,这种Ca2+调节的机制尚不清楚。在这里,我们鉴定了三个新基因(PA2803, PA3237和PA5317),它们有助于Pa的Ca2+依赖性PMB抗性。PA2803是本研究的重点,它编码一种推定的磷酸化酶,是来自卤酸脱卤酶超家族的PA2803亚家族的创始成员。由于该基因的转录受到Ca2+和无机磷酸盐(Pi)的调节,我们将其命名为“Pi和Ca2+调节蛋白,PcrP”。与基于序列的预测一致,我们发现PcrP缺乏催化活性,而是结合蛋白质伴侣,揭示了一种新的非催化功能。通过下拉试验和细菌双杂交系统,我们鉴定并验证了PcrP的两个蛋白伴侣:Acp3和PA3518。我们发现PcrP参与了Pa的氧化应激反应,这可能是通过其与Acp3的相互作用介导的,并可能支持其在PMB抗性中的作用。此外,PcrP在Pi饥饿期间具有Ca2+依赖的生长优势,并以Ca2+依赖的方式在多磷酸盐积累中发挥作用。总的来说,本研究确定了PA2803亚家族代表的一种新的蛋白质结合功能,该功能介导Pa对Ca2+和Pi饥饿升高的反应,并增强PMB抗性。铜绿假单胞菌(Pa)是一种重要的人类病原体,具有重大的临床挑战,迫切需要了解其耐药机制。先前的研究表明,在感染期间检测到的钙(Ca2+)水平增加了Pa对最后手段抗生素多粘菌素B (PMB)的耐药性。我们首次发现了三个新基因,它们的产物是Pa中Ca2+依赖性PMB抗性所必需的。其中,受Ca2+和磷酸调控的PA2803被命名为磷酸和Ca2+调节蛋白,PcrP。本研究发现了PcrP的一种新的蛋白结合功能,并鉴定了两个蛋白伴侣。鉴于PA2803亚家族的高度序列保守性,该蛋白结合功能可能被PA2803亚家族的其他成员共享。
{"title":"The PA2803-encoded PcrP exhibits a novel non-catalytic function and contributes to polymyxin B resistance in <i>P. aeruginosa</i>.","authors":"T Salpadoru, S Khanam, V A Borin, Ma A Achour, Denise Oh, M Kanik, P C Gallage, A Khanov, M Hull, S P Pitre, P K Agarwal, M J Franklin, M A Patrauchan","doi":"10.1128/jb.00189-25","DOIUrl":"10.1128/jb.00189-25","url":null,"abstract":"<p><p>The opportunistic human pathogen <i>Pseudomonas aeruginosa</i> (<i>Pa</i>), a leading cause of severe infections, becomes increasingly resistant to antibiotics, including the last resort antibiotic, polymyxin B (PMB). Previous studies have shown that calcium (Ca<sup>2+</sup>) at the levels encountered during infections increases <i>Pa</i> resistance to PMB. However, the mechanisms of this Ca<sup>2+</sup> regulation are not known. Here, we identified three novel genes (<i>PA2803, PA3237</i>, and <i>PA5317</i>) that contribute to the Ca<sup>2+</sup>-dependent PMB resistance in <i>Pa. PA2803</i>, the focus of this work, encodes a putative phosphonatase and is a founding member of the PA2803 subfamily from the Haloacid Dehalogenase Superfamily. Since the transcription of this gene is regulated by both Ca<sup>2+</sup> and inorganic phosphate (P<sub>i</sub>), we named it \"P<sub>i</sub> and Ca<sup>2+</sup>-regulated protein, PcrP.\" Congruent with sequence-based predictions, we showed that PcrP lacks catalytic activity and instead binds protein partners, revealing a novel non-catalytic function. By using pull-down assays and bacterial two-hybrid systems, we identified and validated two protein partners of PcrP: Acp3 and PA3518. We showed that PcrP is involved in oxidative stress responses in <i>Pa</i>, which are likely mediated by its interactions with Acp3 and may support its role in PMB resistance. In addition, PcrP imparts a Ca<sup>2+</sup>-dependent growth advantage during P<sub>i</sub> starvation and plays a role in polyphosphate accumulation in a Ca<sup>2+</sup>-dependent manner. Overall, this study identified a novel protein-binding function for the PA2803 subfamily representative, which mediates <i>Pa</i> responses to elevated Ca<sup>2+</sup> and P<sub>i</sub> starvation and enhances PMB resistance.IMPORTANCE<i>Pseudomonas aeruginosa</i> (<i>Pa</i>) is a critical human pathogen that presents significant clinical challenges, underscoring the urgent need for understanding its resistance mechanisms. Previous studies have shown that calcium (Ca<sup>2+</sup>) at the levels detected during infections increases <i>Pa</i> resistance to the last resort antibiotic polymyxin B (PMB). For the first time, we identified three novel genes, whose products are required for the Ca<sup>2+</sup>-dependent PMB resistance in <i>Pa</i>. One of them, <i>PA2803</i>, regulated by Ca<sup>2+</sup> and phosphate, was named phosphate and Ca<sup>2+</sup>-regulated protein, PcrP. This study discovered a novel protein-binding function of PcrP and identified two protein partners. Given the high level of sequence conservation within the PA2803 subfamily, the protein-binding function may be shared by other members of the PA2803 subfamily.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0018925"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145308060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dual L-glucose/L-galactose catabolic pathway in Luteolibacter species strain LG18. Luteolibacter菌株LG18的双l -葡萄糖/ l -半乳糖分解代谢途径。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-16 DOI: 10.1128/jb.00115-24
Masashi Yachida, Yuki Shiratori, Shinya Iwabuchi, Tetsu Shimizu, Akira Nakamura

The L-glucose catabolic pathway of Luteolibacter sp. strain LG18 was determined. L-glucose dehydrogenase (LguA) and L-gluconate dehydrogenase (LguD), purified from the cell extract of strain LG18, convert L-glucose to 5-keto-L-gluconate via L-gluconate, and these recombinant enzymes also utilize L-galactose and L-galactonate, respectively. Genes encoding these enzymes are both located in the gene cluster, lguABCDEF, which includes other genes possibly involved in L-galactose catabolism. After oxidation of L-gluconate, 5-keto-L-gluconate is converted to D-tagaturonate by LguG, a C-4 epimerase, determined with the recombinant enzyme. The subsequent LG18 reactions are likely to proceed in the same way as Escherichia coli L-galactonate catabolism, wherein LguC reduces C-5 to produce D-altronate that is dehydrated by LguB to produce 2-keto-3-deoxy-D-gluconate (KDG). LguH then phosphorylates KDG C-6 to produce KDG-6-phosphate, and an aldolase reaction driven by LguE produces D-glyceraldehyde-3-phosphate and pyruvate. Both lguG and lguH lie outside the lguABCDEF cluster, and LguH had a novel preference in utilizing pyrophosphate as a phosphate donor rather than ATP. Gene disruption studies indicated that, with the exception of lguG, which is involved only in L-glucose catabolism, the identified genes are indeed responsible for both L-glucose and L-galactose catabolism, indicative of a dual L-glucose/L-galactose catabolic pathway governed by a single set of genes. All the orthologs in this pathway are conserved in several Luteolibacter species, which also utilize L-glucose, suggesting that the same catabolic pathway is present in this genus.IMPORTANCEL-glucose is presumably not present in natural environments, and to date, L-glucose catabolism has only been reported for a Paracoccus laeviglucosivorans strain 43P. The Luteolibacter strain LG18 differs taxonomically from 43P at the phylum level, and its L-glucose catabolic pathway differs from that of 43P at later steps from the C-4 epimerization reaction. In addition, most genes that drive LG18 L-glucose catabolism are also responsible for L-galactose catabolism, indicating the presence of a dual L-glucose/L-galactose catabolic pathway. This report contributes to a better understanding of homochirality in sugar catabolism, especially catabolism of glucose.

测定了木樨素脂杆菌菌株LG18的l -葡萄糖分解代谢途径。l -葡萄糖脱氢酶(LguA)和l -葡萄糖酸脱氢酶(LguD)是从菌株LG18的细胞提取物中纯化出来的,它们通过l -葡萄糖酸盐将l -葡萄糖转化为5-酮- l -葡萄糖酸盐,这些重组酶也分别利用l -半乳糖和l -半胱甘酸盐。编码这些酶的基因都位于lguABCDEF基因簇中,该基因簇还包括其他可能参与l -半乳糖分解代谢的基因。l -葡萄糖酸盐氧化后,5-酮- l -葡萄糖酸盐通过重组酶测定的C-4外甲酰基酶LguG转化为d -他他饱和酸盐。随后的LG18反应可能以与大肠杆菌l -半乳糖酸分解代谢相同的方式进行,其中LguC减少C-5产生d -丙二酸盐,该丙二酸盐被LguB脱水产生2-酮-3-脱氧d -葡萄糖酸盐(KDG)。然后LguH使KDG C-6磷酸化生成KDG-6-磷酸,LguE驱动醛缩酶反应生成d -甘油醛-3-磷酸和丙酮酸。lguG和lguH都位于lguABCDEF簇外,lguH更倾向于利用焦磷酸作为磷酸供体而不是ATP。基因破坏研究表明,除了lguG只参与l -葡萄糖分解代谢外,所鉴定的基因确实同时参与l -葡萄糖和l -半乳糖的分解代谢,表明l -葡萄糖/ l -半乳糖的双重分解代谢途径由一组基因控制。该途径的所有同源物在几个同样利用l -葡萄糖的木犀草杆菌物种中都是保守的,这表明该属中存在相同的分解代谢途径。重要的是,自然环境中可能不存在葡萄糖,迄今为止,l -葡萄糖分解代谢只报道了一种乳酸副球菌菌株43P。Luteolibacter菌株LG18在门水平上与43P在分类上有所不同,其l -葡萄糖分解代谢途径在C-4外显异构反应后期也与43P不同。此外,大多数驱动LG18 l -葡萄糖分解代谢的基因也负责l -半乳糖分解代谢,这表明存在双l -葡萄糖/ l -半乳糖分解代谢途径。该报告有助于更好地理解糖分解代谢的同手性,特别是葡萄糖的分解代谢。
{"title":"A dual L-glucose/L-galactose catabolic pathway in <i>Luteolibacter</i> species strain LG18.","authors":"Masashi Yachida, Yuki Shiratori, Shinya Iwabuchi, Tetsu Shimizu, Akira Nakamura","doi":"10.1128/jb.00115-24","DOIUrl":"10.1128/jb.00115-24","url":null,"abstract":"<p><p>The L-glucose catabolic pathway of <i>Luteolibacter</i> sp. strain LG18 was determined. L-glucose dehydrogenase (LguA) and L-gluconate dehydrogenase (LguD), purified from the cell extract of strain LG18, convert L-glucose to 5-keto-L-gluconate via L-gluconate, and these recombinant enzymes also utilize L-galactose and L-galactonate, respectively. Genes encoding these enzymes are both located in the gene cluster, <i>lguABCDEF,</i> which includes other genes possibly involved in L-galactose catabolism. After oxidation of L-gluconate, 5-keto-L-gluconate is converted to D-tagaturonate by LguG, a C-4 epimerase, determined with the recombinant enzyme. The subsequent LG18 reactions are likely to proceed in the same way as <i>Escherichia coli</i> L-galactonate catabolism, wherein LguC reduces C-5 to produce D-altronate that is dehydrated by LguB to produce 2-keto-3-deoxy-D-gluconate (KDG). LguH then phosphorylates KDG C-6 to produce KDG-6-phosphate, and an aldolase reaction driven by LguE produces D-glyceraldehyde-3-phosphate and pyruvate. Both <i>lguG</i> and <i>lguH</i> lie outside the <i>lguABCDEF</i> cluster, and LguH had a novel preference in utilizing pyrophosphate as a phosphate donor rather than ATP. Gene disruption studies indicated that, with the exception of <i>lguG</i>, which is involved only in L-glucose catabolism, the identified genes are indeed responsible for both L-glucose and L-galactose catabolism, indicative of a dual L-glucose/L-galactose catabolic pathway governed by a single set of genes. All the orthologs in this pathway are conserved in several <i>Luteolibacter</i> species, which also utilize L-glucose, suggesting that the same catabolic pathway is present in this genus.IMPORTANCEL-glucose is presumably not present in natural environments, and to date, L-glucose catabolism has only been reported for a <i>Paracoccus laeviglucosivorans</i> strain 43P. The <i>Luteolibacter</i> strain LG18 differs taxonomically from 43P at the phylum level, and its L-glucose catabolic pathway differs from that of 43P at later steps from the C-4 epimerization reaction. In addition, most genes that drive LG18 L-glucose catabolism are also responsible for L-galactose catabolism, indicating the presence of a dual L-glucose/L-galactose catabolic pathway. This report contributes to a better understanding of homochirality in sugar catabolism, especially catabolism of glucose.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0011524"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12632266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145300828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of the Pseudomonas aeruginosa LbcA•CtpA proteolytic complex and its substrates. 铜绿假单胞菌LbcA•CtpA蛋白水解复合物及其底物的控制。
IF 3 3区 生物学 Q3 MICROBIOLOGY Pub Date : 2025-11-20 Epub Date: 2025-10-08 DOI: 10.1128/jb.00169-25
Kévin J Rome, Andrew J Darwin

Pseudomonas aeruginosa is a highly adaptable bacterial pathogen with a resilient cell envelope. This envelope must be elongated as cells grow, which requires coordinated biosynthesis of the inner and outer membranes and the peptidoglycan cell wall. Cell wall endopeptidases are essential to expand the peptidoglycan sacculus, and the LbcA•CtpA proteolytic complex controls the activity of multiple endopeptidases by degrading them. Here, we report an investigation into control of the LbcA•CtpA proteolytic complex and its substrates. LbcA and CtpA levels were unaffected by growth rate, which corresponded with constitutive expression of their genes. For CtpA, this was explained by its arrangement in a complex operon containing an internal ctpA promoter. Despite constitutive LbcA and CtpA production, the LbcA•CtpA substrate levels were higher when cells were growing rapidly. In most cases, this correlated with modestly higher substrate gene expression in the exponential phase. However, most of the control came from reduced CtpA activity when cells were growing rapidly. Our data suggest that CtpA activity might be affected by phospholipid transport and related processes in the cell envelope. A similar phenomenon was reported to affect the Escherichia coli NlpI•Prc complex, even though there are major sequence and structural differences between the NlpI•Prc and LbcA•CtpA complexes. This makes it likely that growth-rate-dependent autolysin control by these proteolytic complexes is widely conserved, even if they are composed of non-orthologous proteins in some cases.IMPORTANCECarboxyl-terminal processing proteases occur in all domains of life. Some are associated with bacterial virulence, including P. aeruginosa CtpA, which works with the outer membrane lipoprotein LbcA to degrade cell wall endopeptidases. We report that the LbcA•CtpA complex activity is coordinated with growth rate, ensuring appropriate levels of its substrates for cell wall expansion. The mechanism appears to be connected to phospholipid transport, much like a phenomenon reported for Escherichia coli NlpI•Prc complex. However, the NlpI•Prc and LbcA•CtpA complexes are not orthologs. Therefore, growth-rate-dependent control by analogous but dissimilar complexes might be a widely conserved mechanism, and one that could perhaps be targeted for therapeutic intervention.

铜绿假单胞菌是一种具有弹性细胞包膜的高适应性细菌病原体。当细胞生长时,这个包膜必须拉长,这需要内膜和外膜以及肽聚糖细胞壁的协调生物合成。细胞壁内肽酶是扩大肽聚糖小囊所必需的,而LbcA•CtpA蛋白水解复合物通过降解多种内肽酶来控制它们的活性。在这里,我们报告了对LbcA•CtpA蛋白水解复合物及其底物控制的研究。LbcA和CtpA水平不受生长速度的影响,这与其基因的组成表达相对应。对于CtpA,这可以通过其在一个包含内部CtpA启动子的复杂操纵子中的排列来解释。尽管组成型LbcA和CtpA产生,当细胞快速生长时,LbcA•CtpA底物水平较高。在大多数情况下,这与指数阶段适度较高的底物基因表达相关。然而,当细胞快速生长时,大部分控制来自CtpA活性的降低。我们的数据表明,CtpA活性可能受到磷脂转运和细胞包膜中的相关过程的影响。据报道,类似的现象也发生在大肠杆菌NlpI•Prc复合体上,尽管NlpI•Prc复合体和LbcA•CtpA复合体之间存在主要的序列和结构差异。这使得由这些蛋白水解复合物控制的生长速率依赖的自溶素很可能是广泛保守的,即使它们在某些情况下由非同源蛋白组成。羧基末端加工蛋白酶存在于生命的所有领域。有些与细菌毒力有关,包括铜绿假单胞菌CtpA,它与外膜脂蛋白LbcA一起降解细胞壁内多肽酶。我们报道LbcA•CtpA复合物活性与生长速率协调,确保其底物的适当水平用于细胞壁扩增。该机制似乎与磷脂转运有关,很像大肠杆菌NlpI•Prc复合体的现象。然而,NlpI•Prc和LbcA•CtpA复合物不是同源物。因此,通过类似但不同的复合物来控制生长速率可能是一种广泛保守的机制,并且可能成为治疗干预的目标。
{"title":"Control of the <i>Pseudomonas aeruginosa</i> LbcA•CtpA proteolytic complex and its substrates.","authors":"Kévin J Rome, Andrew J Darwin","doi":"10.1128/jb.00169-25","DOIUrl":"10.1128/jb.00169-25","url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> is a highly adaptable bacterial pathogen with a resilient cell envelope. This envelope must be elongated as cells grow, which requires coordinated biosynthesis of the inner and outer membranes and the peptidoglycan cell wall. Cell wall endopeptidases are essential to expand the peptidoglycan sacculus, and the LbcA•CtpA proteolytic complex controls the activity of multiple endopeptidases by degrading them. Here, we report an investigation into control of the LbcA•CtpA proteolytic complex and its substrates. LbcA and CtpA levels were unaffected by growth rate, which corresponded with constitutive expression of their genes. For CtpA, this was explained by its arrangement in a complex operon containing an internal <i>ctpA</i> promoter. Despite constitutive LbcA and CtpA production, the LbcA•CtpA substrate levels were higher when cells were growing rapidly. In most cases, this correlated with modestly higher substrate gene expression in the exponential phase. However, most of the control came from reduced CtpA activity when cells were growing rapidly. Our data suggest that CtpA activity might be affected by phospholipid transport and related processes in the cell envelope. A similar phenomenon was reported to affect the <i>Escherichia coli</i> NlpI•Prc complex, even though there are major sequence and structural differences between the NlpI•Prc and LbcA•CtpA complexes. This makes it likely that growth-rate-dependent autolysin control by these proteolytic complexes is widely conserved, even if they are composed of non-orthologous proteins in some cases.IMPORTANCECarboxyl-terminal processing proteases occur in all domains of life. Some are associated with bacterial virulence, including <i>P. aeruginosa</i> CtpA, which works with the outer membrane lipoprotein LbcA to degrade cell wall endopeptidases. We report that the LbcA•CtpA complex activity is coordinated with growth rate, ensuring appropriate levels of its substrates for cell wall expansion. The mechanism appears to be connected to phospholipid transport, much like a phenomenon reported for <i>Escherichia coli</i> NlpI•Prc complex. However, the NlpI•Prc and LbcA•CtpA complexes are not orthologs. Therefore, growth-rate-dependent control by analogous but dissimilar complexes might be a widely conserved mechanism, and one that could perhaps be targeted for therapeutic intervention.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0016925"},"PeriodicalIF":3.0,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12569750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Bacteriology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1