Pub Date : 2024-12-02Epub Date: 2024-11-11DOI: 10.1083/jcb.202410147
Conceição Pereira, David C Gershlick
Two recent papers by Szentgyörgyi et al. (http://doi.org/10.1083/jcb.202401167) and Pankiv et al. (http://doi.org/10.1083/jcb.202408173) provide new insights into the roles of BEACH domain proteins in membrane trafficking and cellular homeostasis. They explore which membranes they are recruited to, how they are recruited, and the potential coat-like functions of these proteins.
{"title":"BEACH domain proteins in membrane trafficking and disease.","authors":"Conceição Pereira, David C Gershlick","doi":"10.1083/jcb.202410147","DOIUrl":"10.1083/jcb.202410147","url":null,"abstract":"<p><p>Two recent papers by Szentgyörgyi et al. (http://doi.org/10.1083/jcb.202401167) and Pankiv et al. (http://doi.org/10.1083/jcb.202408173) provide new insights into the roles of BEACH domain proteins in membrane trafficking and cellular homeostasis. They explore which membranes they are recruited to, how they are recruited, and the potential coat-like functions of these proteins.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-09-20DOI: 10.1083/jcb.202401082
Rania Garde, Annisa Dea, Madeline F Herwig, Asif Ali, David Pincus
Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted the induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing the expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.
{"title":"Feedback control of the heat shock response by spatiotemporal regulation of Hsp70.","authors":"Rania Garde, Annisa Dea, Madeline F Herwig, Asif Ali, David Pincus","doi":"10.1083/jcb.202401082","DOIUrl":"10.1083/jcb.202401082","url":null,"abstract":"<p><p>Cells maintain homeostasis via dynamic regulation of stress response pathways. Stress pathways transiently induce response regulons via negative feedback loops, but the extent to which individual genes provide feedback has not been comprehensively measured for any pathway. Here, we disrupted the induction of each gene in the Saccharomyces cerevisiae heat shock response (HSR) and quantified cell growth and HSR dynamics following heat shock. The screen revealed a core feedback loop governing the expression of the chaperone Hsp70 reinforced by an auxiliary feedback loop controlling Hsp70 subcellular localization. Mathematical modeling and live imaging demonstrated that multiple HSR targets converge to promote Hsp70 nuclear localization via its release from cytosolic condensates. Following ethanol stress, a distinct set of factors similarly converged on Hsp70, suggesting that nonredundant subsets of the HSR regulon confer feedback under different conditions. Flexible spatiotemporal feedback loops may broadly organize stress response regulons and expand their adaptive capacity.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415305/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-10-01DOI: 10.1083/jcb.202402083
Yuanjiao Du, Xinyu Fan, Chunyu Song, Weiping Chang, Juan Xiong, Lin Deng, Wei-Ke Ji
VPS13B/COH1 is the only known causative factor for Cohen syndrome, an early-onset autosomal recessive developmental disorder with intellectual inability, developmental delay, joint hypermobility, myopia, and facial dysmorphism as common features, but the molecular basis of VPS13B/COH1 in pathogenesis remains largely unclear. Here, we identify Sec23 interacting protein (Sec23IP) at the ER exit site (ERES) as a VPS13B adaptor that recruits VPS13B to ERES-Golgi interfaces. VPS13B interacts directly with Sec23IP via the VPS13 adaptor binding domain (VAB), and the interaction promotes the association between ERES and the Golgi. Disease-associated missense mutations of VPS13B-VAB impair the interaction with Sec23IP. Knockout of VPS13B or Sec23IP blocks the formation of tubular ERGIC, an unconventional cargo carrier that expedites ER-to-Golgi transport. In addition, depletion of VPS13B or Sec23IP delays ER export of procollagen, suggesting a link between procollagen secretion and joint laxity in patients with Cohen disease. Together, our study reveals a crucial role of VPS13B-Sec23IP interaction at the ERES-Golgi interface in the pathogenesis of Cohen syndrome.
{"title":"Sec23IP recruits VPS13B/COH1 to ER exit site-Golgi interface for tubular ERGIC formation.","authors":"Yuanjiao Du, Xinyu Fan, Chunyu Song, Weiping Chang, Juan Xiong, Lin Deng, Wei-Ke Ji","doi":"10.1083/jcb.202402083","DOIUrl":"10.1083/jcb.202402083","url":null,"abstract":"<p><p>VPS13B/COH1 is the only known causative factor for Cohen syndrome, an early-onset autosomal recessive developmental disorder with intellectual inability, developmental delay, joint hypermobility, myopia, and facial dysmorphism as common features, but the molecular basis of VPS13B/COH1 in pathogenesis remains largely unclear. Here, we identify Sec23 interacting protein (Sec23IP) at the ER exit site (ERES) as a VPS13B adaptor that recruits VPS13B to ERES-Golgi interfaces. VPS13B interacts directly with Sec23IP via the VPS13 adaptor binding domain (VAB), and the interaction promotes the association between ERES and the Golgi. Disease-associated missense mutations of VPS13B-VAB impair the interaction with Sec23IP. Knockout of VPS13B or Sec23IP blocks the formation of tubular ERGIC, an unconventional cargo carrier that expedites ER-to-Golgi transport. In addition, depletion of VPS13B or Sec23IP delays ER export of procollagen, suggesting a link between procollagen secretion and joint laxity in patients with Cohen disease. Together, our study reveals a crucial role of VPS13B-Sec23IP interaction at the ERES-Golgi interface in the pathogenesis of Cohen syndrome.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-11-08DOI: 10.1083/jcb.202408173
Serhiy Pankiv, Anette Kathinka Dahl, Aleksander Aas, Rosa Linn Andersen, Andreas Brech, Petter Holland, Sakshi Singh, Christian Bindesbøll, Anne Simonsen
We identify BEACH domain-containing proteins (BDCPs) as novel membrane coat proteins involved in the sorting of transmembrane proteins (TMPs) on the trans-Golgi network and tubular sorting endosomes. The seven typical mammalian BDCPs share a predicted alpha-solenoid-beta propeller structure, suggesting they have a protocoatomer origin and function. We map the subcellular localization of seven BDCPs based on their dynamic colocalization with RAB and ARF small GTPases and identify five typical BDCPs on subdomains of dynamic tubular-vesicular compartments on the intersection of endocytic recycling and post-Golgi secretory pathways. We demonstrate that BDCPs interact directly with the cytosolic tails of selected TMPs and identify a subset of TMPs, whose trafficking to the plasma membrane is affected in cells lacking BDCP. We propose that the competitive binding of BDCPs and clathrin coat adaptors to the cytosolic tails of TMPs, followed by their clustering to distinct subdomains of secretory/recycling tubules function as a mechanism for sorting of TMPs in pleomorphic tubular-vesicular compartments that lack a clathrin coat.
{"title":"BEACH domain proteins function as cargo-sorting adaptors in secretory and endocytic pathways.","authors":"Serhiy Pankiv, Anette Kathinka Dahl, Aleksander Aas, Rosa Linn Andersen, Andreas Brech, Petter Holland, Sakshi Singh, Christian Bindesbøll, Anne Simonsen","doi":"10.1083/jcb.202408173","DOIUrl":"10.1083/jcb.202408173","url":null,"abstract":"<p><p>We identify BEACH domain-containing proteins (BDCPs) as novel membrane coat proteins involved in the sorting of transmembrane proteins (TMPs) on the trans-Golgi network and tubular sorting endosomes. The seven typical mammalian BDCPs share a predicted alpha-solenoid-beta propeller structure, suggesting they have a protocoatomer origin and function. We map the subcellular localization of seven BDCPs based on their dynamic colocalization with RAB and ARF small GTPases and identify five typical BDCPs on subdomains of dynamic tubular-vesicular compartments on the intersection of endocytic recycling and post-Golgi secretory pathways. We demonstrate that BDCPs interact directly with the cytosolic tails of selected TMPs and identify a subset of TMPs, whose trafficking to the plasma membrane is affected in cells lacking BDCP. We propose that the competitive binding of BDCPs and clathrin coat adaptors to the cytosolic tails of TMPs, followed by their clustering to distinct subdomains of secretory/recycling tubules function as a mechanism for sorting of TMPs in pleomorphic tubular-vesicular compartments that lack a clathrin coat.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-11-20DOI: 10.1083/jcb.202211035
Yeonji Chung, Chewon Yim, Gilberto P Pereira, Sungjoon Son, Lisbeth R Kjølbye, Lauren E Mazurkiewicz, Amy M Weeks, Friedrich Förster, Gunnar von Heijne, Paulo C T Souza, Hyun Kim
Secretory proteins are critically dependent on the correct processing of their signal sequence by the signal peptidase complex (SPC). This step, which is essential for the proper folding and localization of proteins in eukaryotic cells, is still not fully understood. In eukaryotes, the SPC comprises four evolutionarily conserved membrane subunits (Spc1-3 and Sec11). Here, we investigated the role of Spc2, examining SPC cleavage efficiency on various models and natural signal sequences in yeast cells depleted of or with mutations in Spc2. Our data show that discrimination between substrates and identification of the cleavage site by SPC is compromised when Spc2 is absent or mutated. Molecular dynamics simulation of the yeast SPC AlphaFold2-Multimer model indicates that membrane thinning at the center of SPC is reduced without Spc2, suggesting a molecular explanation for the altered substrate recognition properties of SPC lacking Spc2. These results provide new insights into the molecular mechanisms by which SPC governs protein biogenesis.
{"title":"Spc2 modulates substrate- and cleavage site-selection in the yeast signal peptidase complex.","authors":"Yeonji Chung, Chewon Yim, Gilberto P Pereira, Sungjoon Son, Lisbeth R Kjølbye, Lauren E Mazurkiewicz, Amy M Weeks, Friedrich Förster, Gunnar von Heijne, Paulo C T Souza, Hyun Kim","doi":"10.1083/jcb.202211035","DOIUrl":"https://doi.org/10.1083/jcb.202211035","url":null,"abstract":"<p><p>Secretory proteins are critically dependent on the correct processing of their signal sequence by the signal peptidase complex (SPC). This step, which is essential for the proper folding and localization of proteins in eukaryotic cells, is still not fully understood. In eukaryotes, the SPC comprises four evolutionarily conserved membrane subunits (Spc1-3 and Sec11). Here, we investigated the role of Spc2, examining SPC cleavage efficiency on various models and natural signal sequences in yeast cells depleted of or with mutations in Spc2. Our data show that discrimination between substrates and identification of the cleavage site by SPC is compromised when Spc2 is absent or mutated. Molecular dynamics simulation of the yeast SPC AlphaFold2-Multimer model indicates that membrane thinning at the center of SPC is reduced without Spc2, suggesting a molecular explanation for the altered substrate recognition properties of SPC lacking Spc2. These results provide new insights into the molecular mechanisms by which SPC governs protein biogenesis.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-11-15DOI: 10.1083/jcb.202410071
Susan A Gerbi, Virginia A Zakian, Elizabeth H Blackburn
Joseph Grafton Gall (1928-2024), a founder of modern cell biology, made foundational discoveries on eukaryotic chromosomes and RNA biogenesis. His major contributions include the development of in situ hybridization (later called FISH), demonstration of one DNA double helix/chromosome, isolation of the first eukaryote gene, localization of satellite DNA to centromeric heterochromatin, determination of the first telomeric DNA sequence, and elucidating the structure and functions of Cajal bodies. He was an expert microscopist, a scholar of science history, and an avid naturalist. These attributes, together with his ready embrace of new technologies, contributed to his remarkable success. He was also an early and strong supporter of women in science. His contributions to science and mentoring were recognized by numerous awards including the American Society for Cell Biology's E.B. Wilson Medal, the Society for Developmental Biology's Lifetime Achievement Award, the Albert Lasker Special Achievement Award in Medical Research, and the AAAS Mentor Award for Lifetime Achievement.
约瑟夫-格拉夫顿-加尔(Joseph Grafton Gall,1928-2024 年)是现代细胞生物学的奠基人,在真核染色体和 RNA 生物发生方面取得了奠基性发现。他的主要贡献包括发展了原位杂交(后来称为 FISH),证明了一个 DNA 双螺旋/染色体,分离了第一个真核基因,将卫星 DNA 定位到中心异染色质,确定了第一个端粒 DNA 序列,以及阐明了 Cajal 体的结构和功能。他是显微镜专家、科学史学者和狂热的博物学家。这些特质加上他对新技术的乐于接受,成就了他的非凡成就。他还是科学界女性的早期坚定支持者。他对科学和指导工作的贡献得到了众多奖项的认可,其中包括美国细胞生物学学会的 E.B. 威尔逊奖章、发育生物学学会的终身成就奖、阿尔伯特-拉斯克医学研究特别成就奖以及美国科学院终身成就导师奖。
{"title":"Joseph G. Gall (1928-2024): Cell biologist, naturalist, and mentor extraordinaire.","authors":"Susan A Gerbi, Virginia A Zakian, Elizabeth H Blackburn","doi":"10.1083/jcb.202410071","DOIUrl":"10.1083/jcb.202410071","url":null,"abstract":"<p><p>Joseph Grafton Gall (1928-2024), a founder of modern cell biology, made foundational discoveries on eukaryotic chromosomes and RNA biogenesis. His major contributions include the development of in situ hybridization (later called FISH), demonstration of one DNA double helix/chromosome, isolation of the first eukaryote gene, localization of satellite DNA to centromeric heterochromatin, determination of the first telomeric DNA sequence, and elucidating the structure and functions of Cajal bodies. He was an expert microscopist, a scholar of science history, and an avid naturalist. These attributes, together with his ready embrace of new technologies, contributed to his remarkable success. He was also an early and strong supporter of women in science. His contributions to science and mentoring were recognized by numerous awards including the American Society for Cell Biology's E.B. Wilson Medal, the Society for Developmental Biology's Lifetime Achievement Award, the Albert Lasker Special Achievement Award in Medical Research, and the AAAS Mentor Award for Lifetime Achievement.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-11-01DOI: 10.1083/jcb.202406064
Julie M J Verhoef, Cas Boshoven, Felix Evers, Laura J Akkerman, Barend C A Gijsbrechts, Marga van de Vegte-Bolmer, Geert-Jan van Gemert, Akhil B Vaidya, Taco W A Kooij
The malaria-causing parasite, P. falciparum, replicates through schizogony, a tightly orchestrated process where numerous daughter parasites are formed simultaneously. Proper division and segregation of one-per-cell organelles, like the mitochondrion and apicoplast, are essential, yet remain poorly understood. We developed a new reporter parasite line that allows visualization of the mitochondrion in blood and mosquito stages. Using high-resolution 3D imaging, we found that the mitochondrion orients in a cartwheel structure, prior to stepwise, non-geometric division during last-stage schizogony. Analysis of focused ion beam scanning electron microscopy data confirmed these mitochondrial division stages. Furthermore, these data allowed us to elucidate apicoplast division steps, highlighted its close association with the mitochondrion, and showed putative roles of the centriolar plaques in apicoplast segregation. These observations form the foundation for a new detailed mechanistic model of mitochondrial and apicoplast division and segregation during P. falciparum schizogony and pave the way for future studies into the proteins and protein complexes involved in organelle division and segregation.
{"title":"Detailing organelle division and segregation in Plasmodium falciparum.","authors":"Julie M J Verhoef, Cas Boshoven, Felix Evers, Laura J Akkerman, Barend C A Gijsbrechts, Marga van de Vegte-Bolmer, Geert-Jan van Gemert, Akhil B Vaidya, Taco W A Kooij","doi":"10.1083/jcb.202406064","DOIUrl":"10.1083/jcb.202406064","url":null,"abstract":"<p><p>The malaria-causing parasite, P. falciparum, replicates through schizogony, a tightly orchestrated process where numerous daughter parasites are formed simultaneously. Proper division and segregation of one-per-cell organelles, like the mitochondrion and apicoplast, are essential, yet remain poorly understood. We developed a new reporter parasite line that allows visualization of the mitochondrion in blood and mosquito stages. Using high-resolution 3D imaging, we found that the mitochondrion orients in a cartwheel structure, prior to stepwise, non-geometric division during last-stage schizogony. Analysis of focused ion beam scanning electron microscopy data confirmed these mitochondrial division stages. Furthermore, these data allowed us to elucidate apicoplast division steps, highlighted its close association with the mitochondrion, and showed putative roles of the centriolar plaques in apicoplast segregation. These observations form the foundation for a new detailed mechanistic model of mitochondrial and apicoplast division and segregation during P. falciparum schizogony and pave the way for future studies into the proteins and protein complexes involved in organelle division and segregation.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-09-19DOI: 10.1083/jcb.202403064
Ana Rita Dias Araújo, Abdoul Akim Bello, Joëlle Bigay, Céline Franckhauser, Romain Gautier, Julie Cazareth, Dávid Kovács, Frédéric Brau, Nicolas Fuggetta, Alenka Čopič, Bruno Antonny
Perilipins (PLINs), the most abundant proteins on lipid droplets (LDs), display similar domain organization including amphipathic helices (AH). However, the five human PLINs bind different LDs, suggesting different modes of interaction. We established a minimal system whereby artificial LDs covered with defined polar lipids were transiently deformed to promote surface tension. Binding of purified PLIN3 and PLIN4 AH was strongly facilitated by tension but was poorly sensitive to phospholipid composition and to the presence of diacylglycerol. Accordingly, LD coverage by PLIN3 increased as phospholipid coverage decreased. In contrast, PLIN1 bound readily to LDs fully covered by phospholipids; PLIN2 showed an intermediate behavior between PLIN1 and PLIN3. In human adipocytes, PLIN3/4 were found in a soluble pool and relocated to LDs upon stimulation of fast triglyceride synthesis, whereas PLIN1 and PLIN2 localized to pre-existing LDs, consistent with the large difference in LD avidity observed in vitro. We conclude that the PLIN repertoire is adapted to handling LDs with different surface properties.
{"title":"Surface tension-driven sorting of human perilipins on lipid droplets.","authors":"Ana Rita Dias Araújo, Abdoul Akim Bello, Joëlle Bigay, Céline Franckhauser, Romain Gautier, Julie Cazareth, Dávid Kovács, Frédéric Brau, Nicolas Fuggetta, Alenka Čopič, Bruno Antonny","doi":"10.1083/jcb.202403064","DOIUrl":"10.1083/jcb.202403064","url":null,"abstract":"<p><p>Perilipins (PLINs), the most abundant proteins on lipid droplets (LDs), display similar domain organization including amphipathic helices (AH). However, the five human PLINs bind different LDs, suggesting different modes of interaction. We established a minimal system whereby artificial LDs covered with defined polar lipids were transiently deformed to promote surface tension. Binding of purified PLIN3 and PLIN4 AH was strongly facilitated by tension but was poorly sensitive to phospholipid composition and to the presence of diacylglycerol. Accordingly, LD coverage by PLIN3 increased as phospholipid coverage decreased. In contrast, PLIN1 bound readily to LDs fully covered by phospholipids; PLIN2 showed an intermediate behavior between PLIN1 and PLIN3. In human adipocytes, PLIN3/4 were found in a soluble pool and relocated to LDs upon stimulation of fast triglyceride synthesis, whereas PLIN1 and PLIN2 localized to pre-existing LDs, consistent with the large difference in LD avidity observed in vitro. We conclude that the PLIN repertoire is adapted to handling LDs with different surface properties.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-10-18DOI: 10.1083/jcb.202309090
Zengqi Zhao, Qiang Chen, Xiaojun Xiang, Weiwei Dai, Wei Fang, Kun Cui, Baolin Li, Qiangde Liu, Yongtao Liu, Yanan Shen, Yueru Li, Wei Xu, Kangsen Mai, Qinghui Ai
Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1, which provokes systemic insulin resistance. Mechanistically, we show that PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid β oxidation to intensify Tip60-mediated Rheb acetylation, which triggers mTORC1 activation by promoting the interaction between Rheb and FKBPs. Subsequently, hyperactivation of mTORC1 enhances IRS1 serine phosphorylation and inhibits TFEB-mediated IRS1 transcription, inducing impairment of insulin signaling. Collectively, our results reveal a conserved molecular insight into the mechanism by which Tip60-mediated Rheb acetylation induces mTORC1 activation and insulin resistance under the PA condition, which may provide therapeutic avenues to intervene in the development of T2D.
{"title":"Tip60-mediated Rheb acetylation links palmitic acid with mTORC1 activation and insulin resistance.","authors":"Zengqi Zhao, Qiang Chen, Xiaojun Xiang, Weiwei Dai, Wei Fang, Kun Cui, Baolin Li, Qiangde Liu, Yongtao Liu, Yanan Shen, Yueru Li, Wei Xu, Kangsen Mai, Qinghui Ai","doi":"10.1083/jcb.202309090","DOIUrl":"10.1083/jcb.202309090","url":null,"abstract":"<p><p>Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1, which provokes systemic insulin resistance. Mechanistically, we show that PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid β oxidation to intensify Tip60-mediated Rheb acetylation, which triggers mTORC1 activation by promoting the interaction between Rheb and FKBPs. Subsequently, hyperactivation of mTORC1 enhances IRS1 serine phosphorylation and inhibits TFEB-mediated IRS1 transcription, inducing impairment of insulin signaling. Collectively, our results reveal a conserved molecular insight into the mechanism by which Tip60-mediated Rheb acetylation induces mTORC1 activation and insulin resistance under the PA condition, which may provide therapeutic avenues to intervene in the development of T2D.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02Epub Date: 2024-10-01DOI: 10.1083/jcb.202404070
Jennifer B Silverman, Evan E Krystofiak, Leah R Caplan, Ken S Lau, Matthew J Tyska
Tuft cells are a rare epithelial cell type that play important roles in sensing and responding to luminal antigens. A defining morphological feature of this lineage is the actin-rich apical "tuft," which contains large fingerlike protrusions. However, details of the cytoskeletal ultrastructure underpinning the tuft, the molecules involved in building this structure, or how it supports tuft cell biology remain unclear. In the context of the small intestine, we found that tuft cell protrusions are supported by long-core bundles that consist of F-actin crosslinked in a parallel and polarized configuration; they also contain a tuft cell-specific complement of actin-binding proteins that exhibit regionalized localization along the bundle axis. Remarkably, in the sub-apical cytoplasm, the array of core actin bundles interdigitates and co-aligns with a highly ordered network of microtubules. The resulting cytoskeletal superstructure is well positioned to support subcellular transport and, in turn, the dynamic sensing functions of the tuft cell that are critical for intestinal homeostasis.
{"title":"Organization of a cytoskeletal superstructure in the apical domain of intestinal tuft cells.","authors":"Jennifer B Silverman, Evan E Krystofiak, Leah R Caplan, Ken S Lau, Matthew J Tyska","doi":"10.1083/jcb.202404070","DOIUrl":"10.1083/jcb.202404070","url":null,"abstract":"<p><p>Tuft cells are a rare epithelial cell type that play important roles in sensing and responding to luminal antigens. A defining morphological feature of this lineage is the actin-rich apical \"tuft,\" which contains large fingerlike protrusions. However, details of the cytoskeletal ultrastructure underpinning the tuft, the molecules involved in building this structure, or how it supports tuft cell biology remain unclear. In the context of the small intestine, we found that tuft cell protrusions are supported by long-core bundles that consist of F-actin crosslinked in a parallel and polarized configuration; they also contain a tuft cell-specific complement of actin-binding proteins that exhibit regionalized localization along the bundle axis. Remarkably, in the sub-apical cytoplasm, the array of core actin bundles interdigitates and co-aligns with a highly ordered network of microtubules. The resulting cytoskeletal superstructure is well positioned to support subcellular transport and, in turn, the dynamic sensing functions of the tuft cell that are critical for intestinal homeostasis.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"223 12","pages":""},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}