Feng Wan, Lan Yu, Xiaowei Qu, Yanqing Xia, Ke Feng, Lei Zhang, Na Zhang, Guihua Zhao, Cuilian Zhang, Haibin Guo
Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive disease manifested with recurrent infections of respiratory tract and infertility. DNAAF3 is identified as a novel gene associated with PCD and different mutations in DNAAF3 results in different clinical features of PCD patients, such as situs inversus, sinusitis and bronchiectasis. However, the sperm phenotypic characteristics of PCD males are generally poorly investigated. Our reproductive medicine centre received a case of PCD patient with infertility, who presented with sinusitis, recurrent infections of the lower airway and severe asthenozoospermia; However, no situs inversus was found in the patient. A novel homozygous mutation in DNAAF3(c.551T>A; p.V184E) was identified in the PCD patient by whole-exome sequencing. Subsequent Sanger sequencing further confirmed that the DNAAF3 had a homozygous missense variant in the fifth exon. Transmission electron microscopy and immunostaining analysis of the sperms from the patient showed a complete absence of outer dynein arms and partial absence of inner dynein arms, which resulted in the reduction in sperm motility. However, this infertility was overcome by intracytoplasmic sperm injections, as his wife achieved successful pregnancy. These findings showed that the PCD-associated pathogenic mutation within DNAAF3 also causes severe asthenozoospermia and male infertility ultimately due to sperm flagella axoneme defect in humans. Our study not only contributes to understand the sperm phenotypic characteristics of patients with DNAAF3 mutations but also expands the spectrum of DNAAF3 mutations and may contribute to the genetic diagnosis and therapy for infertile patient with PCD.
{"title":"A novel mutation in PCD-associated gene DNAAF3 causes male infertility due to asthenozoospermia","authors":"Feng Wan, Lan Yu, Xiaowei Qu, Yanqing Xia, Ke Feng, Lei Zhang, Na Zhang, Guihua Zhao, Cuilian Zhang, Haibin Guo","doi":"10.1111/jcmm.17881","DOIUrl":"10.1111/jcmm.17881","url":null,"abstract":"<p>Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive disease manifested with recurrent infections of respiratory tract and infertility. <i>DNAAF3</i> is identified as a novel gene associated with PCD and different mutations in <i>DNAAF3</i> results in different clinical features of PCD patients, such as situs inversus, sinusitis and bronchiectasis. However, the sperm phenotypic characteristics of PCD males are generally poorly investigated. Our reproductive medicine centre received a case of PCD patient with infertility, who presented with sinusitis, recurrent infections of the lower airway and severe asthenozoospermia; However, no situs inversus was found in the patient. A novel homozygous mutation in <i>DNAAF3</i>(c.551T>A; p.V184E) was identified in the PCD patient by whole-exome sequencing. Subsequent Sanger sequencing further confirmed that the <i>DNAAF3</i> had a homozygous missense variant in the fifth exon. Transmission electron microscopy and immunostaining analysis of the sperms from the patient showed a complete absence of outer dynein arms and partial absence of inner dynein arms, which resulted in the reduction in sperm motility. However, this infertility was overcome by intracytoplasmic sperm injections, as his wife achieved successful pregnancy. These findings showed that the PCD-associated pathogenic mutation within <i>DNAAF3</i> also causes severe asthenozoospermia and male infertility ultimately due to sperm flagella axoneme defect in humans. Our study not only contributes to understand the sperm phenotypic characteristics of patients with <i>DNAAF3</i> mutations but also expands the spectrum of <i>DNAAF3</i> mutations and may contribute to the genetic diagnosis and therapy for infertile patient with PCD.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 20","pages":"3107-3116"},"PeriodicalIF":5.3,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anti-cancer properties of (-)-epigallocatechin-3-gallate (EGCG) are mediated via apoptosis induction, as well as inhibition of cell proliferation and histone deacetylase. Accumulation of stabilized cellular FLICE-inhibitory protein (c-FLIP)/Ku70 complex in the cytoplasm inhibits apoptosis through interruption of extrinsic apoptosis pathway. In this study, we evaluated the anti-cancer role of EGCG in gastric cancer (GC) cells through dissociation of c-FLIP/Ku70 complex. MKN-45 cells were treated with EGCG or its antagonist MG149 for 24 h. Apoptosis was evaluated by flow cytometry and quantitative RT-PCR. Protein expression of c-FLIP and Ku70 was analysed using western blot and immunofluorescence. Dissociation of c-FLIP/Ku70 complex as well as Ku70 translocation were studied by sub-cellular fractionation and co-immunoprecipitation. EGCG induced apoptosis in MKN-45 cells with substantial up-regulation of P53 and P21, down-regulation of c-Myc and Cyclin D1 as well as cell cycle arrest in S and G2/M check points. Moreover, EGCG treatment suppressed the expression of c-FLIP and Ku70, decreased their interaction while increasing the Ku70 nuclear content. By dissociating the c-FLIP/Ku70 complex, EGCG could be an alternative component to the conventional HDAC inhibitors in order to induce apoptosis in GC cells. Thus, its combination with other cancer therapy protocols could result in a better therapeutic outcome.
{"title":"(-)-Epigallocatechin-3-gallate induced apoptosis by dissociation of c-FLIP/Ku70 complex in gastric cancer cells","authors":"Mahtab Shahriari Felordi, Mehdi Alikhani, Zahra Farzaneh, Mahmoud Alipour Choshali, Marzieh Ebrahimi, Hamidreza Aboulkheyr Es, Abbas Piryaei, Mustapha Najimi, Massoud Vosough","doi":"10.1111/jcmm.17873","DOIUrl":"10.1111/jcmm.17873","url":null,"abstract":"<p>Anti-cancer properties of (-)-epigallocatechin-3-gallate (EGCG) are mediated via apoptosis induction, as well as inhibition of cell proliferation and histone deacetylase. Accumulation of stabilized cellular FLICE-inhibitory protein (c-FLIP)/Ku70 complex in the cytoplasm inhibits apoptosis through interruption of extrinsic apoptosis pathway. In this study, we evaluated the anti-cancer role of EGCG in gastric cancer (GC) cells through dissociation of c-FLIP/Ku70 complex. MKN-45 cells were treated with EGCG or its antagonist MG149 for 24 h. Apoptosis was evaluated by flow cytometry and quantitative RT-PCR. Protein expression of c-FLIP and Ku70 was analysed using western blot and immunofluorescence. Dissociation of c-FLIP/Ku70 complex as well as Ku70 translocation were studied by sub-cellular fractionation and co-immunoprecipitation. EGCG induced apoptosis in MKN-45 cells with substantial up-regulation of <i>P53</i> and <i>P21</i>, down-regulation of <i>c-Myc</i> and <i>Cyclin D1</i> as well as cell cycle arrest in S and G2/M check points. Moreover, EGCG treatment suppressed the expression of c-FLIP and Ku70, decreased their interaction while increasing the Ku70 nuclear content. By dissociating the c-FLIP/Ku70 complex, EGCG could be an alternative component to the conventional HDAC inhibitors in order to induce apoptosis in GC cells. Thus, its combination with other cancer therapy protocols could result in a better therapeutic outcome.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2572-2582"},"PeriodicalIF":5.3,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mojdeh Khosravi, Hanieh Mohammad Rahimi, Abdoreza Nazari, Kaveh Baghaei, Hamid Asadzadeh Aghdaei, Shabnam Shahrokh, Meysam Sharifdini, Ana Claudia Torrecilhas, Fatemeh Mehryab, Hamed Mirjalali, Faezeh Shekari, Mohammad Reza Zali
Hydatidosis is a disease caused by the larval stage of Echinococcus granulosus, which involves several organs of intermediate hosts. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles. However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. In the current study, EVs were isolated using differential centrifugation from sheep HCF and characterized by western blot, electron microscope and size distribution analysis. The uptake of EVs by human monocyte cell line (THP-1) was evaluated. The effects of EVs on the expression levels of pro- and anti-inflammatory cytokines were investigated using quantitative real-time PCR (RT-PCR), 3 and 24 h after incubation. Moreover, the cytokine level of IL-10 was evaluated in supernatant of THP-1 cell line at 3 and 24 h. EVs were successfully isolated and showed spherical shape with size distribution at 130.6 nm. After 3 h, the expression levels of pro-inflammatory cytokine genes (IL1Β, IL15 and IL8) were upregulated, while after 24 h, the expression levels of pro-inflammatory cytokines were decreased and IL13 gene expression showed upregulation. A statistically significant increase was seen in the levels of IL-10 after 24 h. The main mechanism of the communication between EVs derived from HCF and their host remains unclear; however, time-dependent anti-inflammatory effects in our study suggest that HC may modulate the immune responses via EVs.
{"title":"Characterisation of extracellular vesicles isolated from hydatid cyst fluid and evaluation of immunomodulatory effects on human monocytes","authors":"Mojdeh Khosravi, Hanieh Mohammad Rahimi, Abdoreza Nazari, Kaveh Baghaei, Hamid Asadzadeh Aghdaei, Shabnam Shahrokh, Meysam Sharifdini, Ana Claudia Torrecilhas, Fatemeh Mehryab, Hamed Mirjalali, Faezeh Shekari, Mohammad Reza Zali","doi":"10.1111/jcmm.17894","DOIUrl":"10.1111/jcmm.17894","url":null,"abstract":"<p>Hydatidosis is a disease caused by the larval stage of <i>Echinococcus granulosus</i>, which involves several organs of intermediate hosts. Evidence suggests a communication between hydatid cyst (HC) and hosts via extracellular vesicles. However, a little is known about the communication between EVs derived from HC fluid (HCF) and host cells. In the current study, EVs were isolated using differential centrifugation from sheep HCF and characterized by western blot, electron microscope and size distribution analysis. The uptake of EVs by human monocyte cell line (THP-1) was evaluated. The effects of EVs on the expression levels of pro- and anti-inflammatory cytokines were investigated using quantitative real-time PCR (RT-PCR), 3 and 24 h after incubation. Moreover, the cytokine level of IL-10 was evaluated in supernatant of THP-1 cell line at 3 and 24 h. EVs were successfully isolated and showed spherical shape with size distribution at 130.6 nm. After 3 h, the expression levels of pro-inflammatory cytokine genes (<i>IL1Β</i>, <i>IL15</i> and <i>IL8</i>) were upregulated, while after 24 h, the expression levels of pro-inflammatory cytokines were decreased and <i>IL13</i> gene expression showed upregulation. A statistically significant increase was seen in the levels of IL-10 after 24 h. The main mechanism of the communication between EVs derived from HCF and their host remains unclear; however, time-dependent anti-inflammatory effects in our study suggest that HC may modulate the immune responses via EVs.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2614-2625"},"PeriodicalIF":5.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17894","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hairy cell leukaemia (HCL) diagnosis is based on the morphologic detection of circulating abnormal hairy cells in the peripheral blood and/or bone marrow, an HCL immunological score of 3 or 4 based on the expression of the CD11c, CD25, CD103 and CD123 and also the presence of a BRAF V600E activating mutation in the B-raf proto-oncogene (BRAF gene) (7q34). When using new generation sequencing of 21 targeted genes in 124 HCL patients, we identified a cohort of 6/124 (2%) patients with unusual BRAF mutations: two patients presented non-V600 mutations (BRAF F595L, BRAF W604L respectively) and four other patients silent BRAF mutations. When using droplet digital PCR (ddPCR) three of the four patients with concomitant BRAF V600E and silent mutation were negative. The respective role of these mutations in the occurrence of HCL or its progression remains to be clarified, but BRAF sequencing is necessary in case of negative BRAF V600E by ddPCR.
{"title":"Hairy cell leukaemia with unusual BRAF mutations","authors":"Elsa Maitre, Margaret Macro, Xavier Troussard","doi":"10.1111/jcmm.17890","DOIUrl":"10.1111/jcmm.17890","url":null,"abstract":"<p>Hairy cell leukaemia (HCL) diagnosis is based on the morphologic detection of circulating abnormal hairy cells in the peripheral blood and/or bone marrow, an HCL immunological score of 3 or 4 based on the expression of the CD11c, CD25, CD103 and CD123 and also the presence of a <i>BRAF V600E</i> activating mutation in the B-raf proto-oncogene (BRAF gene) (7q34). When using new generation sequencing of 21 targeted genes in 124 HCL patients, we identified a cohort of 6/124 (2%) patients with unusual <i>BRAF</i> mutations: two patients presented non-V600 mutations (BRAF F595L, BRAF W604L respectively) and four other patients silent BRAF mutations. When using droplet digital PCR (ddPCR) three of the four patients with concomitant <i>BRAF V600E</i> and silent mutation were negative. The respective role of these mutations in the occurrence of HCL or its progression remains to be clarified, but <i>BRAF</i> sequencing is necessary in case of negative <i>BRAF V600E</i> by ddPCR.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2626-2630"},"PeriodicalIF":5.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17890","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10175700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CD26/dipeptidyl peptidase IV (DPP4) is a multifunctional cell-surface glycoprotein widely found in many cell types, and a soluble form is present in body fluids. There is longstanding evidence indicating a tumour-promoting or -suppressive role of DPP4 in different cancer types. However, studies focusing on the impacts of genetic variants of DPP4 on cancers are very rare. Herein, we conducted a case–control study to evaluate whether single-nucleotide polymorphisms (SNPs) of DPP4 were associated with the risk or clinicopathologic development of prostate cancer (PCa). We genotyped four loci of DPP4 SNPs, including rs7608798 (A/G), rs3788979 (C/T), rs2268889 (T/C) and rs6741949 (G/C), using a TaqMan allelic discrimination assay in 704 PCa patients and 704 healthy controls. Our results showed that PCa patients with the DPP4 rs7608798 AG+GG genotype or rs2268889 TC+CC genotype had a higher risk of developing an advanced clinical primary tumour (cT) stage (adjusted odds ratio (AOR): 1.680, 95% confidence interval (CI): 1.062–2.659, p = 0.025; AOR: 1.693, 95% CI: 1.092–2.624, p = 0.018). Additionally, in The Cancer Genome Atlas (TCGA) database, we observed that lower DPP4 expression levels were correlated with higher Gleason scores, advanced cT and pathological stages, tumour metastasis, and shorter progression-free survival rates in PCa patients. Furthermore, overexpression of DPP4 suppressed migration/invasion of metastatic PC3 PCa cells. Our findings suggest that DPP4 levels may affect the progression of PCa, and the DPP4 rs7608798 and rs2268889 SNPs are associated with the clinicopathologic development of PCa in a Taiwanese population.
{"title":"Genetic variants of dipeptidyl peptidase IV are linked to the clinicopathologic development of prostate cancer","authors":"Yu-Ching Wen, Chia-Yen Lin, Chi-Hao Hsiao, Shian-Shiang Wang, Hsiang-Ching Huang, Yung-Wei Lin, Kuo-Hao Ho, Lun-Ching Chang, Shun-Fa Yang, Ming-Hsien Chien","doi":"10.1111/jcmm.17845","DOIUrl":"10.1111/jcmm.17845","url":null,"abstract":"<p>CD26/dipeptidyl peptidase IV (DPP4) is a multifunctional cell-surface glycoprotein widely found in many cell types, and a soluble form is present in body fluids. There is longstanding evidence indicating a tumour-promoting or -suppressive role of DPP4 in different cancer types. However, studies focusing on the impacts of genetic variants of DPP4 on cancers are very rare. Herein, we conducted a case–control study to evaluate whether single-nucleotide polymorphisms (SNPs) of DPP4 were associated with the risk or clinicopathologic development of prostate cancer (PCa). We genotyped four loci of DPP4 SNPs, including rs7608798 (A/G), rs3788979 (C/T), rs2268889 (T/C) and rs6741949 (G/C), using a TaqMan allelic discrimination assay in 704 PCa patients and 704 healthy controls. Our results showed that PCa patients with the DPP4 rs7608798 AG+GG genotype or rs2268889 TC+CC genotype had a higher risk of developing an advanced clinical primary tumour (cT) stage (adjusted odds ratio (AOR): 1.680, 95% confidence interval (CI): 1.062–2.659, <i>p</i> = 0.025; AOR: 1.693, 95% CI: 1.092–2.624, <i>p</i> = 0.018). Additionally, in The Cancer Genome Atlas (TCGA) database, we observed that lower DPP4 expression levels were correlated with higher Gleason scores, advanced cT and pathological stages, tumour metastasis, and shorter progression-free survival rates in PCa patients. Furthermore, overexpression of DPP4 suppressed migration/invasion of metastatic PC3 PCa cells. Our findings suggest that DPP4 levels may affect the progression of PCa, and the DPP4 rs7608798 and rs2268889 SNPs are associated with the clinicopathologic development of PCa in a Taiwanese population.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2507-2516"},"PeriodicalIF":5.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10233968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The carcinogenicity of drugs can have a serious impact on human health, so carcinogenicity testing of new compounds is very necessary before being put on the market. Currently, many methods have been used to predict the carcinogenicity of compounds. However, most methods have limited predictive power and there is still much room for improvement. In this study, we construct a deep learning model based on capsule network and attention mechanism named DCAMCP to discriminate between carcinogenic and non-carcinogenic compounds. We train the DCAMCP on a dataset containing 1564 different compounds through their molecular fingerprints and molecular graph features. The trained model is validated by fivefold cross-validation and external validation. DCAMCP achieves an average accuracy (ACC) of 0.718 ± 0.009, sensitivity (SE) of 0.721 ± 0.006, specificity (SP) of 0.715 ± 0.014 and area under the receiver-operating characteristic curve (AUC) of 0.793 ± 0.012. Meanwhile, comparable results can be achieved on an external validation dataset containing 100 compounds, with an ACC of 0.750, SE of 0.778, SP of 0.727 and AUC of 0.811, which demonstrate the reliability of DCAMCP. The results indicate that our model has made progress in cancer risk assessment and could be used as an efficient tool in drug design.
{"title":"DCAMCP: A deep learning model based on capsule network and attention mechanism for molecular carcinogenicity prediction","authors":"Zhe Chen, Li Zhang, Jianqiang Sun, Rui Meng, Shuaidong Yin, Qi Zhao","doi":"10.1111/jcmm.17889","DOIUrl":"10.1111/jcmm.17889","url":null,"abstract":"<p>The carcinogenicity of drugs can have a serious impact on human health, so carcinogenicity testing of new compounds is very necessary before being put on the market. Currently, many methods have been used to predict the carcinogenicity of compounds. However, most methods have limited predictive power and there is still much room for improvement. In this study, we construct a deep learning model based on capsule network and attention mechanism named DCAMCP to discriminate between carcinogenic and non-carcinogenic compounds. We train the DCAMCP on a dataset containing 1564 different compounds through their molecular fingerprints and molecular graph features. The trained model is validated by fivefold cross-validation and external validation. DCAMCP achieves an average accuracy (ACC) of 0.718 ± 0.009, sensitivity (SE) of 0.721 ± 0.006, specificity (SP) of 0.715 ± 0.014 and area under the receiver-operating characteristic curve (AUC) of 0.793 ± 0.012. Meanwhile, comparable results can be achieved on an external validation dataset containing 100 compounds, with an ACC of 0.750, SE of 0.778, SP of 0.727 and AUC of 0.811, which demonstrate the reliability of DCAMCP. The results indicate that our model has made progress in cancer risk assessment and could be used as an efficient tool in drug design.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 20","pages":"3117-3126"},"PeriodicalIF":5.3,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17889","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10286892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naser Ajami, Anvar Soleimani, Reza Jafarzadeh-Esfehani, Mojtaba Hasanpour, Romina Rashid Shomali, Mohammad Reza Abbaszadegan
To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: “phenylketonuria”, “hyperphenylalaninemia”, and “PKU” in combination with “Iran”, “Iranian population”, “mutation analysis”, and “Molecular genetics”. Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.
{"title":"Mutational landscape of phenylketonuria in Iran","authors":"Naser Ajami, Anvar Soleimani, Reza Jafarzadeh-Esfehani, Mojtaba Hasanpour, Romina Rashid Shomali, Mohammad Reza Abbaszadegan","doi":"10.1111/jcmm.17865","DOIUrl":"10.1111/jcmm.17865","url":null,"abstract":"<p>To date more than 1000 different variants in the <i>PAH</i> gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the <i>PAH</i> gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: “phenylketonuria”, “hyperphenylalaninemia”, and “PKU” in combination with “Iran”, “Iranian population”, “mutation analysis”, and “Molecular genetics”. Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2457-2466"},"PeriodicalIF":5.3,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous studies have demonstrated that mitogen-activated protein kinase 11 (MAPK11) functions as an important point of integration in signalling transduction pathways and controlling endocellular processes, including viability of cells, differentiation, proliferation and apoptosis, through the sequence phosphorylation of the substrate protein Ser/Thr kinase protein cascade. Though MAPK 11 plays an important role in various tumours, especially in the invasive and metastatic processes, its expression and molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear. Runt-associated transcription factor 2 (RUNX2), a main transcription factor for osteoblast differentiation and chondrocyte maturation, has high expression in a number of tumours. In this study, the mRNA and protein levels of targeted genes in ccRCC tissues and adjacent tissues are analysed using the Cancer Genome Atlas (TCGA) database and western blotting. The ccRCC cell proliferation was measured with colony formation and EdU assay, and cell migration was examined through transwell assay. The interactive behaviour between proteins was detected with immunoprecipitation. Half-life period of RUNX2 protein was measured with cycloheximide chase assay. The results of the study indicated overexpression of MAPK11 and RUNX2 in ccRCC tissues and cell lines. MAPK11 and RUNX2 promoted the ccRCC cell proliferation and migration. Additionally, physical interaction took place between RUNX2 and P-MAPK11, which functioned to sustain the stability of RUNX2 protein. The high expression of RUNX2 could neutralize the functional degradation in MAPK11. And the outcomes of the study suggest that the P-MAPK11/RUNX2 axis may be used as a potential therapeutic target of ccRCC.
{"title":"Phosphorylated MAPK11 promotes the progression of clear cell renal cell carcinoma by maintaining RUNX2 protein abundance","authors":"Xiandong Song, Changming Dong, Xiaojun Man","doi":"10.1111/jcmm.17870","DOIUrl":"10.1111/jcmm.17870","url":null,"abstract":"<p>Previous studies have demonstrated that mitogen-activated protein kinase 11 (MAPK11) functions as an important point of integration in signalling transduction pathways and controlling endocellular processes, including viability of cells, differentiation, proliferation and apoptosis, through the sequence phosphorylation of the substrate protein Ser/Thr kinase protein cascade. Though MAPK 11 plays an important role in various tumours, especially in the invasive and metastatic processes, its expression and molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear. Runt-associated transcription factor 2 (RUNX2), a main transcription factor for osteoblast differentiation and chondrocyte maturation, has high expression in a number of tumours. In this study, the mRNA and protein levels of targeted genes in ccRCC tissues and adjacent tissues are analysed using the Cancer Genome Atlas (TCGA) database and western blotting. The ccRCC cell proliferation was measured with colony formation and EdU assay, and cell migration was examined through transwell assay. The interactive behaviour between proteins was detected with immunoprecipitation. Half-life period of RUNX2 protein was measured with cycloheximide chase assay. The results of the study indicated overexpression of MAPK11 and RUNX2 in ccRCC tissues and cell lines. MAPK11 and RUNX2 promoted the ccRCC cell proliferation and migration. Additionally, physical interaction took place between RUNX2 and P-MAPK11, which functioned to sustain the stability of RUNX2 protein. The high expression of RUNX2 could neutralize the functional degradation in MAPK11. And the outcomes of the study suggest that the P-MAPK11/RUNX2 axis may be used as a potential therapeutic target of ccRCC.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2583-2593"},"PeriodicalIF":5.3,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17870","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10520925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zehra Degirmenci, Sena Unver, Turker Kilic, Timucin Avsar
Aberrant expression of MEG3 has been shown in various cancers. The purpose of this study is to evaluate the effect of MEG3 on glioma cells and the use of potential chemotherapeutics in glioma by modulating MEG3 expression. Cell viability, migration and chemosensitivity were assayed. Cell death was evaluated in MEG3 overexpressing and MEG3 suppressed cells. MEG3 expression was compared in patient-derived glioma cells concerning IDH1 mutation and WHO grades. Silencing of MEG3 inhibited cell proliferation and reduced cell migration while overexpression of MEG3 promoted proliferation in glioma cells. MEG3 inhibition improved the chemosensitivity of glioma cells to 5-fluorouracil (5FU) but not to navitoclax. On the other hand, there is no significant effect of MEG3 expression on temozolamide (TMZ) treatment which is a standard chemotherapeutic agent in glioma. Suppression of the MEG3 gene in patient-derived oligodendroglioma cells also showed the same effect whereas glioblastoma cell proliferation and chemosensitivity were not affected by MEG3 inhibition. Further, as a possible cell death mechanism of action apoptosis was investigated. Although MEG3 is a widely known tumour suppressor gene and its loss is associated with several cancer types, here we reported that MEG3 inhibition can be used for improving the efficiency of known chemotherapeutic drug sensitivity. We propose that the level of MEG3 should be evaluated in the treatment of different glioma subtypes that are resistant to effective drugs to increase the potential effective drug applications.
{"title":"Silencing of the MEG3 gene promoted anti-cancer activity and drug sensitivity in glioma","authors":"Zehra Degirmenci, Sena Unver, Turker Kilic, Timucin Avsar","doi":"10.1111/jcmm.17883","DOIUrl":"10.1111/jcmm.17883","url":null,"abstract":"<p>Aberrant expression of MEG3 has been shown in various cancers. The purpose of this study is to evaluate the effect of MEG3 on glioma cells and the use of potential chemotherapeutics in glioma by modulating MEG3 expression. Cell viability, migration and chemosensitivity were assayed. Cell death was evaluated in MEG3 overexpressing and MEG3 suppressed cells. MEG3 expression was compared in patient-derived glioma cells concerning IDH1 mutation and WHO grades. Silencing of MEG3 inhibited cell proliferation and reduced cell migration while overexpression of MEG3 promoted proliferation in glioma cells. MEG3 inhibition improved the chemosensitivity of glioma cells to 5-fluorouracil (5FU) but not to navitoclax. On the other hand, there is no significant effect of MEG3 expression on temozolamide (TMZ) treatment which is a standard chemotherapeutic agent in glioma. Suppression of the MEG3 gene in patient-derived oligodendroglioma cells also showed the same effect whereas glioblastoma cell proliferation and chemosensitivity were not affected by MEG3 inhibition. Further, as a possible cell death mechanism of action apoptosis was investigated. Although MEG3 is a widely known tumour suppressor gene and its loss is associated with several cancer types, here we reported that MEG3 inhibition can be used for improving the efficiency of known chemotherapeutic drug sensitivity. We propose that the level of MEG3 should be evaluated in the treatment of different glioma subtypes that are resistant to effective drugs to increase the potential effective drug applications.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 17","pages":"2603-2613"},"PeriodicalIF":5.3,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17883","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10147649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weibin Du, Lihong He, Zhenwei Wang, Yi Dong, Xiaofen He, Jintao Hu, Min Zhang
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with six rats in each group. After the intervention, orbital venous blood was collected for lipid metabolomics analysis, wound perfusion was detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 11 differential metabolites in the model versus sham-operated group. There were 115 differential metabolites in the model versus electro-acupuncture group. 117 differential metabolites in the electro-acupuncture versus sham-operated group. There were two differential metabolites common to all three groups. Mainly cholesteryl esters and sphingolipids were elevated after electroacupuncture and triglycerides were largely decreased after electroacupuncture. The electroacupuncture group recovered faster than the model group in terms of blood perfusion and wound healing (p < 0.05). Electroacupuncture may promote rat skin wound repair by improving lipid metabolism and improving local perfusion.
{"title":"Serum lipidomics-based study of electroacupuncture for skin wound repair in rats","authors":"Weibin Du, Lihong He, Zhenwei Wang, Yi Dong, Xiaofen He, Jintao Hu, Min Zhang","doi":"10.1111/jcmm.17891","DOIUrl":"10.1111/jcmm.17891","url":null,"abstract":"<p>Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with six rats in each group. After the intervention, orbital venous blood was collected for lipid metabolomics analysis, wound perfusion was detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 11 differential metabolites in the model versus sham-operated group. There were 115 differential metabolites in the model versus electro-acupuncture group. 117 differential metabolites in the electro-acupuncture versus sham-operated group. There were two differential metabolites common to all three groups. Mainly cholesteryl esters and sphingolipids were elevated after electroacupuncture and triglycerides were largely decreased after electroacupuncture. The electroacupuncture group recovered faster than the model group in terms of blood perfusion and wound healing (p < 0.05). Electroacupuncture may promote rat skin wound repair by improving lipid metabolism and improving local perfusion.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":"27 20","pages":"3127-3146"},"PeriodicalIF":5.3,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.17891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10255073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}