Pub Date : 2020-05-01Epub Date: 2020-04-14DOI: 10.1111/jcmm.15260
Amanpreet K Cheema, Leonor Sarria, Mina Bekheit, Fanny Collado, Eloy Almenar-Pérez, Eva Martín-Martínez, Jose Alegre, Jesus Castro-Marrero, Mary A Fletcher, Nancy G Klimas, Elisa Oltra, Lubov Nathanson
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.
{"title":"Unravelling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Gender-specific changes in the microRNA expression profiling in ME/CFS.","authors":"Amanpreet K Cheema, Leonor Sarria, Mina Bekheit, Fanny Collado, Eloy Almenar-Pérez, Eva Martín-Martínez, Jose Alegre, Jesus Castro-Marrero, Mary A Fletcher, Nancy G Klimas, Elisa Oltra, Lubov Nathanson","doi":"10.1111/jcmm.15260","DOIUrl":"10.1111/jcmm.15260","url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem illness characterized by medically unexplained debilitating fatigue with suggested altered immunological state. Our study aimed to explore peripheral blood mononuclear cells (PBMCs) for microRNAs (miRNAs) expression in ME/CFS subjects under an exercise challenge. The findings highlight the immune response and inflammation links to differential miRNA expression in ME/CFS. The present study is particularly important in being the first to uncover the differences that exist in miRNA expression patterns in males and females with ME/CFS in response to exercise. This provides new evidence for the understanding of differential miRNA expression patterns and post-exertional malaise in ME/CFS. We also report miRNA expression pattern differences associating with the nutritional status in individuals with ME/CFS, highlighting the effect of subjects' metabolic state on molecular changes to be considered in clinical research within the NINDS/CDC ME/CFS Common Data Elements. The identification of gender-based miRNAs importantly provides new insights into gender-specific ME/CFS susceptibility and demands exploration of sex-suited ME/CFS therapeutics.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37835159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-01Epub Date: 2020-04-17DOI: 10.1111/jcmm.15264
Qing Hu, Kai Huang, Chuming Tao, Xingen Zhu
Increasing evidence from structural and functional studies has indicated that protein disulphide isomerase (PDI) has a critical role in the proliferation, survival and metastasis of several types of cancer. However, the molecular mechanisms through which PDI contributes to glioma remain unclear. Here, we aimed to investigate whether the differential expression of 17 PDI family members was closely related to the different clinicopathological features in gliomas from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas data sets. Additionally, four subgroups of gliomas (cluster 1/2/3/4) were identified based on consensus clustering of the PDI gene family. These findings not only demonstrated that a poorer prognosis, higher WHO grade, lower frequency of isocitrate dehydrogenase mutation and higher 1p/19q non-codeletion status were significantly correlated with cluster 4 compared with the other clusters, but also indicated that the malignant progression of glioma was closely correlated with the expression of PDI family members. Moreover, we also constructed an independent prognostic marker that can predict the clinicopathological features of gliomas. Overall, the results indicated that PDI family members may serve as possible diagnostic markers in gliomas.
{"title":"Protein disulphide isomerase can predict the clinical prognostic value and contribute to malignant progression in gliomas.","authors":"Qing Hu, Kai Huang, Chuming Tao, Xingen Zhu","doi":"10.1111/jcmm.15264","DOIUrl":"https://doi.org/10.1111/jcmm.15264","url":null,"abstract":"<p><p>Increasing evidence from structural and functional studies has indicated that protein disulphide isomerase (PDI) has a critical role in the proliferation, survival and metastasis of several types of cancer. However, the molecular mechanisms through which PDI contributes to glioma remain unclear. Here, we aimed to investigate whether the differential expression of 17 PDI family members was closely related to the different clinicopathological features in gliomas from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas data sets. Additionally, four subgroups of gliomas (cluster 1/2/3/4) were identified based on consensus clustering of the PDI gene family. These findings not only demonstrated that a poorer prognosis, higher WHO grade, lower frequency of isocitrate dehydrogenase mutation and higher 1p/19q non-codeletion status were significantly correlated with cluster 4 compared with the other clusters, but also indicated that the malignant progression of glioma was closely correlated with the expression of PDI family members. Moreover, we also constructed an independent prognostic marker that can predict the clinicopathological features of gliomas. Overall, the results indicated that PDI family members may serve as possible diagnostic markers in gliomas.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37843313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-01Epub Date: 2020-04-16DOI: 10.1111/jcmm.15262
Cuijie Li, Mengmeng Zhuang, Bo Zhu, Ye Li, Wenwen Zhang, Hao Yan, Pan Zhang, Dan Li, Juan Yang, Yuan Sun, Haijun Chen, Qingwei Cui, Peisheng Jin, Yong Sun
To investigate the regulation of epidermal growth factor (EGF) by autophagy-mediated long non-coding RNA (lncRNA) H19 in the intestinal tracts of severely burned mice. C57BL/6J mice received third-degree burns to 30% of the total body surface area. Rapamycin and 3-methyladenine (3-MA) were used to activate and inhibit autophagy, and the changes in LC3 and Beclin1 levels were assessed by Western blotting. The effect of autophagy on lncRNA H19 was detected by qRT-PCR. Adenovirus-mediated overexpression of lncRNA H19 in IEC-6 cells was used to assess the effects of lncRNA H19 on EGF and let-7g via bioinformatics analysis, Western blotting and qRT-PCR. let-7g mimic/inhibitor was used to overexpress/inhibit let-7g, and qRT-PCR and Western blotting were used to detect the effects of let-7g on EGF. The expression levels of LC3-II, Beclin1 and lncRNA H19 were increased in intestinal tissues and IEC-6 cells after rapamycin treatment but were reversed after 3-MA treatment. LC3-II, Beclin1 and lncRNA H19 levels increased in intestinal tissues after the burn, and these increases were more significant after rapamycin treatment but decreased after 3-MA treatment. The lncRNA H19 overexpression in IEC-6 cells resulted in increased and decreased expression levels of EGF and let-7g, respectively. Furthermore, overexpression and inhibition of let-7g resulted in decreased and increased expression of EGF, respectively. Taken together, intestinal autophagy is activated after a serious burn, which can increase the transcription level of lncRNA H19. lncRNA H19 may regulate the repair of EGF via let-7g following intestinal mucosa injury after a burn.
{"title":"Epidermal growth factor regulation by autophagy-mediated lncRNA H19 in murine intestinal tract after severe burn.","authors":"Cuijie Li, Mengmeng Zhuang, Bo Zhu, Ye Li, Wenwen Zhang, Hao Yan, Pan Zhang, Dan Li, Juan Yang, Yuan Sun, Haijun Chen, Qingwei Cui, Peisheng Jin, Yong Sun","doi":"10.1111/jcmm.15262","DOIUrl":"https://doi.org/10.1111/jcmm.15262","url":null,"abstract":"<p><p>To investigate the regulation of epidermal growth factor (EGF) by autophagy-mediated long non-coding RNA (lncRNA) H19 in the intestinal tracts of severely burned mice. C57BL/6J mice received third-degree burns to 30% of the total body surface area. Rapamycin and 3-methyladenine (3-MA) were used to activate and inhibit autophagy, and the changes in LC3 and Beclin1 levels were assessed by Western blotting. The effect of autophagy on lncRNA H19 was detected by qRT-PCR. Adenovirus-mediated overexpression of lncRNA H19 in IEC-6 cells was used to assess the effects of lncRNA H19 on EGF and let-7g via bioinformatics analysis, Western blotting and qRT-PCR. let-7g mimic/inhibitor was used to overexpress/inhibit let-7g, and qRT-PCR and Western blotting were used to detect the effects of let-7g on EGF. The expression levels of LC3-II, Beclin1 and lncRNA H19 were increased in intestinal tissues and IEC-6 cells after rapamycin treatment but were reversed after 3-MA treatment. LC3-II, Beclin1 and lncRNA H19 levels increased in intestinal tissues after the burn, and these increases were more significant after rapamycin treatment but decreased after 3-MA treatment. The lncRNA H19 overexpression in IEC-6 cells resulted in increased and decreased expression levels of EGF and let-7g, respectively. Furthermore, overexpression and inhibition of let-7g resulted in decreased and increased expression of EGF, respectively. Taken together, intestinal autophagy is activated after a serious burn, which can increase the transcription level of lncRNA H19. lncRNA H19 may regulate the repair of EGF via let-7g following intestinal mucosa injury after a burn.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37843311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-01Epub Date: 2020-04-17DOI: 10.1111/jcmm.15278
Dafeng Yang, Zhousheng Yang, Lei Chen, Dabin Kuang, Yang Zou, Jie Li, Xu Deng, Songyuan Luo, Jianfang Luo, Jun He, Miao Yan, Guixia He, Yang Deng, Rong Li, Qiong Yuan, Yangzhao Zhou, Pei Jiang, Shenglan Tan
Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe-/- ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe-/- mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe-/- mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.
{"title":"Dihydromyricetin increases endothelial nitric oxide production and inhibits atherosclerosis through microRNA-21 in apolipoprotein E-deficient mice.","authors":"Dafeng Yang, Zhousheng Yang, Lei Chen, Dabin Kuang, Yang Zou, Jie Li, Xu Deng, Songyuan Luo, Jianfang Luo, Jun He, Miao Yan, Guixia He, Yang Deng, Rong Li, Qiong Yuan, Yangzhao Zhou, Pei Jiang, Shenglan Tan","doi":"10.1111/jcmm.15278","DOIUrl":"https://doi.org/10.1111/jcmm.15278","url":null,"abstract":"<p><p>Natural products were extracted from traditional Chinese herbal emerging as potential therapeutic drugs for treating cardiovascular diseases. This study examines the role and underlying mechanism of dihydromyricetin (DMY), a natural compound extracted from Ampelopsis grossedentata, in atherosclerosis. DMY treatment significantly inhibits atherosclerotic lesion formation, proinflammatory gene expression and the influx of lesional macrophages and CD4-positive T cells in the vessel wall and hepatic inflammation, whereas increases nitric oxide (NO) production and improves lipid metabolism in apolipoprotein E-deficient (Apoe<sup>-</sup><sup>/</sup><sup>-</sup> ) mice. Yet, those protective effects are abrogated by using NOS inhibitor L-NAME in Apoe<sup>-</sup><sup>/</sup><sup>-</sup> mice received DMY. Mechanistically, DMY decreases microRNA-21 (miR-21) and increases its target gene dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression, an effect that reduces asymmetric aimethlarginine (ADMA) levels, and increases endothelial NO synthase (eNOS) phosphorylation and NO production in cultured HUVECs, vascular endothelium of atherosclerotic lesions and liver. In contrast, systemic delivery of miR-21 in Apoe<sup>-</sup><sup>/</sup><sup>-</sup> mice or miR-21 overexpression in cultured HUVECs abrogates those DMY-mediated protective effects. These data demonstrate that endothelial miR-21-inhibited DDAH1-ADMA-eNOS-NO pathway promotes the pathogenesis of atherosclerosis which can be rescued by DMY. Thus, DMY may represent a potential therapeutic adjuvant in atherosclerosis management.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37843318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-01Epub Date: 2020-04-15DOI: 10.1111/jcmm.15265
Jie Jiang, Jun Bai, Tao Qin, Zheng Wang, Liang Han
Pancreatic cancer (PC) is a continuously high lethal disease, and the tumour microenvironment plays a pivotal role during PC progression. Herein, we focus on that the Nerve growth factor (NGF)/Tropomyosin-related kinase A (TrkA), in pancreatic stellate cells-pancreatic cancer cells (PSCs-PC cells) co-culture system, influences PC proliferation and invasion. The model of PC cells and PSCs was directly co-cultured in a no-touch manner, using the Transwell as the co-culture system. NGF and TrkA expression was measured in cultured system by real-time PCR, immunofluorescence, Western blotting analysis or ELISA. Small interfering RNA transfection was used to regulate the expression of TrkA in PC cells. The promotion of cancer invasion was investigated using Matrigel Transwell assay. In our study, NGF/TrkA is overexpressed in PSCs-PC cells co-culture system and promotes the invasion and proliferation of PC cells. And the epithelial-mesenchymal transition-related genes are influenced by si-TrkA. What's more, NGF/TrkA regulates the PC cell proliferation and invasion via activation of PI3K/AKT/GSK signalling. The present study demonstrated NGF/TrkA promoted the PC cell proliferation and invasion in the co-culture system by the activation of the PI3K/AKT/GSK signal cascade, providing a potential therapeutic target for PC patients.
{"title":"NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway.","authors":"Jie Jiang, Jun Bai, Tao Qin, Zheng Wang, Liang Han","doi":"10.1111/jcmm.15265","DOIUrl":"https://doi.org/10.1111/jcmm.15265","url":null,"abstract":"<p><p>Pancreatic cancer (PC) is a continuously high lethal disease, and the tumour microenvironment plays a pivotal role during PC progression. Herein, we focus on that the Nerve growth factor (NGF)/Tropomyosin-related kinase A (TrkA), in pancreatic stellate cells-pancreatic cancer cells (PSCs-PC cells) co-culture system, influences PC proliferation and invasion. The model of PC cells and PSCs was directly co-cultured in a no-touch manner, using the Transwell as the co-culture system. NGF and TrkA expression was measured in cultured system by real-time PCR, immunofluorescence, Western blotting analysis or ELISA. Small interfering RNA transfection was used to regulate the expression of TrkA in PC cells. The promotion of cancer invasion was investigated using Matrigel Transwell assay. In our study, NGF/TrkA is overexpressed in PSCs-PC cells co-culture system and promotes the invasion and proliferation of PC cells. And the epithelial-mesenchymal transition-related genes are influenced by si-TrkA. What's more, NGF/TrkA regulates the PC cell proliferation and invasion via activation of PI3K/AKT/GSK signalling. The present study demonstrated NGF/TrkA promoted the PC cell proliferation and invasion in the co-culture system by the activation of the PI3K/AKT/GSK signal cascade, providing a potential therapeutic target for PC patients.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15265","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37839613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01Epub Date: 2020-03-09DOI: 10.1111/jcmm.15123
Mingjun Zhang, Xuyang Wang, Ming Liu, Dian Liu, Jinyu Pan, Jingjing Tian, Tao Jin, Yunfan Xu, Fengshuang An
Background: Pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a kind of serine/threonine phosphatase, whose dysregulation is accompanied with numerous human diseases. However, its role in diabetic cardiomyopathy remains unclear. We explored the underlying function and mechanism of PHLPP1 in diabetic cardiomyopathy (DCM).
Method: In vivo, Type 1 diabetic rats were induced by intraperitoneal injection of 60 mg/kg streptozotocin (STZ). Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down the expression of PHLPP1. In vitro, primary neonatal rat cardiomyocytes and H9C2 cells were incubated in 5.5 mmol/L glucose (normal glucose, NG) or 33.3 mmol/L glucose (high glucose, HG). PHLPP1 expression was inhibited by PHLPP1-siRNA to probe into the function of PHLPP1 in high glucose-induced apoptosis in H9c2 cells.
Results: Diabetic rats showed up-regulated PHLPP1 expression, left ventricular dysfunction, increased myocardial apoptosis and fibrosis. PHLPP1 inhibition alleviated cardiac dysfunction. Additionally, PHLPP1 inhibition significantly reduced HG-induced apoptosis and restored PI3K/AKT/mTOR pathway activity in H9c2 cells. Furthermore, pretreatment with LY294002, an inhibitor of PI3K/Akt/mTOR pathway, abolished the anti-apoptotic effect of PHLPP1 inhibition.
Conclusion: Our study indicated that PHLPP1 inhibition alleviated cardiac dysfunction via activating the PI3K/Akt/mTOR signalling pathway in DCM. Therefore, PHLPP1 may be a novel therapeutic target for human DCM.
{"title":"Inhibition of PHLPP1 ameliorates cardiac dysfunction via activation of the PI3K/Akt/mTOR signalling pathway in diabetic cardiomyopathy.","authors":"Mingjun Zhang, Xuyang Wang, Ming Liu, Dian Liu, Jinyu Pan, Jingjing Tian, Tao Jin, Yunfan Xu, Fengshuang An","doi":"10.1111/jcmm.15123","DOIUrl":"https://doi.org/10.1111/jcmm.15123","url":null,"abstract":"<p><strong>Background: </strong>Pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a kind of serine/threonine phosphatase, whose dysregulation is accompanied with numerous human diseases. However, its role in diabetic cardiomyopathy remains unclear. We explored the underlying function and mechanism of PHLPP1 in diabetic cardiomyopathy (DCM).</p><p><strong>Method: </strong>In vivo, Type 1 diabetic rats were induced by intraperitoneal injection of 60 mg/kg streptozotocin (STZ). Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down the expression of PHLPP1. In vitro, primary neonatal rat cardiomyocytes and H9C2 cells were incubated in 5.5 mmol/L glucose (normal glucose, NG) or 33.3 mmol/L glucose (high glucose, HG). PHLPP1 expression was inhibited by PHLPP1-siRNA to probe into the function of PHLPP1 in high glucose-induced apoptosis in H9c2 cells.</p><p><strong>Results: </strong>Diabetic rats showed up-regulated PHLPP1 expression, left ventricular dysfunction, increased myocardial apoptosis and fibrosis. PHLPP1 inhibition alleviated cardiac dysfunction. Additionally, PHLPP1 inhibition significantly reduced HG-induced apoptosis and restored PI3K/AKT/mTOR pathway activity in H9c2 cells. Furthermore, pretreatment with LY294002, an inhibitor of PI3K/Akt/mTOR pathway, abolished the anti-apoptotic effect of PHLPP1 inhibition.</p><p><strong>Conclusion: </strong>Our study indicated that PHLPP1 inhibition alleviated cardiac dysfunction via activating the PI3K/Akt/mTOR signalling pathway in DCM. Therefore, PHLPP1 may be a novel therapeutic target for human DCM.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37719605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR-3116 in the TMZ resistance. miR-3116 and FGFR1 mRNA were quantified by real-time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR-3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR-3116 dipped in samples resistant to TMZ, while increased miR-3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR-3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR-3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR-3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.
{"title":"MiR-3116 sensitizes glioma cells to temozolomide by targeting FGFR1 and regulating the FGFR1/PI3K/AKT pathway.","authors":"Shiqi Kong, Yingxiao Cao, Xin Li, Zhenzhong Li, Yuling Xin, Yan Meng","doi":"10.1111/jcmm.15133","DOIUrl":"10.1111/jcmm.15133","url":null,"abstract":"<p><p>Glioma is a brain tumour that is often diagnosed, and temozolomide (TMZ) is a common chemotherapeutic drug used in glioma. Yet, resistance to TMZ is a chief hurdle towards curing the malignancy. The current work explores the pathways and involvement of miR-3116 in the TMZ resistance. miR-3116 and FGFR1 mRNA were quantified by real-time PCR in malignant samples and cell lines. Appropriate assays were designed for apoptosis, viability, the ability to form colonies and reporter assays to study the effects of the miR-3116 or FGFR1. The involvement of PI3K/AKT signalling was assessed using Western blotting. Tumorigenesis was evaluated in an appropriate xenograft mouse model in vivo. This work revealed that the levels of miR-3116 dipped in samples resistant to TMZ, while increased miR-3116 caused an inhibition of the tumour features mentioned above to hence augment TMZ sensitivity. miR-3116 was found to target FGFR1. When FGFR1 was overexpressed, resistance to TMZ was augmented and reversed the sensitivity caused by miR-3116. Our findings further confirmed PI3K/AKT signalling pathway is involved in this action. In conclusion, miR-3116 sensitizes glioma cells to TMZ through FGFR1 downregulation and the PI3K/AKT pathway inactivation. Our results provide a strategy to overcome TMZ resistance in glioma treatment.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37744388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01Epub Date: 2020-02-26DOI: 10.1111/jcmm.15047
Jaime A Riquelme, Kaloyan Takov, Concepción Santiago-Fernández, Xavier Rossello, Sergio Lavandero, Derek M Yellon, Sean M Davidson
Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated β-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.
{"title":"Increased production of functional small extracellular vesicles in senescent endothelial cells.","authors":"Jaime A Riquelme, Kaloyan Takov, Concepción Santiago-Fernández, Xavier Rossello, Sergio Lavandero, Derek M Yellon, Sean M Davidson","doi":"10.1111/jcmm.15047","DOIUrl":"https://doi.org/10.1111/jcmm.15047","url":null,"abstract":"<p><p>Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated β-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37680419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01Epub Date: 2020-03-12DOI: 10.1111/jcmm.15147
Wei Shi, Haiyan Ma, Tianshu Liu, Dan Yan, Pengcheng Luo, Maocai Zhai, Jingwen Tao, Shengqi Huo, Junyi Guo, Chenglong Li, Jiayuh Lin, Cuntai Zhang, Sheng Li, Jiagao Lv, Li Lin
The role of IL-6 signalling in hypertensive heart disease and its sequelae is controversial. Our group demonstrated that Bazedoxifene suppressed IL-6/gp130 signalling in cancer cells but its effect on myocardial pathology induced by pressure overload is still unknown. We explored whether Bazedoxifene could confer benefits in wild-type C57BL/6J mice suffering from transverse aortic constriction (TAC) and the potential mechanisms in H9c2 myoblasts. Mice were randomized into three groups (Sham, TAC, TAC+Bazedoxifene, n = 10). Morphological and histological observations suggested TAC aggravated myocardial remodelling while long-term intake of Bazedoxifene (5 mg/kg, intragastric) attenuated pressure overload-induced pathology. Echocardiographic results indicated Bazedoxifene rescued cardiac function in part. We found Bazedoxifene decreased the mRNA expression of IL-6, MMP2, Col1A1, Col3A1 and periostin in murine hearts after 8-week surgery. By Western blot detection, we found Bazedoxifene exhibited an inhibition of STAT3 activation in mice three hours and 8 weeks after TAC. Acute TAC stress (3 hours) led to down-regulated ratio of LC3-Ⅱ/LC3-Ⅰ, while in mice after long-term (8 weeks) TAC this ratio becomes higher than that in Sham mice. Bazedoxifene inverted the autophagic alteration induced by TAC at both two time-points. In H9c2 myoblasts, Bazedoxifene suppressed the IL-6-induced STAT3 activation. Moreover, IL-6 reduced the ratio of LC3-Ⅱ/LC3-Ⅰ, promoted P62 expression but Bazedoxifene reversed both changes in H9c2 cells. Our data suggested Bazedoxifene inhibited IL-6/gp130 signalling and protected against cardiac remodelling together with function deterioration in TAC mice.
{"title":"Inhibition of Interleukin-6/glycoprotein 130 signalling by Bazedoxifene ameliorates cardiac remodelling in pressure overload mice.","authors":"Wei Shi, Haiyan Ma, Tianshu Liu, Dan Yan, Pengcheng Luo, Maocai Zhai, Jingwen Tao, Shengqi Huo, Junyi Guo, Chenglong Li, Jiayuh Lin, Cuntai Zhang, Sheng Li, Jiagao Lv, Li Lin","doi":"10.1111/jcmm.15147","DOIUrl":"https://doi.org/10.1111/jcmm.15147","url":null,"abstract":"<p><p>The role of IL-6 signalling in hypertensive heart disease and its sequelae is controversial. Our group demonstrated that Bazedoxifene suppressed IL-6/gp130 signalling in cancer cells but its effect on myocardial pathology induced by pressure overload is still unknown. We explored whether Bazedoxifene could confer benefits in wild-type C57BL/6J mice suffering from transverse aortic constriction (TAC) and the potential mechanisms in H9c2 myoblasts. Mice were randomized into three groups (Sham, TAC, TAC+Bazedoxifene, n = 10). Morphological and histological observations suggested TAC aggravated myocardial remodelling while long-term intake of Bazedoxifene (5 mg/kg, intragastric) attenuated pressure overload-induced pathology. Echocardiographic results indicated Bazedoxifene rescued cardiac function in part. We found Bazedoxifene decreased the mRNA expression of IL-6, MMP2, Col1A1, Col3A1 and periostin in murine hearts after 8-week surgery. By Western blot detection, we found Bazedoxifene exhibited an inhibition of STAT3 activation in mice three hours and 8 weeks after TAC. Acute TAC stress (3 hours) led to down-regulated ratio of LC3-Ⅱ/LC3-Ⅰ, while in mice after long-term (8 weeks) TAC this ratio becomes higher than that in Sham mice. Bazedoxifene inverted the autophagic alteration induced by TAC at both two time-points. In H9c2 myoblasts, Bazedoxifene suppressed the IL-6-induced STAT3 activation. Moreover, IL-6 reduced the ratio of LC3-Ⅱ/LC3-Ⅰ, promoted P62 expression but Bazedoxifene reversed both changes in H9c2 cells. Our data suggested Bazedoxifene inhibited IL-6/gp130 signalling and protected against cardiac remodelling together with function deterioration in TAC mice.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jcmm.15147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37730376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01Epub Date: 2020-03-17DOI: 10.1111/jcmm.15154
Alexis J Perros, Arlanna Esguerra-Lallen, Kelly Rooks, Fenny Chong, Sanne Engkilde-Pedersen, Helen M Faddy, Elise Hewlett, Rishendran Naidoo, John-Paul Tung, John F Fraser, Peter Tesar, Marc Ziegenfuss, Susan Smith, Donalee O'Brien, Robert L Flower, Melinda M Dean
Coronary artery bypass grafting (CABG) triggers a systemic inflammatory response that may contribute to adverse outcomes. Dendritic cells (DC) and monocytes are immunoregulatory cells potentially affected by CABG, contributing to an altered immune state. This study investigated changes in DC and monocyte responses in CABG patients at 5 time-points: admission, peri-operative, ICU, day 3 and day 5. Whole blood from 49 CABG patients was used in an ex vivo whole blood culture model to prospectively assess DC and monocyte responses. Lipopolysaccharide (LPS) was added in parallel to model responses to an infectious complication. Co-stimulatory and adhesion molecule expression and intracellular mediator production was measured by flow cytometry. CABG modulated monocyte and DC responses. In addition, DC and monocytes were immunoparalysed, evidenced by failure of co-stimulatory and adhesion molecules (eg HLA-DR), and intracellular mediators (eg IL-6) to respond to LPS stimulation. DC and monocyte modulation was associated with prolonged ICU length of stay and post-operative atrial fibrillation. DC and monocyte cytokine production did not recover by day 5 post-surgery. This study provides evidence that CABG modulates DC and monocyte responses. Using an ex vivo model to assess immune competency of CABG patients may help identify biomarkers to predict adverse outcomes.
{"title":"Coronary artery bypass grafting is associated with immunoparalysis of monocytes and dendritic cells.","authors":"Alexis J Perros, Arlanna Esguerra-Lallen, Kelly Rooks, Fenny Chong, Sanne Engkilde-Pedersen, Helen M Faddy, Elise Hewlett, Rishendran Naidoo, John-Paul Tung, John F Fraser, Peter Tesar, Marc Ziegenfuss, Susan Smith, Donalee O'Brien, Robert L Flower, Melinda M Dean","doi":"10.1111/jcmm.15154","DOIUrl":"10.1111/jcmm.15154","url":null,"abstract":"<p><p>Coronary artery bypass grafting (CABG) triggers a systemic inflammatory response that may contribute to adverse outcomes. Dendritic cells (DC) and monocytes are immunoregulatory cells potentially affected by CABG, contributing to an altered immune state. This study investigated changes in DC and monocyte responses in CABG patients at 5 time-points: admission, peri-operative, ICU, day 3 and day 5. Whole blood from 49 CABG patients was used in an ex vivo whole blood culture model to prospectively assess DC and monocyte responses. Lipopolysaccharide (LPS) was added in parallel to model responses to an infectious complication. Co-stimulatory and adhesion molecule expression and intracellular mediator production was measured by flow cytometry. CABG modulated monocyte and DC responses. In addition, DC and monocytes were immunoparalysed, evidenced by failure of co-stimulatory and adhesion molecules (eg HLA-DR), and intracellular mediators (eg IL-6) to respond to LPS stimulation. DC and monocyte modulation was associated with prolonged ICU length of stay and post-operative atrial fibrillation. DC and monocyte cytokine production did not recover by day 5 post-surgery. This study provides evidence that CABG modulates DC and monocyte responses. Using an ex vivo model to assess immune competency of CABG patients may help identify biomarkers to predict adverse outcomes.</p>","PeriodicalId":15215,"journal":{"name":"Journal of Cellular and Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37744101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}