Background: Pulmonary hypertension (PHT) is common in β-thalassemia patients due to hemolysis, iron overload and diminished nitric oxide (NO) levels. Biochemical markers can help to understand the pathophysiology and to introduce new therapies for this condition.
Aim: This study aimed to evaluate the effectiveness of L-arginine and sildenafil in thalassemia children with PHT at both clinical and biochemical levels.
Methods and results: In a randomized controlled study, 60 β-thalassemia major children with PHT were divided into 3 equal groups; Control group (Conventional thalassemia and PHT management), L-arginine group (Conventional + Oral L-arginine 0.1 mg.kg-1 daily), and sildenafil group (Conventional + Oral sildenafil 0.25 mg.kg-1 two times a day) for 60 days. Tricuspid Regurgitant Jet Velocity (TRJV) with Doppler echocardiography along with serum levels of NO, asymmetric dimethylarginine (ADMA), interleukin 1-beta (IL-1β), E-selectin, and visfatin were followed-up at baseline, 30, and 60 days after treatment. Both drugs reduced the TRJV significantly. NO was significantly higher in both L-arginine and sildenafil groups after 60 days compared to baseline, while visfatin levels were lower. Only L-arginine reduced ADMA levels compared to baseline, while sildenafil did not. E-selectin and IL-1β levels did not change remarkably by both drugs. NO and TRJV showed significant negative correlations in both treatment groups.
Conclusion: L-arginine and sildenafil could clinically ameliorate chronic PHT whereas, L-arginine showed superiority to sildenafil on some biochemical markers.
Introduction: Cholesterol efflux capacity (CEC) is impaired following acute myocardial infarction (AMI). CSL112 is an intravenous preparation of human plasma-derived apoA-I formulated with phosphatidylcholine (PC). CSL112 is intended to improve CEC and thereby prevent early recurrent cardiovascular events following AMI. AEGIS-I (ApoA-I Event Reducing in Ischemic Syndromes I) was a multicenter, randomized, double-blind, placebo-controlled, dose-ranging phase 2b study, designed to evaluate the hepatic and renal safety of CSL112. Here, we report an analysis of a pharmacokinetic (PK) and pharmacodynamic (PD) substudy of AEGIS-I.
Methods: AMI patients were stratified by renal function and randomized 3:3:2 to 4, weekly, 2-hour infusions of low- and high-dose (2 g and 6 g) CSL112, or placebo. PK/PD assessments included plasma concentrations of apoA-I and PC, and measures of total and ABCA1-dependent CEC, as well as lipids/lipoproteins including high density lipoprotein cholesterol (HDL-C), non-HDL-C, low density lipoprotein cholesterol (LDL-C), ApoB, and triglycerides. Inflammatory and cardio-metabolic biomarkers were also evaluated.
Results: The substudy included 63 subjects from AEGIS-I. CSL112 infusions resulted in rapid, dose-dependent increases in baseline corrected apoA-I and PC, which peaked at the end of the infusion (Tmax ≈ 2 hours). Similarly, there was a dose-dependent elevation in both total CEC and ABCA1-mediated CEC. Mild renal impairment did not affect the PK or PD of CSL112. CSL112 administration was also associated with an increase in plasma levels of HDL-C but not non-HDL-C, LDL-C, apoB, or triglycerides. No dose-effects on inflammatory or cardio-metabolic biomarkers were observed.
Conclusion: Among patients with AMI, impaired CEC was rapidly elevated by CSL112 infusions in a dose-dependent fashion, along with an increase in apoA-I plasma concentrations. Findings from the current sub-study of the AEGIS-I support a potential atheroprotective benefit of CSL112 for AMI patients.
Introduction: Ischemic postconditioning (IPCT) represents one of the several therapeutic strategies to attenuate ischemic reperfusion injury (IR) after carotid endarterectomy (CEA). We here present the first in-human study of IPCT in carotid surgery.
Methods: The study represents an observational case-control study, with the data collected in our Institution carotid database. From December 2015 to December 2020, a total of 300 patients were included in our study; IPCT group consisted of 148 patients in whom ischemic postconditioning was performed while control group consisted of 152 patients in whom IPCT was not performed. Indications for IPCT technique were: severe unilateral internal carotid artery (ICA) stenosis (>90%), severe bilateral ICA stenosis (>80%), severe ICA stenosis (>80%) with contralateral ICA occlusion and ICA subocclusion. IPCT was performed by applying 6 cycles of 30 sec reperfusion (declamping of ICA)/30 sec ischemia (clamping of ICA) after finishing the procedure and initial declamping. Two groups of patients were compared in terms of occurrence of intrahospital and early postoperative stroke, TIA (transient ischemic attack) and neurologic morbidity.
Results: Cumulative incidence of intrahospital postoperative stroke or TIA was significantly higher in the control group (5.3% vs 0.7%, P = .036). According to carotid plaque characteristics, patients in the IPCT group had significantly more frequent presence of heterogenous plaque, as well as ulcerated plaque, which was associated with the absence of postoperative stroke and significantly lower cumulative rate of TIA/stroke when compared to the control group (43.9% vs 8% and 47.3% vs 1.5%). During the follow-up period of 1 month after the surgery, there were no cases of stroke, TIA and deaths due to neurological causes in both groups of patients.
Conclusion: Our results showed that IPCT significantly reduced the incidence of postoperative cerebral ischemic complications after CEA in high-risk patients for IR injury when compared to the control group.
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease (CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dysmetabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most components of the "cardiometabolic continuum" and consequently help reduce the need for polypharmacy. In this review, we highlight the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs independently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1 RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1 RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the metabolic component predominates, and whether the benefits outweigh any potential harm.
Introduction: Studies suggest that non-alcoholic fatty liver disease (NAFLD) is associated with an independent risk of cardiovascular disease (CVD). We utilized a large cohort of patients undergoing myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) to determine the association between alanine aminotransferase (ALT) as a surrogate marker for presumed NAFLD, and the presence of myocardial ischemia and mortality.
Methods: We retrospectively assessed SPECT-MPI results and medical records of individuals evaluated between 1997 and 2008. We excluded patients with known non-NAFLD liver diseases, ALT values <17 or >340 U/L and absent liver tests. Elevated ALT cases were classified as presumed NAFLD. The primary endpoint was abnormal SPECT-MPI. Secondary endpoints included cardiac death, acute myocardial infarction and all-cause mortality.
Results: Of 26,034 patients who underwent SPECT-MPI, 11,324 met inclusion criteria. 1635 (14.4%) patients had elevated ALT. SPECT-MPI results did not differ significantly between subjects with elevated ALT and controls. Elevated ALT was associated with increased risk for the composite endpoint of cardiac death or acute myocardial infarction at 5-year follow-up (hazard ratio [HR] 1.3, 95% confidence interval [CI] 1.01-1.67) and in all-cause mortality (HR 1.27, CI 1.02-1.58) but only in patients with normal SPECT-MPI.
Conclusions: The long-term mortality of patients with abnormal SPECT-MPI is not modulated by ALT, likely reflecting an already high risk and established CVD. However, patients with normal SPECT-MPI are at increased risk for a future cardiac event if they have an elevated ALT level, suggesting an important role for NAFLD in earlier stages of CVD.