Pub Date : 2013-09-12DOI: 10.1007/s12154-013-0103-8
Amol B Salake, Aparna S Chothe, Shrikant S Nilewar, Madhavi Khilare, Rutuja S Meshram, Abhishek A Pandey, M K Kathiravan
Fungal infections pose a continuous and serious threat to human health and life. The intrinsic resistance has been observed in many genera of fungi. Many fungal infections are caused by opportunistic pathogens that may be endogenous (Candida infections) or acquired from the environment (Cryptococcus and Aspergillus infections). So, new therapeutic strategies are needed to combat various fungal infections. Fluconazole shows good antifungal activity with relatively low toxicity and is preferred as first line antifungal therapy, but it has suffered from severe drug resistance. So, there is a need to design novel analogues by modification of fluconazole-like structure. A novel series of phenyl(2H-tetrazol-5-yl)methanamine derivatives were synthesized by reaction of α-amino nitrile with sodium azide and ZnCl2 in presence of isopropyl alcohol. They were evaluated for antifungal activity against Candida albicans and Aspergillus niger and subjected to docking study against 1EA1.
{"title":"Design, synthesis, and evaluations of antifungal activity of novel phenyl(2H-tetrazol-5-yl)methanamine derivatives.","authors":"Amol B Salake, Aparna S Chothe, Shrikant S Nilewar, Madhavi Khilare, Rutuja S Meshram, Abhishek A Pandey, M K Kathiravan","doi":"10.1007/s12154-013-0103-8","DOIUrl":"https://doi.org/10.1007/s12154-013-0103-8","url":null,"abstract":"<p><p>Fungal infections pose a continuous and serious threat to human health and life. The intrinsic resistance has been observed in many genera of fungi. Many fungal infections are caused by opportunistic pathogens that may be endogenous (Candida infections) or acquired from the environment (Cryptococcus and Aspergillus infections). So, new therapeutic strategies are needed to combat various fungal infections. Fluconazole shows good antifungal activity with relatively low toxicity and is preferred as first line antifungal therapy, but it has suffered from severe drug resistance. So, there is a need to design novel analogues by modification of fluconazole-like structure. A novel series of phenyl(2H-tetrazol-5-yl)methanamine derivatives were synthesized by reaction of α-amino nitrile with sodium azide and ZnCl2 in presence of isopropyl alcohol. They were evaluated for antifungal activity against Candida albicans and Aspergillus niger and subjected to docking study against 1EA1. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"7 1","pages":"29-35"},"PeriodicalIF":0.0,"publicationDate":"2013-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0103-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-08-29DOI: 10.1007/s12154-013-0102-9
Ahmad Abolpour Homaei, Reyhaneh Sariri, Fabio Vianello, Roberto Stevanato
Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades. The most recent papers, patents, and reviews on immobilization strategies and application are reviewed.
{"title":"Enzyme immobilization: an update.","authors":"Ahmad Abolpour Homaei, Reyhaneh Sariri, Fabio Vianello, Roberto Stevanato","doi":"10.1007/s12154-013-0102-9","DOIUrl":"https://doi.org/10.1007/s12154-013-0102-9","url":null,"abstract":"<p><p>Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need for immobilization and different applications in industry, covering the last two decades. The most recent papers, patents, and reviews on immobilization strategies and application are reviewed. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 4","pages":"185-205"},"PeriodicalIF":0.0,"publicationDate":"2013-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0102-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-07-09DOI: 10.1007/s12154-013-0100-y
James I Murray, Alan C Spivey, Rudiger Woscholski
Signal transduction cascades in living systems are often controlled via post-translational phosphorylation and dephosphorylation of proteins. These processes are catalyzed in vivo by kinase and phosphatase enzymes, which consequently play an important role in many disease states, including cancer and immune system disorders. Current techniques for studying the phosphoproteome (isotopic labeling, chromatographic techniques, and phosphospecific antibodies), although undoubtedly very powerful, have yet to provide a generic tool for phosphoproteomic analysis despite the widespread utility such a technique would have. The use of small molecule organic catalysts that can promote selective phosphate esterification could provide a useful alternative to current state-of-the-art techniques for use in, e.g., the labeling and pull-down of phosphorylated proteins. This report reviews current techniques used for phosphoproteomic analysis and the recent use of small molecule peptide-based catalysts in phosphorylation reactions, indicating possible future applications for this type of catalyst as synthetic alternatives to phosphospecific antibodies for phosphoproteome analysis.
{"title":"Alternative synthetic tools to phospho-specific antibodies for phosphoproteome analysis: progress and prospects.","authors":"James I Murray, Alan C Spivey, Rudiger Woscholski","doi":"10.1007/s12154-013-0100-y","DOIUrl":"https://doi.org/10.1007/s12154-013-0100-y","url":null,"abstract":"<p><p>Signal transduction cascades in living systems are often controlled via post-translational phosphorylation and dephosphorylation of proteins. These processes are catalyzed in vivo by kinase and phosphatase enzymes, which consequently play an important role in many disease states, including cancer and immune system disorders. Current techniques for studying the phosphoproteome (isotopic labeling, chromatographic techniques, and phosphospecific antibodies), although undoubtedly very powerful, have yet to provide a generic tool for phosphoproteomic analysis despite the widespread utility such a technique would have. The use of small molecule organic catalysts that can promote selective phosphate esterification could provide a useful alternative to current state-of-the-art techniques for use in, e.g., the labeling and pull-down of phosphorylated proteins. This report reviews current techniques used for phosphoproteomic analysis and the recent use of small molecule peptide-based catalysts in phosphorylation reactions, indicating possible future applications for this type of catalyst as synthetic alternatives to phosphospecific antibodies for phosphoproteome analysis. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 4","pages":"175-84"},"PeriodicalIF":0.0,"publicationDate":"2013-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0100-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-19DOI: 10.1007/s12154-013-0098-1
{"title":"JOCB Bulletin.","authors":"","doi":"10.1007/s12154-013-0098-1","DOIUrl":"https://doi.org/10.1007/s12154-013-0098-1","url":null,"abstract":"","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 3","pages":"155-9"},"PeriodicalIF":0.0,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0098-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-04DOI: 10.1007/s12154-013-0096-3
Jose Requejo-Isidro
Fluorescence nanoscopy refers to the experimental techniques and analytical methods used for fluorescence imaging at a resolution higher than conventional, diffraction-limited, microscopy. This review explains the concepts behind fluorescence nanoscopy and focuses on the latest and promising developments in acquisition techniques, labelling strategies to obtain highly detailed super-resolved images and in the quantitative methods to extract meaningful information from them.
{"title":"Fluorescence nanoscopy. Methods and applications.","authors":"Jose Requejo-Isidro","doi":"10.1007/s12154-013-0096-3","DOIUrl":"https://doi.org/10.1007/s12154-013-0096-3","url":null,"abstract":"<p><p>Fluorescence nanoscopy refers to the experimental techniques and analytical methods used for fluorescence imaging at a resolution higher than conventional, diffraction-limited, microscopy. This review explains the concepts behind fluorescence nanoscopy and focuses on the latest and promising developments in acquisition techniques, labelling strategies to obtain highly detailed super-resolved images and in the quantitative methods to extract meaningful information from them. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 3","pages":"97-120"},"PeriodicalIF":0.0,"publicationDate":"2013-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0096-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-06-01DOI: 10.1007/s12154-013-0099-0
Gillian F Whyte, Ramon Vilar, Rudiger Woscholski
Small molecules have long been used for the selective recognition of a wide range of analytes. The ability of these chemical receptors to recognise and bind to specific targets mimics certain biological processes (such as protein-substrate interactions) and has therefore attracted recent interest. Due to the abundance of biological molecules possessing polyhydroxy motifs, boronic acids-which form five-membered boronate esters with diols-have become increasingly popular in the synthesis of small chemical receptors. Their targets include biological materials and natural products including phosphatidylinositol bisphosphate, saccharides and polysaccharides, nucleic acids, metal ions and the neurotransmitter dopamine. This review will focus on the many ways in which small chemical receptors based on boronic acids have been used as biochemical tools for various purposes, including sensing and detection of analytes, interference in signalling pathways, enzyme inhibition and cell delivery systems. The most recent developments in each area will be highlighted.
{"title":"Molecular recognition with boronic acids-applications in chemical biology.","authors":"Gillian F Whyte, Ramon Vilar, Rudiger Woscholski","doi":"10.1007/s12154-013-0099-0","DOIUrl":"10.1007/s12154-013-0099-0","url":null,"abstract":"<p><p>Small molecules have long been used for the selective recognition of a wide range of analytes. The ability of these chemical receptors to recognise and bind to specific targets mimics certain biological processes (such as protein-substrate interactions) and has therefore attracted recent interest. Due to the abundance of biological molecules possessing polyhydroxy motifs, boronic acids-which form five-membered boronate esters with diols-have become increasingly popular in the synthesis of small chemical receptors. Their targets include biological materials and natural products including phosphatidylinositol bisphosphate, saccharides and polysaccharides, nucleic acids, metal ions and the neurotransmitter dopamine. This review will focus on the many ways in which small chemical receptors based on boronic acids have been used as biochemical tools for various purposes, including sensing and detection of analytes, interference in signalling pathways, enzyme inhibition and cell delivery systems. The most recent developments in each area will be highlighted. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 4","pages":"161-74"},"PeriodicalIF":0.0,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787204/pdf/12154_2013_Article_99.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-05-23DOI: 10.1007/s12154-013-0097-2
Chaitanya Mulakayala, Babajan Banaganapalli, Naveen Mulakayala, Madhusudana Pulaganti, Anuradha C M, Suresh Kumar Chitta
The Bcl-2 family proteins include pro- and antiapoptotic factors acting as critical arbiters of apoptotic cell death decisions in most circumstances. Evasion of apoptosis is one of the hallmarks of cancer, relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins was observed in many cancers. Since Bax-mediated induction of apoptosis is a crucial mechanism in cancerous cells, we aimed at conducting in silico analysis on Bax in order to predict the possible interactions for anticancer agents. The present report depicts the binding mode of aloe-emodin and its structurally modified derivatives onto Bax. The structural information about the binding site of Bax for docked compounds obtained from this study could aid in screening and designing new anticancer agents or selective inhibitors for chemotherapy against Bax.
{"title":"Design and evaluation of new chemotherapeutics of aloe-emodin (AE) against the deadly cancer disease: an in silico study.","authors":"Chaitanya Mulakayala, Babajan Banaganapalli, Naveen Mulakayala, Madhusudana Pulaganti, Anuradha C M, Suresh Kumar Chitta","doi":"10.1007/s12154-013-0097-2","DOIUrl":"https://doi.org/10.1007/s12154-013-0097-2","url":null,"abstract":"<p><p>The Bcl-2 family proteins include pro- and antiapoptotic factors acting as critical arbiters of apoptotic cell death decisions in most circumstances. Evasion of apoptosis is one of the hallmarks of cancer, relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins was observed in many cancers. Since Bax-mediated induction of apoptosis is a crucial mechanism in cancerous cells, we aimed at conducting in silico analysis on Bax in order to predict the possible interactions for anticancer agents. The present report depicts the binding mode of aloe-emodin and its structurally modified derivatives onto Bax. The structural information about the binding site of Bax for docked compounds obtained from this study could aid in screening and designing new anticancer agents or selective inhibitors for chemotherapy against Bax. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 3","pages":"141-53"},"PeriodicalIF":0.0,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0097-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-05-21DOI: 10.1007/s12154-013-0095-4
Valerie T Tripp, Johnathan C Maza, Douglas D Young
The introduction of exogenous DNA into Escherichia coli is a cornerstone of molecular biology. Herein, we investigate two new mechanisms for bacterial transformation involving either the use of microwave irradiation or a freeze-thaw protocol in liquid nitrogen. Ultimately, both methods afforded successful transfer of plasmid DNA into bacterial cells, with the freeze-thaw technique yielding efficiencies of ~10(5). More importantly, both techniques effectively eliminated the need for the preparation of competent cells.
{"title":"Development of rapid microwave-mediated and low-temperature bacterial transformations.","authors":"Valerie T Tripp, Johnathan C Maza, Douglas D Young","doi":"10.1007/s12154-013-0095-4","DOIUrl":"https://doi.org/10.1007/s12154-013-0095-4","url":null,"abstract":"<p><p>The introduction of exogenous DNA into Escherichia coli is a cornerstone of molecular biology. Herein, we investigate two new mechanisms for bacterial transformation involving either the use of microwave irradiation or a freeze-thaw protocol in liquid nitrogen. Ultimately, both methods afforded successful transfer of plasmid DNA into bacterial cells, with the freeze-thaw technique yielding efficiencies of ~10(5). More importantly, both techniques effectively eliminated the need for the preparation of competent cells. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 3","pages":"135-40"},"PeriodicalIF":0.0,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-013-0095-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-13DOI: 10.1007/s12154-013-0094-5
Christopher P Toseland
This review provides an outline for fluorescent labeling of proteins. Fluorescent assays are very diverse providing the most sensitive and robust methods for observing biological processes. Here, different types of labels and methods of attachment are discussed in combination with their fluorescent properties. The advantages and disadvantages of these different methods are highlighted, allowing the careful selection for different applications, ranging from ensemble spectroscopy assays through to single-molecule measurements.
{"title":"Fluorescent labeling and modification of proteins.","authors":"Christopher P Toseland","doi":"10.1007/s12154-013-0094-5","DOIUrl":"10.1007/s12154-013-0094-5","url":null,"abstract":"<p><p>This review provides an outline for fluorescent labeling of proteins. Fluorescent assays are very diverse providing the most sensitive and robust methods for observing biological processes. Here, different types of labels and methods of attachment are discussed in combination with their fluorescent properties. The advantages and disadvantages of these different methods are highlighted, allowing the careful selection for different applications, ranging from ensemble spectroscopy assays through to single-molecule measurements. </p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":"6 3","pages":"85-95"},"PeriodicalIF":0.0,"publicationDate":"2013-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691395/pdf/12154_2013_Article_94.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32035097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-04-01Epub Date: 2013-01-26DOI: 10.1007/s12154-012-0090-1
Samuel Furse, Susan Liddell, Catharine A Ortori, Huw Williams, D Cameron Neylon, David J Scott, David A Barrett, David A Gray
In this paper we report the molecular profiling, lipidome and proteome, of the plant organelle known as an oil body (OB). The OB is remarkable in that it is able to perform its biological role (storage of triglycerides) whilst resisting the physical stresses caused by changes during desiccation (dehydration) and germination (rehydration). The molecular profile that confers such extraordinary physical stability on OBs was determined using a combination of (31)P/(1)H nuclear magnetic resonance (NMR), high-resolution mass spectrometry and nominal mass-tandem mass spectrometry for the lipidome, and gel-electrophoresis-chromatography-tandem mass spectrometry for the proteome. The integrity of the procedure for isolating OBs was supported by physical evidence from small-angle neutron-scattering experiments. Suppression of lipase activity was crucial in determining the lipidome. There is conclusive evidence that the latter is dominated by phosphatidylcholine (∼60 %) and phosphatidylinositol (∼20 %), with a variety of other head groups (∼20 %). The fatty acid profile of the surface monolayer comprised palmitic, linoleic and oleic acids (2:1:0.25, (1)H NMR) with only traces of other fatty acids (C24:0, C22:0, C18:0, C18:3, C16:2; by MS). The proteome is rich in oleosins (78 %) with the remainder being made up of caleosins and steroleosins. These data are sufficiently detailed to inform an update of the understood model of this organelle and can be used to inform the use of such components in a range of molecular biological, biotechnological and food industry applications. The techniques used in this study for profiling the lipidome throw a new light on the lipid profile of plant cellular compartments.
{"title":"The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower).","authors":"Samuel Furse, Susan Liddell, Catharine A Ortori, Huw Williams, D Cameron Neylon, David J Scott, David A Barrett, David A Gray","doi":"10.1007/s12154-012-0090-1","DOIUrl":"https://doi.org/10.1007/s12154-012-0090-1","url":null,"abstract":"<p><p>In this paper we report the molecular profiling, lipidome and proteome, of the plant organelle known as an oil body (OB). The OB is remarkable in that it is able to perform its biological role (storage of triglycerides) whilst resisting the physical stresses caused by changes during desiccation (dehydration) and germination (rehydration). The molecular profile that confers such extraordinary physical stability on OBs was determined using a combination of (31)P/(1)H nuclear magnetic resonance (NMR), high-resolution mass spectrometry and nominal mass-tandem mass spectrometry for the lipidome, and gel-electrophoresis-chromatography-tandem mass spectrometry for the proteome. The integrity of the procedure for isolating OBs was supported by physical evidence from small-angle neutron-scattering experiments. Suppression of lipase activity was crucial in determining the lipidome. There is conclusive evidence that the latter is dominated by phosphatidylcholine (∼60 %) and phosphatidylinositol (∼20 %), with a variety of other head groups (∼20 %). The fatty acid profile of the surface monolayer comprised palmitic, linoleic and oleic acids (2:1:0.25, (1)H NMR) with only traces of other fatty acids (C24:0, C22:0, C18:0, C18:3, C16:2; by MS). The proteome is rich in oleosins (78 %) with the remainder being made up of caleosins and steroleosins. These data are sufficiently detailed to inform an update of the understood model of this organelle and can be used to inform the use of such components in a range of molecular biological, biotechnological and food industry applications. The techniques used in this study for profiling the lipidome throw a new light on the lipid profile of plant cellular compartments.</p>","PeriodicalId":15296,"journal":{"name":"Journal of Chemical Biology","volume":" ","pages":"63-76"},"PeriodicalIF":0.0,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12154-012-0090-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40228370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}