首页 > 最新文献

Systems Immunology最新文献

英文 中文
The fundamentals of statistical data analysis 统计数据分析的基本原理
Pub Date : 2018-09-03 DOI: 10.1201/9781315119847-3
W. Stewart
{"title":"The fundamentals of statistical data analysis","authors":"W. Stewart","doi":"10.1201/9781315119847-3","DOIUrl":"https://doi.org/10.1201/9781315119847-3","url":null,"abstract":"","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130603589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Introduction to basic concepts in immunology 介绍免疫学的基本概念
Pub Date : 2018-09-03 DOI: 10.1201/9781315119847-1
Roxana Khazen, S. Valitutti
{"title":"Introduction to basic concepts in immunology","authors":"Roxana Khazen, S. Valitutti","doi":"10.1201/9781315119847-1","DOIUrl":"https://doi.org/10.1201/9781315119847-1","url":null,"abstract":"","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134064905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial kinetics in immunological modeling 免疫学模型中的空间动力学
Pub Date : 2018-09-03 DOI: 10.1201/9781315119847-9
D. Coombs, B. Goldstein
{"title":"Spatial kinetics in immunological modeling","authors":"D. Coombs, B. Goldstein","doi":"10.1201/9781315119847-9","DOIUrl":"https://doi.org/10.1201/9781315119847-9","url":null,"abstract":"","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123128569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zen and the art of parameter estimation in systems biology 禅宗与系统生物学中参数估计的艺术
Pub Date : 2018-09-03 DOI: 10.1201/9781315119847-8
C. Myers
ed appropriately, the specific form of a mathematical model is irrelevant insofar as the numerical optimization of the cost function is concerned, as long as it can evaluate the least-squares deviation of a model from data for a given set of parameters θ . Optimizing an arbitrary nonlinear function of a set of variables is a widespread problem throughout all of science, and accordingly, much algorithmic and development work has been devoted to producing numerical tools capable of carrying out this essential computational task. Numerical optimization is something of an art: there is a vast set of different algorithms that one might possibly make use of, and determining which is most appropriate for a given problem can require a bit of experimentation. Perhaps the most relevant distinguishing feature among different algorithms are those that are capable of identifying global optima and those that make do with finding local optima. In some cases, there can be
适当地说,数学模型的具体形式与成本函数的数值优化是无关的,只要它能计算出给定参数集θ下模型与数据的最小二乘偏差。优化一组变量的任意非线性函数是一个贯穿所有科学的广泛问题,因此,许多算法和开发工作一直致力于生产能够执行这一基本计算任务的数值工具。数值优化是一门艺术:人们可能会使用大量不同的算法,确定最适合给定问题的算法可能需要一些实验。也许不同算法之间最相关的区别特征是那些能够识别全局最优点的算法和那些能够找到局部最优点的算法。在某些情况下,可能会有
{"title":"Zen and the art of parameter estimation in systems biology","authors":"C. Myers","doi":"10.1201/9781315119847-8","DOIUrl":"https://doi.org/10.1201/9781315119847-8","url":null,"abstract":"ed appropriately, the specific form of a mathematical model is irrelevant insofar as the numerical optimization of the cost function is concerned, as long as it can evaluate the least-squares deviation of a model from data for a given set of parameters θ . Optimizing an arbitrary nonlinear function of a set of variables is a widespread problem throughout all of science, and accordingly, much algorithmic and development work has been devoted to producing numerical tools capable of carrying out this essential computational task. Numerical optimization is something of an art: there is a vast set of different algorithms that one might possibly make use of, and determining which is most appropriate for a given problem can require a bit of experimentation. Perhaps the most relevant distinguishing feature among different algorithms are those that are capable of identifying global optima and those that make do with finding local optima. In some cases, there can be","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122526061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Population dynamics of host and pathogens 宿主和病原体的种群动态
Pub Date : 2018-09-03 DOI: 10.1201/9781315119847-16
A. Smith, R. Ribeiro, A. Perelson
{"title":"Population dynamics of host and pathogens","authors":"A. Smith, R. Ribeiro, A. Perelson","doi":"10.1201/9781315119847-16","DOIUrl":"https://doi.org/10.1201/9781315119847-16","url":null,"abstract":"","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125029857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis and modeling of single cell data 单细胞数据的分析和建模
Pub Date : 2018-09-03 DOI: 10.1201/9781315119847-10
Derya Altıntan, J. Diemer, H. Koeppl
{"title":"Analysis and modeling of single cell data","authors":"Derya Altıntan, J. Diemer, H. Koeppl","doi":"10.1201/9781315119847-10","DOIUrl":"https://doi.org/10.1201/9781315119847-10","url":null,"abstract":"","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129648925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An introduction to rule-based modeling of immune receptor signaling 基于规则的免疫受体信号模型的介绍
Pub Date : 2017-09-19 DOI: 10.1201/9781315119847-5
John A. P. Sekar, J. Faeder
Cells process external and internal signals through chemical interactions. Cells that constitute the immune system (e.g., antigen presenting cell, T-cell, B-cell, mast cell) can have different functions (e.g., adaptive memory, inflammatory response) depending on the type and number of receptor molecules on the cell surface and the specific intracellular signaling pathways activated by those receptors. Explicitly modeling and simulating kinetic interactions between molecules allows us to pose questions about the dynamics of a signaling network under various conditions. However, the application of chemical kinetics to biochemical signaling systems has been limited by the complexity of the systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune, PySB) is an approach to address this complexity. In this chapter, by application to the Fc$varepsilon$RI receptor system, we will explore the origins of complexity in macromolecular interactions, show how rule-based modeling can be used to address complexity, and demonstrate how to build a model in the BioNetGen framework. Open source BioNetGen software and documentation are available at this http URL
细胞通过化学相互作用处理外部和内部信号。构成免疫系统的细胞(如抗原提呈细胞、t细胞、b细胞、肥大细胞)可以根据细胞表面受体分子的类型和数量以及这些受体激活的特定细胞内信号通路而具有不同的功能(如适应性记忆、炎症反应)。明确建模和模拟分子之间的动力学相互作用使我们能够在各种条件下提出有关信号网络动力学的问题。然而,化学动力学在生化信号系统中的应用一直受到系统复杂性的限制。基于规则的建模(BioNetGen、Kappa、simune、PySB)是解决这种复杂性的一种方法。在本章中,通过应用于Fc$varepsilon$RI受体系统,我们将探索大分子相互作用中复杂性的起源,展示如何使用基于规则的建模来解决复杂性,并演示如何在BioNetGen框架中构建模型。开源BioNetGen软件和文档可在此http URL获得
{"title":"An introduction to rule-based modeling of immune receptor signaling","authors":"John A. P. Sekar, J. Faeder","doi":"10.1201/9781315119847-5","DOIUrl":"https://doi.org/10.1201/9781315119847-5","url":null,"abstract":"Cells process external and internal signals through chemical interactions. Cells that constitute the immune system (e.g., antigen presenting cell, T-cell, B-cell, mast cell) can have different functions (e.g., adaptive memory, inflammatory response) depending on the type and number of receptor molecules on the cell surface and the specific intracellular signaling pathways activated by those receptors. Explicitly modeling and simulating kinetic interactions between molecules allows us to pose questions about the dynamics of a signaling network under various conditions. However, the application of chemical kinetics to biochemical signaling systems has been limited by the complexity of the systems under consideration. Rule-based modeling (BioNetGen, Kappa, Simmune, PySB) is an approach to address this complexity. In this chapter, by application to the Fc$varepsilon$RI receptor system, we will explore the origins of complexity in macromolecular interactions, show how rule-based modeling can be used to address complexity, and demonstrate how to build a model in the BioNetGen framework. Open source BioNetGen software and documentation are available at this http URL","PeriodicalId":153035,"journal":{"name":"Systems Immunology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128440876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Systems Immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1