Pub Date : 2024-01-29DOI: 10.1186/s42397-023-00164-9
S. Majeed, M. T. Chaudhary, M. S. Mubarik, I. A. Rana, Muhammad Shaban, Daniel KY Tan, Yinhua Jia, X. Du, Lori Hinze, Muhammad Tehseen Azhar
{"title":"Genetics of biochemical attributes regulating morpho-physiology of upland cotton under high temperature conditions","authors":"S. Majeed, M. T. Chaudhary, M. S. Mubarik, I. A. Rana, Muhammad Shaban, Daniel KY Tan, Yinhua Jia, X. Du, Lori Hinze, Muhammad Tehseen Azhar","doi":"10.1186/s42397-023-00164-9","DOIUrl":"https://doi.org/10.1186/s42397-023-00164-9","url":null,"abstract":"","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140486486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1186/s42397-023-00162-x
Qian Qi, Ning Wang, Sijia Ruan, Noor Muhammad, Hengheng Zhang, Jianbin Shi, Qiang Dong, Qinghuan Xu, Meizhen Song, Gentu Yan, Xiling Zhang, Xiangru Wang
{"title":"Mepiquat chloride priming confers the ability of cotton seed to tolerate salt by promoting ABA-operated GABA signaling control of the ascorbate–glutathione cycle","authors":"Qian Qi, Ning Wang, Sijia Ruan, Noor Muhammad, Hengheng Zhang, Jianbin Shi, Qiang Dong, Qinghuan Xu, Meizhen Song, Gentu Yan, Xiling Zhang, Xiangru Wang","doi":"10.1186/s42397-023-00162-x","DOIUrl":"https://doi.org/10.1186/s42397-023-00162-x","url":null,"abstract":"","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1186/s42397-023-00161-y
Yanjun Zhang, Hezhong Dong
{"title":"Enhancing waterlogging tolerance in cotton through agronomic practices","authors":"Yanjun Zhang, Hezhong Dong","doi":"10.1186/s42397-023-00161-y","DOIUrl":"https://doi.org/10.1186/s42397-023-00161-y","url":null,"abstract":"","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138620369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1186/s42397-023-00158-7
Yongliang Liu, Feifei Tao, H. Yao, R. Kincaid
{"title":"Feasibility study of assessing cotton fiber maturity from near infrared hyperspectral imaging technique","authors":"Yongliang Liu, Feifei Tao, H. Yao, R. Kincaid","doi":"10.1186/s42397-023-00158-7","DOIUrl":"https://doi.org/10.1186/s42397-023-00158-7","url":null,"abstract":"","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139232495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of mepiquat chloride and plant population density on leaf photosynthesis and carbohydrate metabolism in upland cotton","authors":"Haihua Luo, Zhengxian Zhang, Jianfei Wu, Zhenjiang Wu, Tianwang Wen, F. Tang","doi":"10.1186/s42397-023-00157-8","DOIUrl":"https://doi.org/10.1186/s42397-023-00157-8","url":null,"abstract":"","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1186/s42397-023-00156-9
Beatriz S. Coelho, Suzany A. Leite, Mateus P. dos Santos, Raul N. C. Guedes, Cristina S. Bastos, Aldenise A. Moreira, João E. V. Bonfim, Maria A. Castellani
Abstract Background To control the boll weevil Anthonomus grandis grandis (Coleoptera: Curculionidae), a key pest of cotton in the Americas, insecticides have been intensively used to manage their populations, increasing selection pressure for resistant populations. Thus, this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion, profenophos + cypermethrin, and fipronil insecticides. Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia, northeastern Brazil. These populations were exposed to malathion, profenophos + cypermethrin mixture, and fipronil, at their respective maximum label dose for field applications. Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment. The control failure likelihood was determined after 48 h. Highest median lethal times ( LT 50 ) were observed for malathion and the profenophos + cypermethrin mixture. Resistance to at least one insecticide was detected in 11 populations; three populations were resistant to malathion and profenophos + cypermethrin; seven were resistant to all insecticides tested. The resistance levels were low (< 10-fold) for the three insecticides. Among 12 populations tested, 58% of them exhibited significant risk of control failure for the insecticides malathion and profenophos + cypermethrin. The insecticide fipronil was efficient for the control of the boll weevil in 83% of the populations. Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region. Thus, proper insecticide resistance management plans are necessary for the boll weevil in the region, particularly for malathion and profenophos + cypermethrin insecticides.
{"title":"Risk of control failure to insecticides malathion, profenophos + cypermethrin mixture, and fipronil in boll weevil (Coleoptera: Curculionidae) populations from Bahia, Brazil","authors":"Beatriz S. Coelho, Suzany A. Leite, Mateus P. dos Santos, Raul N. C. Guedes, Cristina S. Bastos, Aldenise A. Moreira, João E. V. Bonfim, Maria A. Castellani","doi":"10.1186/s42397-023-00156-9","DOIUrl":"https://doi.org/10.1186/s42397-023-00156-9","url":null,"abstract":"Abstract Background To control the boll weevil Anthonomus grandis grandis (Coleoptera: Curculionidae), a key pest of cotton in the Americas, insecticides have been intensively used to manage their populations, increasing selection pressure for resistant populations. Thus, this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion, profenophos + cypermethrin, and fipronil insecticides. Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia, northeastern Brazil. These populations were exposed to malathion, profenophos + cypermethrin mixture, and fipronil, at their respective maximum label dose for field applications. Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment. The control failure likelihood was determined after 48 h. Highest median lethal times ( LT 50 ) were observed for malathion and the profenophos + cypermethrin mixture. Resistance to at least one insecticide was detected in 11 populations; three populations were resistant to malathion and profenophos + cypermethrin; seven were resistant to all insecticides tested. The resistance levels were low (< 10-fold) for the three insecticides. Among 12 populations tested, 58% of them exhibited significant risk of control failure for the insecticides malathion and profenophos + cypermethrin. The insecticide fipronil was efficient for the control of the boll weevil in 83% of the populations. Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region. Thus, proper insecticide resistance management plans are necessary for the boll weevil in the region, particularly for malathion and profenophos + cypermethrin insecticides.","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.1186/s42397-023-00155-w
Shiming Liu, Stuart Gordon, Warwick Stiller
Abstract Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour. The question remains whether yarn prediction tools from textile research can serve as an alternative. In this study, using a dataset from three seasons of field testing recombinant inbred line population, Cottonspec, a software developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument (HVI), was used to select improved fibre quality and lint yield in the population. The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties. The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties. That was compared with selection based on HVI-measured fibre properties, and two composite fibre quality variables, namely, fibre quality index (FQI), and premium and discount (PD) points. The latter represents the net points of fibre length, strength, and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation. Results The population had large variations for lint yield, fibre properties, predicted yarn properties, and composite fibre quality values. Lint yield with all fibre quality traits was not correlated. When the selection was conducted first to keep those with improved fibre quality, and followed for high yields, a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties. They both exceeded the selection based on FQI and PD points. Conclusions The population contained elite segregants with improved yield and fibre properties, and Cottonspec predicted yarn quality is useful to effectively capture these elites. There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills, to draw better connectedness between fibre and yarn quality. This connection will support the entire cotton value chain research and evolution.
{"title":"Are yarn quality prediction tools useful in the breeding of high yielding and better fibre quality cotton (Gossypium hirsutum L.)?","authors":"Shiming Liu, Stuart Gordon, Warwick Stiller","doi":"10.1186/s42397-023-00155-w","DOIUrl":"https://doi.org/10.1186/s42397-023-00155-w","url":null,"abstract":"Abstract Background The approach of directly testing yarn quality to define fibre quality breeding objectives and progress the selection is attractive but difficult when considering the need for time and labour. The question remains whether yarn prediction tools from textile research can serve as an alternative. In this study, using a dataset from three seasons of field testing recombinant inbred line population, Cottonspec, a software developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for predicting ring spun yarn quality from fibre properties measured by High Volume Instrument (HVI), was used to select improved fibre quality and lint yield in the population. The population was derived from an advanced generation inter-crossing of four CSIRO conventional commercial varieties. The Cottonspec program was able to provide an integrated index of the fibre qualities affecting yarn properties. That was compared with selection based on HVI-measured fibre properties, and two composite fibre quality variables, namely, fibre quality index (FQI), and premium and discount (PD) points. The latter represents the net points of fibre length, strength, and micronaire based on the Premiums and Discounts Schedule used in the market while modified by the inclusion of elongation. Results The population had large variations for lint yield, fibre properties, predicted yarn properties, and composite fibre quality values. Lint yield with all fibre quality traits was not correlated. When the selection was conducted first to keep those with improved fibre quality, and followed for high yields, a large proportion in the resultant populations was the same between selections based on Cottonspec predicted yarn quality and HVI-measured fibre properties. They both exceeded the selection based on FQI and PD points. Conclusions The population contained elite segregants with improved yield and fibre properties, and Cottonspec predicted yarn quality is useful to effectively capture these elites. There is a need to further develop yarn quality prediction tools through collaborative efforts with textile mills, to draw better connectedness between fibre and yarn quality. This connection will support the entire cotton value chain research and evolution.","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135367719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-08DOI: 10.1186/s42397-023-00152-z
Joy Nyangasi Kirungu, Richard Odongo Magwanga, Margaret Linyerera Shiraku, Erick Okuto, Xiaoyan Cai, Yanchao Xu, Yuqing Hou, Stephen Gaya Agong’, Kunbo Wang, Yuhong Wang, Zhongli Zhou, Fang Liu
Abstract Background The cyclic nucleotide-gated channel ( CNGC ) gene family plays a significant role in the uptake of both essential and toxic cations, and has a role in enhancing tolerance to various forms of abiotic stresses as well as the modulation of the heavy metal toxicity to plant through the absorption of heavy metals. Results A complete genome-wide identification and functional characterization of the cotton CNGC genes was carried out, in which 55, 28, and 29 CNGC genes were identified in Gossypium hirsutum , G. raimondii , and G. arboreum , respectively. The protein encoded by the CNGC genes exhibited GRAVY value below zero, indicating their hydrophilic property. CNGC genes were unevenly distributed in 19 out of 26 chromosomes, in which the highest density were observed on Ah05, with 8 genes. High gene coverage was observed among the diploid cotton species, with CNGC genes mapped on all A chromosomes and on 11 out of 13 of D chromosomes. The majority of CNGC proteins were localized in the endoplasmic reticulum, nucleus, and plasma membrane. Gene expression analysis revealed the up-regulation of Gh_A01G0520 ( CNGC4 ) and Gh_D13G1974 ( CNGC5 ) across various forms of abiotic stresses. Moreover, down-regulation of Gh_A01G0520 ( CNGC4 ) and Gh_D13G1974 ( CNGC5 ) in CNGC s silenced plants caused the significantly reduced ability to tolerate drought and salt stresses. All CNGCs silenced plants were recorded to have significantly low content of antioxidants but relatively higher content of oxidant, including MDA and H 2 O 2 . Furthermore, SPAD, CMS (cell membrane stability), ELWL (excised leaf water loss), SDW (shoot dry matter weight), and RDW (root dry matter weight) were all lower in CNGCs silenced plants compared with the wild type plants. Conclusion Significant reduction in antioxidant content and negative effects of physiological and morphological characters in CNGCs silenced plants has revealed the novel role of CNGC genes in enhancing cell integrity under abiotic stress conditions. These results provide vital information that will expand our understanding of the CNGC gene family in cotton and other plants, thus promoting the integration of these genes in the development of the environmental resilient plants.
{"title":"Genome-wide identification and analysis of the CNGC gene family in upland cotton under multiple stress conditions","authors":"Joy Nyangasi Kirungu, Richard Odongo Magwanga, Margaret Linyerera Shiraku, Erick Okuto, Xiaoyan Cai, Yanchao Xu, Yuqing Hou, Stephen Gaya Agong’, Kunbo Wang, Yuhong Wang, Zhongli Zhou, Fang Liu","doi":"10.1186/s42397-023-00152-z","DOIUrl":"https://doi.org/10.1186/s42397-023-00152-z","url":null,"abstract":"Abstract Background The cyclic nucleotide-gated channel ( CNGC ) gene family plays a significant role in the uptake of both essential and toxic cations, and has a role in enhancing tolerance to various forms of abiotic stresses as well as the modulation of the heavy metal toxicity to plant through the absorption of heavy metals. Results A complete genome-wide identification and functional characterization of the cotton CNGC genes was carried out, in which 55, 28, and 29 CNGC genes were identified in Gossypium hirsutum , G. raimondii , and G. arboreum , respectively. The protein encoded by the CNGC genes exhibited GRAVY value below zero, indicating their hydrophilic property. CNGC genes were unevenly distributed in 19 out of 26 chromosomes, in which the highest density were observed on Ah05, with 8 genes. High gene coverage was observed among the diploid cotton species, with CNGC genes mapped on all A chromosomes and on 11 out of 13 of D chromosomes. The majority of CNGC proteins were localized in the endoplasmic reticulum, nucleus, and plasma membrane. Gene expression analysis revealed the up-regulation of Gh_A01G0520 ( CNGC4 ) and Gh_D13G1974 ( CNGC5 ) across various forms of abiotic stresses. Moreover, down-regulation of Gh_A01G0520 ( CNGC4 ) and Gh_D13G1974 ( CNGC5 ) in CNGC s silenced plants caused the significantly reduced ability to tolerate drought and salt stresses. All CNGCs silenced plants were recorded to have significantly low content of antioxidants but relatively higher content of oxidant, including MDA and H 2 O 2 . Furthermore, SPAD, CMS (cell membrane stability), ELWL (excised leaf water loss), SDW (shoot dry matter weight), and RDW (root dry matter weight) were all lower in CNGCs silenced plants compared with the wild type plants. Conclusion Significant reduction in antioxidant content and negative effects of physiological and morphological characters in CNGCs silenced plants has revealed the novel role of CNGC genes in enhancing cell integrity under abiotic stress conditions. These results provide vital information that will expand our understanding of the CNGC gene family in cotton and other plants, thus promoting the integration of these genes in the development of the environmental resilient plants.","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-07DOI: 10.1186/s42397-023-00154-x
Dinesh K. Saini, S. M. Impa, Donna McCallister, Gunvant B. Patil, Noureddine Abidi, Glen Ritchie, S. Y. Jaconis, Krishna S. V. Jagadish
Abstract Heat waves, and an increased number of warm days and nights, have become more prevalent in major agricultural regions of the world. Although well adapted to semi-arid regions, cotton is vulnerable to high temperatures, particularly during flowering and boll development. To maintain lint yield potential without compromising its quality under high-temperature stress, it is essential to understand the effects of heat stress on various stages of plant growth and development, and associated tolerance mechanisms. Despite ongoing efforts to gather data on the effects of heat stress on cotton growth and development, there remains a critical gap in understanding the distinct influence of high temperatures during the day and night on cotton yield and quality. Also, identifying mechanisms and target traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cotton for future uncertain climates. To bridge these knowledge gaps, we embarked on a rigorous and comprehensive review of published literature, delving into the impact of heat stress on cotton yields and the consequential losses in fiber quality. This review encompasses information on the effects of heat stress on growth, physiological, and biochemical responses, fertilization, cotton yield, and quality. Additionally, we discuss management options for minimizing heat stress-induced damage, and the benefits of integrating conventional and genomics-assisted breeding for developing heat-tolerant cotton cultivars. Finally, future research areas that need to be addressed to develop heat-resilient cotton are proposed.
{"title":"High day and night temperatures impact on cotton yield and quality—current status and future research direction","authors":"Dinesh K. Saini, S. M. Impa, Donna McCallister, Gunvant B. Patil, Noureddine Abidi, Glen Ritchie, S. Y. Jaconis, Krishna S. V. Jagadish","doi":"10.1186/s42397-023-00154-x","DOIUrl":"https://doi.org/10.1186/s42397-023-00154-x","url":null,"abstract":"Abstract Heat waves, and an increased number of warm days and nights, have become more prevalent in major agricultural regions of the world. Although well adapted to semi-arid regions, cotton is vulnerable to high temperatures, particularly during flowering and boll development. To maintain lint yield potential without compromising its quality under high-temperature stress, it is essential to understand the effects of heat stress on various stages of plant growth and development, and associated tolerance mechanisms. Despite ongoing efforts to gather data on the effects of heat stress on cotton growth and development, there remains a critical gap in understanding the distinct influence of high temperatures during the day and night on cotton yield and quality. Also, identifying mechanisms and target traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cotton for future uncertain climates. To bridge these knowledge gaps, we embarked on a rigorous and comprehensive review of published literature, delving into the impact of heat stress on cotton yields and the consequential losses in fiber quality. This review encompasses information on the effects of heat stress on growth, physiological, and biochemical responses, fertilization, cotton yield, and quality. Additionally, we discuss management options for minimizing heat stress-induced damage, and the benefits of integrating conventional and genomics-assisted breeding for developing heat-tolerant cotton cultivars. Finally, future research areas that need to be addressed to develop heat-resilient cotton are proposed.","PeriodicalId":15400,"journal":{"name":"Journal of Cotton Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135252720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}