首页 > 最新文献

Journal of Cosmology and Astroparticle Physics最新文献

英文 中文
Charged binaries in gravitational tides
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/028
Elisa Grilli, Marta Orselli, David Pereñiguez and Daniele Pica
Next-generation low-frequency interferometers are expected to detect binary systems near supermassive black holes, where tidal effects can alter significantly the binary's motion. This motivates a broader investigation of how external gravitational fields influence the dynamics of physical systems. In this work, we consider a charged black hole binary system subject to a gravitational tide. We first construct a stationary gravitational tide acting on a dyonic Reissner-Nordström black hole and, focusing on the extreme mass-ratio limit, we analyze the motion of a test particle. By calculating the particle's secular Hamiltonian, we obtain the ISCO and light ring tidal shifts in terms of explicit functions of the binary's parameters. Our results show that tidal corrections are suppressed as the black hole's charge increases, but they persist in the extremal limit yielding a finite contribution. This work paves the way towards studying tidal effects on other charged systems, such as topological stars.
{"title":"Charged binaries in gravitational tides","authors":"Elisa Grilli, Marta Orselli, David Pereñiguez and Daniele Pica","doi":"10.1088/1475-7516/2025/02/028","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/028","url":null,"abstract":"Next-generation low-frequency interferometers are expected to detect binary systems near supermassive black holes, where tidal effects can alter significantly the binary's motion. This motivates a broader investigation of how external gravitational fields influence the dynamics of physical systems. In this work, we consider a charged black hole binary system subject to a gravitational tide. We first construct a stationary gravitational tide acting on a dyonic Reissner-Nordström black hole and, focusing on the extreme mass-ratio limit, we analyze the motion of a test particle. By calculating the particle's secular Hamiltonian, we obtain the ISCO and light ring tidal shifts in terms of explicit functions of the binary's parameters. Our results show that tidal corrections are suppressed as the black hole's charge increases, but they persist in the extremal limit yielding a finite contribution. This work paves the way towards studying tidal effects on other charged systems, such as topological stars.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"10 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disclosing the catalog pulsars dominating the Galactic positron flux
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/029
Luca Orusa, Silvia Manconi, Fiorenza Donato and Mattia Di Mauro
The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsars and their nebulae can significantly contribute to the excess of the AMS-02 positron flux has been consolidated after the observation of a γ-ray emission at GeV and TeV energies of a few degree size around a few sources, that provide indirect evidence that electron and positron pairs are accelerated to very high energies from these sources. By modeling the emission from pulsars in the ATNF catalog, we find that combinations of positron emission from cataloged pulsars and secondary production can fit the observed AMS-02 data. Our results show that a small number of nearby, middle-aged pulsars, particularly B1055-52, Geminga (J0633+1746), and Monogem (B0656+14), dominate the positron emission, contributing up to 80% of the flux at energies above 100 GeV. From the fit to the data, we obtain a list of the most important sources for which we recommend multi-wavelength follow-up observations, particularly in the γ-ray and X-ray bands, to further constrain the injection and diffusion properties of positrons.
正电子的宇宙射线通量是由空间粒子光谱仪 AMS-02 高精度测量的。在观测到少数几个源周围几度大小的 GeV 和 TeV 能量的 γ 射线发射后,脉冲星及其星云可能对 AMS-02 正电子通量的过剩做出重要贡献的假设得到了证实,这间接证明了电子和正电子对从这些源加速到了非常高的能量。通过对 ATNF 星表中脉冲星的发射进行建模,我们发现来自星表中脉冲星的正电子发射和二次产生的组合能够与观测到的 AMS-02 数据相匹配。我们的结果表明,少数邻近的中年脉冲星,特别是B1055-52、Geminga (J0633+1746)和Monogem (B0656+14),在正电子发射中占主导地位,在能量高于100 GeV时贡献了高达80%的通量。通过对数据的拟合,我们得到了一份最重要的源清单,建议对这些源进行多波长跟踪观测,特别是在γ射线和X射线波段,以进一步约束正电子的注入和扩散特性。
{"title":"Disclosing the catalog pulsars dominating the Galactic positron flux","authors":"Luca Orusa, Silvia Manconi, Fiorenza Donato and Mattia Di Mauro","doi":"10.1088/1475-7516/2025/02/029","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/029","url":null,"abstract":"The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsars and their nebulae can significantly contribute to the excess of the AMS-02 positron flux has been consolidated after the observation of a γ-ray emission at GeV and TeV energies of a few degree size around a few sources, that provide indirect evidence that electron and positron pairs are accelerated to very high energies from these sources. By modeling the emission from pulsars in the ATNF catalog, we find that combinations of positron emission from cataloged pulsars and secondary production can fit the observed AMS-02 data. Our results show that a small number of nearby, middle-aged pulsars, particularly B1055-52, Geminga (J0633+1746), and Monogem (B0656+14), dominate the positron emission, contributing up to 80% of the flux at energies above 100 GeV. From the fit to the data, we obtain a list of the most important sources for which we recommend multi-wavelength follow-up observations, particularly in the γ-ray and X-ray bands, to further constrain the injection and diffusion properties of positrons.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"129 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super sample covariance and the volume scaling of galaxy survey covariance matrices 超级样本协方差和星系巡天协方差矩阵的体积缩放
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/022
Greg Schreiner, Alex Krolewski, Shahab Joudaki and Will J. Percival
Super sample covariance (SSC) is important when estimating covariance matrices using a set of mock catalogues for galaxy surveys. If the underlying cosmological simulations do not include the variation in background parameters appropriate for the simulation sizes, then the scatter between mocks will be missing the SSC component. The coupling between large and small modes due to non-linear structure growth makes this pernicious on small scales. We compare different methods for generating ensembles of mocks with SSC built in to the covariance, and contrast against methods where the SSC component is computed and added to the covariance separately. We find that several perturbative expansions, developed to derive background fluctuations, give similar results. We then consider scaling covariance matrices calculated for simulations of different volumes to improve the accuracy of covariance matrix estimation for a given amount of computational time. On large scales, we find that the primary limitation is from the discrete number of modes contributing to the measured power spectrum, and we propose a new method for correcting this effect. Correct implementation of SSC and the effect of discrete mode numbers allows covariance matrices created from mocks to be scaled between volumes, potentially leading to a significant saving on computational resources when producing covariance matrices. We argue that a sub-percent match is difficult to achieve because of the effects of modes on scales between the box sizes, which cannot be easily included. Even so, when working in real space and cubic boxes, we show that a 3% match in the dark matter power spectrum covariance is achievable on scales of interest for current surveys scaling the simulation volume by 512×, costing a small fraction of the computational time of running full-sized simulations. This is comparable to the agreement between analytic and mock-based covariance estimates to be used with DESI Y1 results.
在使用一组模拟星表估算星系巡天的协方差矩阵时,超级样本协方差(SSC)是非常重要的。如果基础宇宙学模拟不包括与模拟大小相适应的背景参数变化,那么模拟之间的散差就会缺少 SSC 分量。由于非线性结构增长导致的大小模式之间的耦合,使得这在小尺度上是有害的。我们比较了生成内置于协方差的 SSC 模拟集合的不同方法,并与单独计算 SSC 分量并将其加入协方差的方法进行了对比。我们发现,为推导背景波动而开发的几种微扰展开法都给出了相似的结果。然后,我们考虑对不同体积的模拟计算的协方差矩阵进行缩放,以提高在给定计算时间内协方差矩阵估计的精度。在大尺度上,我们发现主要的限制来自于对测量功率谱有贡献的离散模式数量,因此我们提出了一种新方法来纠正这种影响。正确实施 SSC 和离散模式数的影响,可以使模拟生成的协方差矩阵在不同卷之间进行缩放,从而在生成协方差矩阵时大大节省计算资源。我们认为,亚百分比的匹配很难实现,因为模式会影响方框大小之间的比例,而这种影响不容易包括在内。即便如此,当在真实空间和立方体盒子中工作时,我们表明在当前勘测所关注的尺度上,暗物质功率谱协方差的3%匹配是可以实现的,将模拟体积放大512倍,所花费的计算时间只是运行全尺寸模拟的一小部分。这与用于 DESI Y1 结果的分析和基于模拟的协方差估计值之间的一致性相当。
{"title":"Super sample covariance and the volume scaling of galaxy survey covariance matrices","authors":"Greg Schreiner, Alex Krolewski, Shahab Joudaki and Will J. Percival","doi":"10.1088/1475-7516/2025/02/022","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/022","url":null,"abstract":"Super sample covariance (SSC) is important when estimating covariance matrices using a set of mock catalogues for galaxy surveys. If the underlying cosmological simulations do not include the variation in background parameters appropriate for the simulation sizes, then the scatter between mocks will be missing the SSC component. The coupling between large and small modes due to non-linear structure growth makes this pernicious on small scales. We compare different methods for generating ensembles of mocks with SSC built in to the covariance, and contrast against methods where the SSC component is computed and added to the covariance separately. We find that several perturbative expansions, developed to derive background fluctuations, give similar results. We then consider scaling covariance matrices calculated for simulations of different volumes to improve the accuracy of covariance matrix estimation for a given amount of computational time. On large scales, we find that the primary limitation is from the discrete number of modes contributing to the measured power spectrum, and we propose a new method for correcting this effect. Correct implementation of SSC and the effect of discrete mode numbers allows covariance matrices created from mocks to be scaled between volumes, potentially leading to a significant saving on computational resources when producing covariance matrices. We argue that a sub-percent match is difficult to achieve because of the effects of modes on scales between the box sizes, which cannot be easily included. Even so, when working in real space and cubic boxes, we show that a 3% match in the dark matter power spectrum covariance is achievable on scales of interest for current surveys scaling the simulation volume by 512×, costing a small fraction of the computational time of running full-sized simulations. This is comparable to the agreement between analytic and mock-based covariance estimates to be used with DESI Y1 results.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"208 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gravitational radiation from binary systems in unimodular gravity 单模引力下双星系统的引力辐射
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/027
Indranil Chakraborty, Soumya Jana and Subhendra Mohanty
Unimodular gravity (UG) is classically considered identical to General Relativity (GR). However, due to restricted diffeomorphism symmetry, the Bianchi identites do not lead to the conservation of energy-momentum tensor. Thus, the conservation of energy-momentum tensor needs to be separately assumed in order to reconcile with GR. Relaxing this assumption, one finds that the conservation violation can lead to differences with GR, which can be subsequently examined in astrophysical and cosmological scenarios. To this end, we examine the predictions of UG in the context of binary systems emitting gravitational radiation. Primarily, we show how the field equations involve a diffusion function which quantifies the measure of non-conservation. Due to this violation, the dispersion relation is modified. Incorporating these changes, we provide an expression for the energy loss by the binaries, which reduces to Peters-Mathews result in the GR limit. Using binary pulsar data, we constrain the theory parameter ζ (which signifies non-conservation) by determining the rate of orbital decay. The strongest constrain on ζ comes out to be |ζ|≤ 5× 10-4 which is better by an order of magnitude than an existing equivalent constraint coming from the tidal deformability of the neutron stars.
单模态引力(UG)在经典上被认为与广义相对论(GR)相同。然而,由于受限衍射对称性,比安奇等值线并不导致能动张量守恒。因此,需要单独假设能量-动量张量守恒,才能与 GR 相一致。放宽这一假设,我们会发现违反守恒会导致与 GR 的差异,这可以随后在天体物理学和宇宙学场景中进行检验。为此,我们以发射引力辐射的双星系统为背景,研究了 UG 的预测。首先,我们展示了场方程如何涉及扩散函数,该函数量化了非守恒的程度。由于这种违反,弥散关系被修改了。结合这些变化,我们提供了双星能量损耗的表达式,并将其还原为 GR 限度下的彼得斯-马修斯(Peters-Mathews)结果。利用双脉冲星数据,我们通过确定轨道衰变率来约束理论参数ζ(表示非守恒)。对ζ的最强约束是|ζ|≤ 5× 10-4,比现有的来自中子星潮汐变形的等效约束好一个数量级。
{"title":"Gravitational radiation from binary systems in unimodular gravity","authors":"Indranil Chakraborty, Soumya Jana and Subhendra Mohanty","doi":"10.1088/1475-7516/2025/02/027","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/027","url":null,"abstract":"Unimodular gravity (UG) is classically considered identical to General Relativity (GR). However, due to restricted diffeomorphism symmetry, the Bianchi identites do not lead to the conservation of energy-momentum tensor. Thus, the conservation of energy-momentum tensor needs to be separately assumed in order to reconcile with GR. Relaxing this assumption, one finds that the conservation violation can lead to differences with GR, which can be subsequently examined in astrophysical and cosmological scenarios. To this end, we examine the predictions of UG in the context of binary systems emitting gravitational radiation. Primarily, we show how the field equations involve a diffusion function which quantifies the measure of non-conservation. Due to this violation, the dispersion relation is modified. Incorporating these changes, we provide an expression for the energy loss by the binaries, which reduces to Peters-Mathews result in the GR limit. Using binary pulsar data, we constrain the theory parameter ζ (which signifies non-conservation) by determining the rate of orbital decay. The strongest constrain on ζ comes out to be |ζ|≤ 5× 10-4 which is better by an order of magnitude than an existing equivalent constraint coming from the tidal deformability of the neutron stars.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"2 7 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free streaming in warm wave dark matter
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/025
Siyang Ling and Mustafa A. Amin
We provide a framework for numerically computing the effects of free-streaming in scalar fields produced after inflation. First, we provide a detailed prescription for setting up initial conditions in the field. This prescription allows us to specify the power spectra of the fields (peaked on subhorizon length scales and without a homogeneous field mode), and importantly, also correctly reproduces the behaviour of density perturbations on large length scales consistent with superhorizon adiabatic perturbations. We then evolve the fields using a spatially inhomogeneous Klein-Gordon equation, including the effects of expansion and radiation-sourced metric perturbations. We show how gravity enhances, and how free streaming erases the initially adiabatic density perturbations of the field, revealing more of the underlying, non-evolving, white-noise isocurvature density contrast. Furthermore, we explore the effect of non-gravitational self-interactions of the field, including oscillon formation, on the suppression dynamics. As part of this paper, we make our code, Cosmic-Fields-Lite (CFL) , publicly available. For observationally accessible signatures, our work is particularly relevant for structure formation in light/ultralight dark matter fields.
{"title":"Free streaming in warm wave dark matter","authors":"Siyang Ling and Mustafa A. Amin","doi":"10.1088/1475-7516/2025/02/025","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/025","url":null,"abstract":"We provide a framework for numerically computing the effects of free-streaming in scalar fields produced after inflation. First, we provide a detailed prescription for setting up initial conditions in the field. This prescription allows us to specify the power spectra of the fields (peaked on subhorizon length scales and without a homogeneous field mode), and importantly, also correctly reproduces the behaviour of density perturbations on large length scales consistent with superhorizon adiabatic perturbations. We then evolve the fields using a spatially inhomogeneous Klein-Gordon equation, including the effects of expansion and radiation-sourced metric perturbations. We show how gravity enhances, and how free streaming erases the initially adiabatic density perturbations of the field, revealing more of the underlying, non-evolving, white-noise isocurvature density contrast. Furthermore, we explore the effect of non-gravitational self-interactions of the field, including oscillon formation, on the suppression dynamics. As part of this paper, we make our code, Cosmic-Fields-Lite (CFL) , publicly available. For observationally accessible signatures, our work is particularly relevant for structure formation in light/ultralight dark matter fields.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"22 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warm Hawking relics from primordial black hole domination
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/026
Christopher J. Shallue, Julian B. Muñoz and Gordan Z. Krnjaic
We study the cosmological impact of warm, dark-sector relic particles produced as Hawking radiation in a primordial-black-hole-dominated universe before big bang nucleosynthesis. If these dark-sector particles are stable, they would survive to the present day as Hawking relicsand modify the growth of cosmological structure. We show that such relics are produced with much larger momenta, but in smaller quantities than the familiar thermal relics considered in standard cosmology. Consequently, Hawking relics with keV–MeV masses affect the growth of large-scale structure in a similar way to eV-scale thermal relics like massive neutrinos. We model their production and evolution, and show that their momentum distributions are broader than comparable relics with thermal distributions. Warm Hawking relics affect the growth of cosmological perturbations and we constrain their abundance to be less than 2% of the dark matter over a broad range of their viable parameter space. Finally, we examine how future measurements of the matter power spectrum can distinguish Hawking relics from thermal particles.
我们研究了在大爆炸核合成之前,以原始黑洞为主的宇宙中作为霍金辐射产生的暖暗区遗迹粒子对宇宙学的影响。如果这些暗区粒子是稳定的,它们就会作为霍金遗迹存活至今,并改变宇宙学结构的增长。我们的研究表明,与标准宇宙学中我们熟悉的热遗物相比,这种遗物产生的时刻要大得多,但数量却更少。因此,质量为 keV-MeV 的霍金遗迹与大质量中微子等 eV 尺度的热遗迹以类似的方式影响着大尺度结构的增长。我们对它们的产生和演化进行了建模,结果表明它们的动量分布比具有热分布的同类遗迹更宽。暖霍金遗迹会影响宇宙学扰动的增长,我们将它们的丰度限制在其可行参数空间大范围内暗物质的2%以下。最后,我们研究了未来的物质功率谱测量如何将霍金遗迹与热粒子区分开来。
{"title":"Warm Hawking relics from primordial black hole domination","authors":"Christopher J. Shallue, Julian B. Muñoz and Gordan Z. Krnjaic","doi":"10.1088/1475-7516/2025/02/026","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/026","url":null,"abstract":"We study the cosmological impact of warm, dark-sector relic particles produced as Hawking radiation in a primordial-black-hole-dominated universe before big bang nucleosynthesis. If these dark-sector particles are stable, they would survive to the present day as Hawking relicsand modify the growth of cosmological structure. We show that such relics are produced with much larger momenta, but in smaller quantities than the familiar thermal relics considered in standard cosmology. Consequently, Hawking relics with keV–MeV masses affect the growth of large-scale structure in a similar way to eV-scale thermal relics like massive neutrinos. We model their production and evolution, and show that their momentum distributions are broader than comparable relics with thermal distributions. Warm Hawking relics affect the growth of cosmological perturbations and we constrain their abundance to be less than 2% of the dark matter over a broad range of their viable parameter space. Finally, we examine how future measurements of the matter power spectrum can distinguish Hawking relics from thermal particles.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"30 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/021
A.G. Adame, J. Aguilar, S. Ahlen, S. Alam, D.M. Alexander, M. Alvarez, O. Alves, A. Anand, U. Andrade, E. Armengaud, S. Avila, A. Aviles, H. Awan, B. Bahr-Kalus, S. Bailey, C. Baltay, A. Bault, J. Behera, S. BenZvi, A. Bera, F. Beutler, D. Bianchi, C. Blake, R. Blum, S. Brieden, A. Brodzeller, D. Brooks, E. Buckley-Geer, E. Burtin, R. Calderon, R. Canning, A. Carnero Rosell, R. Cereskaite, J.L. Cervantes-Cota, S. Chabanier, E. Chaussidon, J. Chaves-Montero, S. Chen, X. Chen, T. Claybaugh, S. Cole, A. Cuceu, T.M. Davis, K. Dawson, A. de la Macorra, A. de Mattia, N. Deiosso, A. Dey, B. Dey, Z. Ding, P. Doel, J. Edelstein, S. Eftekharzadeh, D.J. Eisenstein, A. Elliott, P. Fagrelius, K. Fanning, S. Ferraro, J. Ereza, N. Findlay, B. Flaugher, A. Font-Ribera, D. Forero-Sánchez, J.E. Forero-Romero, C.S. Frenk, C. Garcia-Quintero, E. Gaztañaga, H. Gil-Marín, S.Gontcho A. Gontcho, A.X. Gonzalez-Morales, V. Gonzalez-Perez, C. Gordon, D. Green, D. Gruen, R. Gsponer, G. Gutierrez, J. Guy..
We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-α forest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 < z < 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requires H0=(68.52±0.62) km s-1 Mpc-1. In conjunction with CMB anisotropies from Planck and CMB lensing data from Planck and ACT, we find Ωm=0.307± 0.005 and H0=(67.97±0.38) km s-1 Mpc-1. Extending the baseline model with a constant dark energy equation of state parameter w, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised by w0 and wa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually prefer w0 > -1 and wa < 0. This preference is 2.6σ for the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σ or 3.9σ levels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑ mν free, combining the DESI and CMB data yields an upper limit ∑ mν < 0.072 (0.113) eV at 95% confidence for a ∑ mν > 0 (∑ mν > 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.
{"title":"DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations","authors":"A.G. Adame, J. Aguilar, S. Ahlen, S. Alam, D.M. Alexander, M. Alvarez, O. Alves, A. Anand, U. Andrade, E. Armengaud, S. Avila, A. Aviles, H. Awan, B. Bahr-Kalus, S. Bailey, C. Baltay, A. Bault, J. Behera, S. BenZvi, A. Bera, F. Beutler, D. Bianchi, C. Blake, R. Blum, S. Brieden, A. Brodzeller, D. Brooks, E. Buckley-Geer, E. Burtin, R. Calderon, R. Canning, A. Carnero Rosell, R. Cereskaite, J.L. Cervantes-Cota, S. Chabanier, E. Chaussidon, J. Chaves-Montero, S. Chen, X. Chen, T. Claybaugh, S. Cole, A. Cuceu, T.M. Davis, K. Dawson, A. de la Macorra, A. de Mattia, N. Deiosso, A. Dey, B. Dey, Z. Ding, P. Doel, J. Edelstein, S. Eftekharzadeh, D.J. Eisenstein, A. Elliott, P. Fagrelius, K. Fanning, S. Ferraro, J. Ereza, N. Findlay, B. Flaugher, A. Font-Ribera, D. Forero-Sánchez, J.E. Forero-Romero, C.S. Frenk, C. Garcia-Quintero, E. Gaztañaga, H. Gil-Marín, S.Gontcho A. Gontcho, A.X. Gonzalez-Morales, V. Gonzalez-Perez, C. Gordon, D. Green, D. Gruen, R. Gsponer, G. Gutierrez, J. Guy..","doi":"10.1088/1475-7516/2025/02/021","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/021","url":null,"abstract":"We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-α forest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 < z < 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requires H0=(68.52±0.62) km s-1 Mpc-1. In conjunction with CMB anisotropies from Planck and CMB lensing data from Planck and ACT, we find Ωm=0.307± 0.005 and H0=(67.97±0.38) km s-1 Mpc-1. Extending the baseline model with a constant dark energy equation of state parameter w, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised by w0 and wa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually prefer w0 > -1 and wa < 0. This preference is 2.6σ for the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σ or 3.9σ levels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑ mν free, combining the DESI and CMB data yields an upper limit ∑ mν < 0.072 (0.113) eV at 95% confidence for a ∑ mν > 0 (∑ mν > 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"86 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating late-time dark energy and massive neutrinos in light of DESI Y1 BAO
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-12 DOI: 10.1088/1475-7516/2025/02/024
João Rebouças, Diogo H.F. de Souza, Kunhao Zhong, Vivian Miranda and Rogerio Rosenfeld
Baryonic Acoustic Oscillation (BAO) data from the Dark Energy Spectroscopic Instrument (DESI), in combination with Cosmic Microwave Background (CMB) data and Type Ia Supernovae (SN) luminosity distances, suggests a dynamical evolution of the dark energy equation of state with a phantom phase (w < -1) in the past when the so-called w0wa parametrization w(a) = w0 + wa(1-a) is assumed. In this work, we investigate more general dark energy models that also allow a phantom equation of state. We consider three cases: an equation of state with a transition feature, a model-agnostic equation of state with constant values in chosen redshift bins, and a k-essence model. Since the dark energy equation of state is correlated with neutrino masses, we reassess constraints on the neutrino mass sum focusing on the model-agnostic equation of state. We find that the combination of DESI BAO with Planck 2018 CMB data and SN data from Pantheon, Pantheon+, or Union3 is consistent with an oscillatory dark energy equation of state, while a monotonic behavior is preferred by the DESY5 SN data. Performing model comparison techniques, we find that the w0wa parametrization remains the simplest dark energy model that can provide a better fit to DESI BAO, CMB, and all SN datasets than ΛCDM. Constraints on the neutrino mass sum assuming dynamical dark energy are relaxed compared to ΛCDM and we show that these constraints are tighter in the model-agnostic case relative to w0wa model by 70%–90%.
{"title":"Investigating late-time dark energy and massive neutrinos in light of DESI Y1 BAO","authors":"João Rebouças, Diogo H.F. de Souza, Kunhao Zhong, Vivian Miranda and Rogerio Rosenfeld","doi":"10.1088/1475-7516/2025/02/024","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/024","url":null,"abstract":"Baryonic Acoustic Oscillation (BAO) data from the Dark Energy Spectroscopic Instrument (DESI), in combination with Cosmic Microwave Background (CMB) data and Type Ia Supernovae (SN) luminosity distances, suggests a dynamical evolution of the dark energy equation of state with a phantom phase (w < -1) in the past when the so-called w0wa parametrization w(a) = w0 + wa(1-a) is assumed. In this work, we investigate more general dark energy models that also allow a phantom equation of state. We consider three cases: an equation of state with a transition feature, a model-agnostic equation of state with constant values in chosen redshift bins, and a k-essence model. Since the dark energy equation of state is correlated with neutrino masses, we reassess constraints on the neutrino mass sum focusing on the model-agnostic equation of state. We find that the combination of DESI BAO with Planck 2018 CMB data and SN data from Pantheon, Pantheon+, or Union3 is consistent with an oscillatory dark energy equation of state, while a monotonic behavior is preferred by the DESY5 SN data. Performing model comparison techniques, we find that the w0wa parametrization remains the simplest dark energy model that can provide a better fit to DESI BAO, CMB, and all SN datasets than ΛCDM. Constraints on the neutrino mass sum assuming dynamical dark energy are relaxed compared to ΛCDM and we show that these constraints are tighter in the model-agnostic case relative to w0wa model by 70%–90%.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"29 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cosmological flow: a systematic approach to primordial correlators
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-11 DOI: 10.1088/1475-7516/2025/02/019
Lucas Pinol, Sébastien Renaux-Petel and Denis Werth
The time evolution of primordial fluctuations conceals a wealth of insights into the high-energy physics at play during the earliest moments of our Universe, which is ultimately encoded in late-time spatial correlation functions. However, the conventional procedure to compute them is technically challenging, and a complete dictionary mapping the landscape of inflationary theories and the corresponding observable signatures is not yet available. In this paper, we develop a framework to compute tree-level cosmological correlators based on following their time evolution from their origin as quantum zero-point fluctuations to the end of inflation. From first principles, the structure of the bulk time evolution imposes a set of universal differential equations in time satisfied by equal-time correlators. We automatise the process of systematically solving these equations. This allows us to accurately capture all physical effects and obtain exact results in theories formulated at the level of inflationary fluctuations that include any number of degrees of freedom with arbitrary dispersion relations and masses, coupled through any time-dependent interactions. We then illustrate the power of this formalism by exploring the phenomenology of cosmological correlators emerging from the interaction with a massive scalar field. After an extensive analysis of the quadratic theory and classifying perturbativity bounds, we study both the size and the shape dependence of non-Gaussianities in the entire parameter space, including the strong mixing regime. We present novel characteristics of cosmological collider signals in (would be) single-, double-, and triple-exchange three-point correlators. In the presence of primordial features, after subtracting gauge artefacts unavoidably generated by a breaking of scale-invariance, we show that soft limits of cosmological correlators offer a new possibility to probe the inflationary landscape. Finally, we provide templates to search for in future cosmological surveys.
{"title":"The cosmological flow: a systematic approach to primordial correlators","authors":"Lucas Pinol, Sébastien Renaux-Petel and Denis Werth","doi":"10.1088/1475-7516/2025/02/019","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/019","url":null,"abstract":"The time evolution of primordial fluctuations conceals a wealth of insights into the high-energy physics at play during the earliest moments of our Universe, which is ultimately encoded in late-time spatial correlation functions. However, the conventional procedure to compute them is technically challenging, and a complete dictionary mapping the landscape of inflationary theories and the corresponding observable signatures is not yet available. In this paper, we develop a framework to compute tree-level cosmological correlators based on following their time evolution from their origin as quantum zero-point fluctuations to the end of inflation. From first principles, the structure of the bulk time evolution imposes a set of universal differential equations in time satisfied by equal-time correlators. We automatise the process of systematically solving these equations. This allows us to accurately capture all physical effects and obtain exact results in theories formulated at the level of inflationary fluctuations that include any number of degrees of freedom with arbitrary dispersion relations and masses, coupled through any time-dependent interactions. We then illustrate the power of this formalism by exploring the phenomenology of cosmological correlators emerging from the interaction with a massive scalar field. After an extensive analysis of the quadratic theory and classifying perturbativity bounds, we study both the size and the shape dependence of non-Gaussianities in the entire parameter space, including the strong mixing regime. We present novel characteristics of cosmological collider signals in (would be) single-, double-, and triple-exchange three-point correlators. In the presence of primordial features, after subtracting gauge artefacts unavoidably generated by a breaking of scale-invariance, we show that soft limits of cosmological correlators offer a new possibility to probe the inflationary landscape. Finally, we provide templates to search for in future cosmological surveys.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"52 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect detection of dark matter absorption in the Galactic Center
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-02-11 DOI: 10.1088/1475-7516/2025/02/017
Kimberly K. Boddy, Bhaskar Dutta, Addy J. Evans, Wei-Chih Huang, Stacie Moltner and Louis E. Strigari
We consider the nuclear absorption of dark matter as an alternative to the typical indirect detection search channels of dark matter decay or annihilation. In this scenario, an atomic nucleus transitions to an excited state by absorbing a pseudoscalar dark matter particle and promptly emits a photon as it transitions back to its ground state. The nuclear excitation of carbon and oxygen in the Galactic Center would produce a discrete photon spectrum in the 𝒪(10) MeV range that could be detected by gamma-ray telescopes. Using theBIGSTICK large-scale shell-model code, we calculate the excitation energies of carbon and oxygen. We constrain the dark matter-nucleus coupling for current COMPTEL data, and provide projections for future experiments AMEGO-X, e-ASTROGAM, and GRAMS for dark matter masses from ∼ 10 to 30 MeV. We find the excitation process to be very sensitive to the dark matter mass and find that the future experiments considered would improve constraints on the dark matter-nucleus coupling within an order of magnitude.
{"title":"Indirect detection of dark matter absorption in the Galactic Center","authors":"Kimberly K. Boddy, Bhaskar Dutta, Addy J. Evans, Wei-Chih Huang, Stacie Moltner and Louis E. Strigari","doi":"10.1088/1475-7516/2025/02/017","DOIUrl":"https://doi.org/10.1088/1475-7516/2025/02/017","url":null,"abstract":"We consider the nuclear absorption of dark matter as an alternative to the typical indirect detection search channels of dark matter decay or annihilation. In this scenario, an atomic nucleus transitions to an excited state by absorbing a pseudoscalar dark matter particle and promptly emits a photon as it transitions back to its ground state. The nuclear excitation of carbon and oxygen in the Galactic Center would produce a discrete photon spectrum in the 𝒪(10) MeV range that could be detected by gamma-ray telescopes. Using theBIGSTICK large-scale shell-model code, we calculate the excitation energies of carbon and oxygen. We constrain the dark matter-nucleus coupling for current COMPTEL data, and provide projections for future experiments AMEGO-X, e-ASTROGAM, and GRAMS for dark matter masses from ∼ 10 to 30 MeV. We find the excitation process to be very sensitive to the dark matter mass and find that the future experiments considered would improve constraints on the dark matter-nucleus coupling within an order of magnitude.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"105 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Cosmology and Astroparticle Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1