首页 > 最新文献

Journal of Computational Biophysics and Chemistry最新文献

英文 中文
Hydrocarbon Stapling-improved Coupled Folding-upon-Binding of Peptide-mediated Interaction between the Nucleocapsid and Phosphoprotein of Human Orthopneumovirus 人肺炎病毒核衣壳与磷蛋白肽介导的相互作用的碳氢钉接改进的偶联结合折叠
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-04-15 DOI: 10.1142/s2737416523500291
J. Shen, Meiyuan Chen, Jianqin Chen, Jiangang Wu, Yan Shen, Yumei Chen, Z. Wang
{"title":"Hydrocarbon Stapling-improved Coupled Folding-upon-Binding of Peptide-mediated Interaction between the Nucleocapsid and Phosphoprotein of Human Orthopneumovirus","authors":"J. Shen, Meiyuan Chen, Jianqin Chen, Jiangang Wu, Yan Shen, Yumei Chen, Z. Wang","doi":"10.1142/s2737416523500291","DOIUrl":"https://doi.org/10.1142/s2737416523500291","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49033574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Angiotensin 1-7 Binding on the Dynamics of Human MAS Proto-oncogene, GPCR: A Molecular Dynamics Study 血管紧张素1-7结合对人MAS原癌基因GPCR动力学的影响:分子动力学研究
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-04-15 DOI: 10.1142/s273741652350031x
Ekrem Yaşar, M. Yaşar, Segun Dogru, N. Yaraş, E. Eroglu
{"title":"Effects of Angiotensin 1-7 Binding on the Dynamics of Human MAS Proto-oncogene, GPCR: A Molecular Dynamics Study","authors":"Ekrem Yaşar, M. Yaşar, Segun Dogru, N. Yaraş, E. Eroglu","doi":"10.1142/s273741652350031x","DOIUrl":"https://doi.org/10.1142/s273741652350031x","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41434707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-QSAR and Molecular Docking Studies of Novel GPR52 Agonists 新型GPR52激动剂的3D-QSAR与分子对接研究
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-04-15 DOI: 10.1142/s2737416523500308
Qing-Shan Gu, Jing Hou, Hui Gao, Mei-Qi Shi, Ying Zhuang, Qingkun Wu, Lu Zheng
{"title":"3D-QSAR and Molecular Docking Studies of Novel GPR52 Agonists","authors":"Qing-Shan Gu, Jing Hou, Hui Gao, Mei-Qi Shi, Ying Zhuang, Qingkun Wu, Lu Zheng","doi":"10.1142/s2737416523500308","DOIUrl":"https://doi.org/10.1142/s2737416523500308","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46974457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSDDB: Lysosomal Storage Disorder DataBase for lysosomal proteins and their single amino acid substitutions 溶酶体贮积症数据库,收录溶酶体蛋白及其单氨基酸取代
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-04-06 DOI: 10.1142/s273741652350028x
{"title":"LSDDB: Lysosomal Storage Disorder DataBase for lysosomal proteins and their single amino acid substitutions","authors":"","doi":"10.1142/s273741652350028x","DOIUrl":"https://doi.org/10.1142/s273741652350028x","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42151076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the capability and potential of pristine, Sc, Ti and Ni-doped C24 nanocage to delivery and sensor property of Prothionamide drug: Insight of DFT, TD-DFT computational methods 原始、Sc、Ti和ni掺杂C24纳米笼对Prothionamide药物递送和传感器性能的能力和潜力评估:DFT、TD-DFT计算方法的见解
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-10 DOI: 10.1142/s2737416523500266
M. Rezaei-Sameti, H. Torabi
{"title":"Assessment of the capability and potential of pristine, Sc, Ti and Ni-doped C24 nanocage to delivery and sensor property of Prothionamide drug: Insight of DFT, TD-DFT computational methods","authors":"M. Rezaei-Sameti, H. Torabi","doi":"10.1142/s2737416523500266","DOIUrl":"https://doi.org/10.1142/s2737416523500266","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45320469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MembIT - a tool to calculate solute membrane insertions and deformations in molecular dynamics simulations 在分子动力学模拟中计算溶质膜插入和变形的工具
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-10 DOI: 10.1142/s2737416523500254
Pedro M. S. Suzano, Inês D. S. Pires, Tomás F D Silva, Nuno F. B. Oliveira, Pedro B. P. S. Reis, M. Machuqueiro
{"title":"MembIT - a tool to calculate solute membrane insertions and deformations in molecular dynamics simulations","authors":"Pedro M. S. Suzano, Inês D. S. Pires, Tomás F D Silva, Nuno F. B. Oliveira, Pedro B. P. S. Reis, M. Machuqueiro","doi":"10.1142/s2737416523500254","DOIUrl":"https://doi.org/10.1142/s2737416523500254","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42176708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Designing Potential Inhibitors of SARS-CoV-2 Mpro Using Deep-Learning and Steered-Molecular Dynamic Simulations 利用深度学习和可控分子动力学模拟设计潜在的严重急性呼吸系统综合征冠状病毒2型Mpro抑制剂
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-10 DOI: 10.1142/s2737416523500242
N. M. Tam, L. Tran, Q. Vo, Minh Quan Pham, H. Phung
The COVID-19 pandemic raised an unprecedented race in biotechnology in search for effective therapies and a preventive vaccine. Scientists worldwide have been attempting to stop the viral infection by interfering with the biological function of the SARS-CoV-2 main protease (Mpro), a critical protein required for viral transcription and replication during infection. In this study, we employed an effective approach integrating deep learning model calculations and steered molecular dynamic simulations to generate highly promising inhibitors of SARS-CoV-2 Mpro. First, using deep learning calculations, a natural molecule that was identified as a potential inhibitor of SARS-CoV-2 Mpro was chemically altered to boost its ligand-binding affinity to the Mpro protease. The proposed compounds were then verified using steered molecular dynamic simulations to estimate their binding free energies to SARS-CoV-2 Mpro. The procedure was repeated until the binding free energies of the proposed compounds did not improve further. Overall, one proposed compound was shown to have a high nanomolar affinity, and two others were estimated to possess nanomolar affinities for SARS-CoV-2 Mpro, indicating that they are highly promising inhibitors of the protease. Absorption, distribution, metabolism, and excretion and toxicity analysis show that all three chemicals are drug-like compounds following the MACCS-II Drug Data Report database, orally absorbed, tightly attached to the plasma membrane, and noncarcinogenic in rats. The results obtained potentially support COVID-19 treatment. [ FROM AUTHOR] Copyright of Journal of Computational Biophysics & Chemistry is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
新冠肺炎大流行引发了生物技术领域前所未有的寻找有效疗法和预防性疫苗的竞赛。世界各地的科学家一直试图通过干扰严重急性呼吸系统综合征冠状病毒2型主要蛋白酶(Mpro)的生物功能来阻止病毒感染,Mpro是感染期间病毒转录和复制所需的关键蛋白。在这项研究中,我们采用了一种有效的方法,将深度学习模型计算和分子动力学模拟相结合,生成了极具前景的严重急性呼吸系统综合征冠状病毒2型Mpro抑制剂。首先,使用深度学习计算,一种被确定为严重急性呼吸系统综合征冠状病毒2型Mpro潜在抑制剂的天然分子被化学改变,以提高其与Mpro蛋白酶的配体结合亲和力。然后使用可控分子动力学模拟对所提出的化合物进行了验证,以估计其与严重急性呼吸系统综合征冠状病毒2 Mpro的结合自由能。重复该过程,直到所提出的化合物的结合自由能没有进一步提高。总体而言,一种提出的化合物被证明具有高纳摩尔亲和力,另外两种化合物被估计对严重急性呼吸系统综合征冠状病毒2型Mpro具有纳摩尔亲和性,这表明它们是非常有前途的蛋白酶抑制剂。吸收、分布、代谢和排泄以及毒性分析表明,根据MACCS-II药物数据报告数据库,这三种化学物质都是类药物化合物,经口吸收,紧密附着在质膜上,对大鼠无致癌作用。获得的结果可能支持新冠肺炎治疗。[发件人]《计算生物物理学与化学杂志》的版权归世界科学出版公司所有,未经版权持有人明确书面许可,不得将其内容复制或通过电子邮件发送到多个网站或发布到列表服务器。但是,用户可以打印、下载或通过电子邮件发送文章供个人使用。这可能会被删节。对复印件的准确性不作任何保证。用户应参考材料的原始发布版本以获取完整信息。(版权适用于所有人。)
{"title":"Designing Potential Inhibitors of SARS-CoV-2 Mpro Using Deep-Learning and Steered-Molecular Dynamic Simulations","authors":"N. M. Tam, L. Tran, Q. Vo, Minh Quan Pham, H. Phung","doi":"10.1142/s2737416523500242","DOIUrl":"https://doi.org/10.1142/s2737416523500242","url":null,"abstract":"The COVID-19 pandemic raised an unprecedented race in biotechnology in search for effective therapies and a preventive vaccine. Scientists worldwide have been attempting to stop the viral infection by interfering with the biological function of the SARS-CoV-2 main protease (Mpro), a critical protein required for viral transcription and replication during infection. In this study, we employed an effective approach integrating deep learning model calculations and steered molecular dynamic simulations to generate highly promising inhibitors of SARS-CoV-2 Mpro. First, using deep learning calculations, a natural molecule that was identified as a potential inhibitor of SARS-CoV-2 Mpro was chemically altered to boost its ligand-binding affinity to the Mpro protease. The proposed compounds were then verified using steered molecular dynamic simulations to estimate their binding free energies to SARS-CoV-2 Mpro. The procedure was repeated until the binding free energies of the proposed compounds did not improve further. Overall, one proposed compound was shown to have a high nanomolar affinity, and two others were estimated to possess nanomolar affinities for SARS-CoV-2 Mpro, indicating that they are highly promising inhibitors of the protease. Absorption, distribution, metabolism, and excretion and toxicity analysis show that all three chemicals are drug-like compounds following the MACCS-II Drug Data Report database, orally absorbed, tightly attached to the plasma membrane, and noncarcinogenic in rats. The results obtained potentially support COVID-19 treatment. [ FROM AUTHOR] Copyright of Journal of Computational Biophysics & Chemistry is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44111262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing high-resolution metastasis signatures for improved cancer prognosis and drug sensitivity prediction using single-cell RNA sequencing data: A case study in lung adenocarcinoma 利用单细胞RNA测序数据开发用于改善癌症预后和药物敏感性预测的高分辨率转移信号:肺腺癌病例研究
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-03-08 DOI: 10.1142/s2737416523410016
Yeman Zhou, Hanlin Li, De'en Yu, Cheng Zhang, Heng Yang, Chunping Wang, Youhua Zhang, W. Deng, Bo Li, Shihua Zhang
{"title":"Developing high-resolution metastasis signatures for improved cancer prognosis and drug sensitivity prediction using single-cell RNA sequencing data: A case study in lung adenocarcinoma","authors":"Yeman Zhou, Hanlin Li, De'en Yu, Cheng Zhang, Heng Yang, Chunping Wang, Youhua Zhang, W. Deng, Bo Li, Shihua Zhang","doi":"10.1142/s2737416523410016","DOIUrl":"https://doi.org/10.1142/s2737416523410016","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45185314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighborhood Path Complex for the Quantitative Analysis of the Structure and Stability of Carboranes 用于定量分析碳硼烷结构和稳定性的邻域路径复合体
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-02-16 DOI: 10.1142/s2737416523500229
Jian Liu, Dong Chen, Feng Pan, Jie Wu
{"title":"Neighborhood Path Complex for the Quantitative Analysis of the Structure and Stability of Carboranes","authors":"Jian Liu, Dong Chen, Feng Pan, Jie Wu","doi":"10.1142/s2737416523500229","DOIUrl":"https://doi.org/10.1142/s2737416523500229","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47254449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In silico Identification of Triclosan Derivatives as Potential Inhibitors of Mutant Mycobacterium tuberculosis InhA 三氯生衍生物作为突变结核分枝杆菌InhA潜在抑制剂的计算机鉴定
IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2023-01-19 DOI: 10.1142/s2737416523500205
N. Panahi, N. Razzaghi-Asl
{"title":"In silico Identification of Triclosan Derivatives as Potential Inhibitors of Mutant Mycobacterium tuberculosis InhA","authors":"N. Panahi, N. Razzaghi-Asl","doi":"10.1142/s2737416523500205","DOIUrl":"https://doi.org/10.1142/s2737416523500205","url":null,"abstract":"","PeriodicalId":15603,"journal":{"name":"Journal of Computational Biophysics and Chemistry","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46414554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational Biophysics and Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1