首页 > 最新文献

Journal of Eukaryotic Microbiology最新文献

英文 中文
Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists 鞭毛虫Orciraptor agilis(Viridiraptoridae,Cercozoa)的大范围食腐作用以及原生动物中未得到充分重视的清道夫作用。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-11-03 DOI: 10.1111/jeu.13065
Jannika Moye, Sebastian Hess

Protists show diverse lifestyles and fulfill important ecological roles as primary producers, predators, symbionts, and parasites. The degradation of dead microbial biomass, instead, is mainly attributed to bacteria and fungi, while necrophagy by protists remains poorly recognized. Here, we assessed the food range specificity and feeding behavior of the algivorous flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) with a large-scale feeding experiment. We demonstrate that this species is a broad-range necrophage, which feeds on a variety of eukaryotic and prokaryotic algae, but fails to grow on the tested fungi. Furthermore, our microscopic observations reveal an unexpected flexibility of O. agilis in handling food items of different structures and biochemistry, demonstrating that sophisticated feeding strategies in protists do not necessarily indicate narrow food ranges.

原生生物的生活方式多种多样,并扮演着初级生产者、捕食者、共生体和寄生虫等重要生态角色。相反,死亡微生物生物量的降解主要归因于细菌和真菌,而原生动物的食尸行为却鲜为人知。在这里,我们通过大规模的摄食实验评估了食藻鞭毛虫Orciraptor agilis(Viridiraptoridae,穴居动物)的食物范围特异性和摄食行为。我们证明,该物种是一种广域食肉动物,以多种真核和原核藻类为食,但不能在测试的真菌上生长。此外,我们的显微观察发现,O. agilis 在处理不同结构和生物化学性质的食物时具有意想不到的灵活性,这表明原生动物复杂的摄食策略并不一定意味着食物范围狭窄。
{"title":"Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists","authors":"Jannika Moye,&nbsp;Sebastian Hess","doi":"10.1111/jeu.13065","DOIUrl":"10.1111/jeu.13065","url":null,"abstract":"<p>Protists show diverse lifestyles and fulfill important ecological roles as primary producers, predators, symbionts, and parasites. The degradation of dead microbial biomass, instead, is mainly attributed to bacteria and fungi, while necrophagy by protists remains poorly recognized. Here, we assessed the food range specificity and feeding behavior of the algivorous flagellate <i>Orciraptor agilis</i> (Viridiraptoridae, Cercozoa) with a large-scale feeding experiment. We demonstrate that this species is a broad-range necrophage, which feeds on a variety of eukaryotic and prokaryotic algae, but fails to grow on the tested fungi. Furthermore, our microscopic observations reveal an unexpected flexibility of <i>O. agilis</i> in handling food items of different structures and biochemistry, demonstrating that sophisticated feeding strategies in protists do not necessarily indicate narrow food ranges.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"72 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.13065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The identity of Centrodinium elongatum, type species of the dinoflagellate genus Centrodinium (Dinophyceae), and a review on the synonymy of allied species Centrodinium elongatum(甲藻属 Centrodinium 的模式种)的身份及相关物种的同义综述。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-10-10 DOI: 10.1111/jeu.13062
Fernando Gómez, Tania Corina Navarrete-Carlos, Yahir Enrique López-Osorio, Huan Zhang, Eugenio Raymond, Rafael Salas, Rosalba Alonso-Rodríguez, Senjie Lin

The planktonic dinoflagellate genus Centrodinium has been understudied, with the type species C. elongatum remaining undocumented since the original description. Here, we report C. elongatum isolated from Mazatlán, Mexican Pacific. In the chains, the posterior daughter cell with an incomplete apical horn shows the morphology of C. elongatum, while the anterior daughter cell with complete epitheca corresponds to C. pulchrum. For the first time, a species of Centrodinium sensu stricto (highly laterally flattened species with horns) was cultured. An unarmored life stage, known as Murrayella ovalis, derived from the spheroplast after ecdysis. In the rDNA molecular phylogenies, C. elongatum (=C. pulchrum) nested as basal to morphologically similar species (C. eminens and C. intermedium) and as a sister group of a former Murrayella species, C. punctatum. C. elongatum differs from C. eminens and C. intermedium in the chain formation, second apical (2′) plate not being divided, horns with coarse poroid ornamentation, and missing prominent distal spinules. The taxonomy of Centrodinium sensu stricto is revised, with a discussion in the identities of C. complanatum, C. eminens, and C. maximum. The name C. deflexum is restored as a senior synonym of C. intermedium and C. ovale.

浮游甲藻 Centrodinium 属的研究一直不足,其模式种 C. elongatum 自原始描述以来一直未被记录。在此,我们报告了分离自墨西哥太平洋马萨特兰的 C. elongatum。在链中,带有不完整顶角的后部子细胞显示出 C. elongatum 的形态,而带有完整表皮的前部子细胞则与 C. pulchrum 相符。首次培养出了严格意义上的百日草(角高度侧扁的物种)。蜕皮后的球形体中产生了一种无甲壳的生命阶段,即卵圆形穆氏菌(Murrayella ovalis)。在 rDNA 分子系统进化中,C. elongatum(=C. pulchrum)与形态上相似的物种(C. eminens 和 C. intermedium)同属一个基干类群,并且是前 Murrayella 物种 C. punctatum 的姊妹类群。C. elongatum 与 C. eminens 和 C. intermedium 的不同之处在于其链状结构、第二顶端(2')板不分裂、角具粗孔状装饰以及缺少突出的上部小刺。对严格意义上的百日草分类进行了修订,并讨论了 C. complanatum、C. eminens 和 C. maximum 的身份。deflexum恢复为 C. intermedium 和 C. ovale 的高级异名。
{"title":"The identity of Centrodinium elongatum, type species of the dinoflagellate genus Centrodinium (Dinophyceae), and a review on the synonymy of allied species","authors":"Fernando Gómez,&nbsp;Tania Corina Navarrete-Carlos,&nbsp;Yahir Enrique López-Osorio,&nbsp;Huan Zhang,&nbsp;Eugenio Raymond,&nbsp;Rafael Salas,&nbsp;Rosalba Alonso-Rodríguez,&nbsp;Senjie Lin","doi":"10.1111/jeu.13062","DOIUrl":"10.1111/jeu.13062","url":null,"abstract":"<p>The planktonic dinoflagellate genus <i>Centrodinium</i> has been understudied, with the type species <i>C</i>. <i>elongatum</i> remaining undocumented since the original description. Here, we report <i>C</i>. <i>elongatum</i> isolated from Mazatlán, Mexican Pacific. In the chains, the posterior daughter cell with an incomplete apical horn shows the morphology of <i>C</i>. <i>elongatum</i>, while the anterior daughter cell with complete epitheca corresponds to <i>C</i>. <i>pulchrum</i>. For the first time, a species of <i>Centrodinium</i> sensu stricto (highly laterally flattened species with horns) was cultured. An unarmored life stage, known as <i>Murrayella ovalis</i>, derived from the spheroplast after ecdysis. In the rDNA molecular phylogenies, <i>C</i>. <i>elongatum</i> (=<i>C</i>. <i>pulchrum</i>) nested as basal to morphologically similar species (<i>C</i>. <i>eminens</i> and <i>C</i>. <i>intermedium</i>) and as a sister group of a former <i>Murrayella</i> species, <i>C</i>. <i>punctatum</i>. <i>C</i>. <i>elongatum</i> differs from <i>C</i>. <i>eminens</i> and <i>C</i>. <i>intermedium</i> in the chain formation, second apical (2′) plate not being divided, horns with coarse poroid ornamentation, and missing prominent distal spinules. The taxonomy of <i>Centrodinium</i> sensu stricto is revised, with a discussion in the identities of <i>C</i>. <i>complanatum</i>, <i>C</i>. <i>eminens</i>, and <i>C</i>. <i>maximum</i>. The name <i>C</i>. <i>deflexum</i> is restored as a senior synonym of <i>C</i>. <i>intermedium</i> and <i>C</i>. <i>ovale</i>.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refurbishing the marine parasitoid order Pirsoniales with newly (re)described marine and freshwater free-living predators 利用新近(重新)描述的海洋和淡水自由生活捕食者,重建海洋寄生虫目(Pirsoniales)。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-10-01 DOI: 10.1111/jeu.13061
Kristina I. Prokina, Naoji Yubuki, Denis V. Tikhonenkov, Maria Christina Ciobanu, Purificación López-García, David Moreira

Pirsoniales is a stramenopile order composed of marine parasitoids of diatoms with unique life cycle. Until recently, a single genus, Pirsonia, uniting six species, was known. The recent identification of new free-living eukaryotrophic Pirsoniales Pirsonia chemainus, Feodosia pseudopoda, and Koktebelia satura changed our understanding of this group as exclusively parasitic. However, their cell ultrastructure and feeding preferences were not fully studied due to the death of the cultures. In this study, we re-isolated some of these Pirsoniales and established six new strains exhibiting predatory behavior, including a first freshwater representative. This allowed us to describe five new genera and species, as well as to emend the diagnosis of the order Pirsoniales. The 18S rRNA gene phylogenetic analysis revealed the position of new strains within Pirsoniales and their relationships with parasitoid relatives and environmental sequence lineages. Feeding experiments on novel Pirsoniales strains using diverse algal prey showed that they were not able to form trophosomes and auxosomes. The ability of cell aggregation in Pirsoniales was observed for the first time. One of the studied strains contained intracellular gammaproteobacteria distantly related to Coxiella. Ultrastructural analyses revealed a more complex cytoskeleton structure in Pirsoniales than previously thought and supported the monophyly of Bigyromonadea and Pseudofungi.

硅藻寄生虫目(Pirsoniales)是由硅藻的海洋寄生虫组成的担子菌纲,具有独特的生命周期。直到最近,人们还只知道一个属--Pirsonia,共有 6 个种。最近发现了新的自由生活的真核营养型 Pirsoniales Pirsonia chemainus、Feodosia pseudopoda 和 Koktebelia satura,改变了我们对该类群只寄生的认识。然而,由于培养物死亡,我们未能对它们的细胞超微结构和摄食偏好进行全面研究。在这项研究中,我们重新分离了其中一些 Pirsoniales,并建立了六个表现出捕食行为的新菌株,包括第一个淡水代表菌株。这使我们得以描述五个新属和新种,并对 Pirsoniales 目进行了修正。18S rRNA 基因系统进化分析揭示了新菌株在 Pirsoniales 中的位置及其与寄生虫亲缘种和环境序列系的关系。利用不同的藻类猎物对新型 Pirsoniales 菌株进行的取食实验表明,它们不能形成滋养体和辅助体。首次观察到 Pirsoniales 的细胞聚集能力。所研究的菌株之一含有与柯西氏菌关系密切的胞内伽马蛋白菌。超微结构分析表明,Pirsoniales 的细胞骨架结构比以前认为的更为复杂,并支持 Bigyromonadea 和 Pseudofungi 的单系。
{"title":"Refurbishing the marine parasitoid order Pirsoniales with newly (re)described marine and freshwater free-living predators","authors":"Kristina I. Prokina,&nbsp;Naoji Yubuki,&nbsp;Denis V. Tikhonenkov,&nbsp;Maria Christina Ciobanu,&nbsp;Purificación López-García,&nbsp;David Moreira","doi":"10.1111/jeu.13061","DOIUrl":"10.1111/jeu.13061","url":null,"abstract":"<p>Pirsoniales is a stramenopile order composed of marine parasitoids of diatoms with unique life cycle. Until recently, a single genus, <i>Pirsonia</i>, uniting six species, was known. The recent identification of new free-living eukaryotrophic Pirsoniales <i>Pirsonia chemainus</i>, <i>Feodosia pseudopoda</i>, and <i>Koktebelia satura</i> changed our understanding of this group as exclusively parasitic. However, their cell ultrastructure and feeding preferences were not fully studied due to the death of the cultures. In this study, we re-isolated some of these Pirsoniales and established six new strains exhibiting predatory behavior, including a first freshwater representative. This allowed us to describe five new genera and species, as well as to emend the diagnosis of the order Pirsoniales. The 18S rRNA gene phylogenetic analysis revealed the position of new strains within Pirsoniales and their relationships with parasitoid relatives and environmental sequence lineages. Feeding experiments on novel Pirsoniales strains using diverse algal prey showed that they were not able to form trophosomes and auxosomes. The ability of cell aggregation in Pirsoniales was observed for the first time. One of the studied strains contained intracellular gammaproteobacteria distantly related to <i>Coxiella</i>. Ultrastructural analyses revealed a more complex cytoskeleton structure in Pirsoniales than previously thought and supported the monophyly of Bigyromonadea and Pseudofungi.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.13061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomics of Diphyllatea (CRuMs) from South Pacific crater lakes confirm new cryptic clades 南太平洋陨石坑湖中的 Diphyllatea(CRuMs)转录组学证实了新的隐秘支系。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-09-28 DOI: 10.1111/jeu.13060
Luis Javier Galindo, Varsha Mathur, Hadleigh Frost, Guifré Torruella, Thomas A. Richards, Nicholas A. T. Irwin

The Diphyllatea (CRuMs) are heterotrophic protists currently divided into three distinct clades (Diphy I–III). Diphy I are biflagellates in the genus Diphylleia, whereas Diphy II and III represent cryptic clades comprising Collodictyon-type quadriflagellates that were recently distinguished based on rRNA gene phylogenies. Here, we isolated Diphyllatea from freshwater crater lakes on two South Pacific islands and generated high-quality transcriptomes from species representing each clade, including the first transcriptomic data from Diphy III. Phylogenomic analyses support the separation of Diphy II and III, while transcriptome completeness highlights the utility of these data for future studies. Lastly, we discuss the biogeography and ecology of Diphyllatea on these remote islands.

Diphyllatea(CRuMs)是一种异养原生动物,目前分为三个不同的支系(Diphy I-III)。Diphy I 是 Diphylleia 属中的双鞭毛虫,而 Diphy II 和 III 则代表了由 Collodictyon 型四鞭毛虫组成的隐秘支系,这些支系最近根据 rRNA 基因系统进化被区分开来。在这里,我们从两个南太平洋岛屿的淡水火山口湖中分离出了 Diphyllatea,并从代表每个支系的物种中生成了高质量的转录组,包括来自 Diphy III 的首个转录组数据。系统发生组分析支持了 Diphy II 和 Diphy III 的分离,而转录组的完整性则凸显了这些数据在未来研究中的实用性。最后,我们讨论了这些偏远岛屿上 Diphyllatea 的生物地理学和生态学。
{"title":"Transcriptomics of Diphyllatea (CRuMs) from South Pacific crater lakes confirm new cryptic clades","authors":"Luis Javier Galindo,&nbsp;Varsha Mathur,&nbsp;Hadleigh Frost,&nbsp;Guifré Torruella,&nbsp;Thomas A. Richards,&nbsp;Nicholas A. T. Irwin","doi":"10.1111/jeu.13060","DOIUrl":"10.1111/jeu.13060","url":null,"abstract":"<p>The Diphyllatea (CRuMs) are heterotrophic protists currently divided into three distinct clades (Diphy I–III). Diphy I are biflagellates in the genus <i>Diphylleia</i>, whereas Diphy II and III represent cryptic clades comprising <i>Collodictyon</i>-type quadriflagellates that were recently distinguished based on rRNA gene phylogenies. Here, we isolated Diphyllatea from freshwater crater lakes on two South Pacific islands and generated high-quality transcriptomes from species representing each clade, including the first transcriptomic data from Diphy III. Phylogenomic analyses support the separation of Diphy II and III, while transcriptome completeness highlights the utility of these data for future studies. Lastly, we discuss the biogeography and ecology of Diphyllatea on these remote islands.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.13060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructural and molecular characterization of Glugea sp. (microsporidia), a parasite of the Red Sea fish Carangoides bajad (Carangidae) 红海鱼类 Carangoides bajad(鲤科)的寄生虫 Glugea sp.(微孢子虫)的超微结构和分子特征描述
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-09-10 DOI: 10.1111/jeu.13058
Abdel-Azeem S. Abdel-Baki, Shawky M. Aboelhadid, Heba Abdel-Tawab, Sónia Rocha, Manal Ahmed, Saleh Al-Quraishy, Lamjed Mansour

Glugea sp. found infecting the liver of the teleost fish Carangoides bajad from the Red Sea, Egypt, is described based on light microscopy and ultrastructural characteristics combined with phylogenetic analyses. This microsporidium forms whitish xenomas up to ~4 mm in size. Xenomas display numerous parasitophorous vacuoles totally filled by mature spores, no other life cycle stages were observed. Mature spores ellipsoidal and measuring 6.3 × 4.0 μm in size. The polaroplast appears composed of two distinct regions: an electron-dense vesicular region and a densely packed lamellar region. The polar tubule forms approximately 24–27 coils arranged in three layers encircling the posterior vacuole. The small subunit (SSU) rRNA gene and its ITS region were sequenced and showed the highest similarity of 99.4% to other Glugea spp. Bayesian inference and maximum likelihood analyses place the novel isolate within the Glugea clade, more specifically within a subclade that predominantly grouped species described from fish inhabiting the Arabian Gulf or Red Sea. The results validate the parasite's classification in the Glugea genus. Nevertheless, until more detailed ultrastructural and molecular data are obtained, the identification of the current Glugea species is hampered by the absence of some developmental stages and the high degree of genetic similarity.

根据光学显微镜和超微结构特征以及系统发育分析,描述了在埃及红海发现的感染远洋鱼类 Carangoides bajad 的肝脏的 Glugea sp.。这种微孢子虫形成的白色异瘤大小可达 ~4 毫米。异瘤上有许多寄生泡,完全由成熟孢子充满,没有观察到其他生命周期阶段。成熟孢子呈椭圆形,大小为 6.3 × 4.0 μm。极体似乎由两个不同的区域组成:电子致密的泡状区和致密的片状区。极管形成约 24-27 个线圈,分三层环绕后液泡。贝叶斯推断和最大似然法分析将该新分离物归入 Glugea 支系,更具体地说是归入一个亚支系,该亚支系主要归入居住在阿拉伯湾或红海的鱼类中的物种。这些结果验证了寄生虫在 Glugea 属中的分类。然而,在获得更详细的超微结构和分子数据之前,由于某些发育阶段的缺失和高度的遗传相似性,目前对 Glugea 物种的鉴定受到了阻碍。
{"title":"Ultrastructural and molecular characterization of Glugea sp. (microsporidia), a parasite of the Red Sea fish Carangoides bajad (Carangidae)","authors":"Abdel-Azeem S. Abdel-Baki,&nbsp;Shawky M. Aboelhadid,&nbsp;Heba Abdel-Tawab,&nbsp;Sónia Rocha,&nbsp;Manal Ahmed,&nbsp;Saleh Al-Quraishy,&nbsp;Lamjed Mansour","doi":"10.1111/jeu.13058","DOIUrl":"10.1111/jeu.13058","url":null,"abstract":"<p><i>Glugea</i> sp. found infecting the liver of the teleost fish <i>Carangoides bajad</i> from the Red Sea, Egypt, is described based on light microscopy and ultrastructural characteristics combined with phylogenetic analyses. This microsporidium forms whitish xenomas up to ~4 mm in size. Xenomas display numerous parasitophorous vacuoles totally filled by mature spores, no other life cycle stages were observed. Mature spores ellipsoidal and measuring 6.3 × 4.0 μm in size. The polaroplast appears composed of two distinct regions: an electron-dense vesicular region and a densely packed lamellar region. The polar tubule forms approximately 24–27 coils arranged in three layers encircling the posterior vacuole. The small subunit (SSU) rRNA gene and its ITS region were sequenced and showed the highest similarity of 99.4% to other <i>Glugea</i> spp. Bayesian inference and maximum likelihood analyses place the novel isolate within the <i>Glugea</i> clade, more specifically within a subclade that predominantly grouped species described from fish inhabiting the Arabian Gulf or Red Sea. The results validate the parasite's classification in the <i>Glugea</i> genus. Nevertheless, until more detailed ultrastructural and molecular data are obtained, the identification of the current <i>Glugea</i> species is hampered by the absence of some developmental stages and the high degree of genetic similarity.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microsporidia secretory effectors and their roles in pathogenesis 小孢子虫分泌效应器及其在致病过程中的作用。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1111/jeu.13046
Maoshuang Ran, Wenxin Yang, Muhammad Usman Faryad Khan, Tian Li, Guoqing Pan

Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.

小孢子虫是一类单细胞真核寄生虫,主要依靠分泌效应物在宿主细胞内成功入侵和增殖。这篇综述主要介绍分泌蛋白和微核糖核酸等效应物的鉴定、特征和功能作用。粘附蛋白(如蓖麻毒素-B-选择蛋白)有助于最初的入侵,它能与宿主细胞表面结合。一旦进入宿主细胞,微孢子虫就会利用一系列效应器来调节宿主的免疫反应,如丝氨酸蛋白,并通过己糖激酶改变宿主细胞的新陈代谢,以满足寄生虫的营养需求。有些效应物(如微小核糖核酸)会改变宿主的基因表达,以创造更有利的细胞内寄生环境。总之,小孢子虫的分泌效应器在从宿主细胞入侵到细胞内建立的整个过程中发挥着关键作用。未来,人们将对更多的微孢子虫分泌效应物进行研究,这不仅有助于阐明微孢子虫操纵宿主致病的分子机制,也有助于为抗寄生虫治疗提供潜在靶点。
{"title":"Microsporidia secretory effectors and their roles in pathogenesis","authors":"Maoshuang Ran,&nbsp;Wenxin Yang,&nbsp;Muhammad Usman Faryad Khan,&nbsp;Tian Li,&nbsp;Guoqing Pan","doi":"10.1111/jeu.13046","DOIUrl":"10.1111/jeu.13046","url":null,"abstract":"<p>Microsporidia, a group of unicellular eukaryotic parasites, rely intensely on secretory effectors for successful invasion and proliferation within host cells. This review focuses on the identification, characterization, and functional roles of effectors, including secretory proteins and microRNAs. The adhesion proteins like the Ricin-B-lectin facilitate initial invasion, which binds to the host cell surface. Once inside, microsporidia deploy a range of effectors to modulate host immune responses, such as serpin proteins, and redirect host cell metabolism to meet the parasite's nutritional needs through hexokinase. Some effectors such as microRNAs, alter the host gene expression to create a more favorable intracellular parasitic environment. In conclusion, the secretory effectors of microsporidia play a pivotal role spanning from host cell invasion to intracellular establishment. In the future, more effectors secreted by microsporidia will be studied, which will not only help to elucidate the molecular mechanism of pathogenic manipulation of the host but also help to provide the potential targets for anti-parasitic treatments.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Skoliomonas gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada) Skoliomonas gen.nov.的特征,这是一种与巴特龙类(Metamonada)有关的卤代嗜碱性厌氧菌。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-09-03 DOI: 10.1111/jeu.13048
Yana Eglit, Shelby K. Williams, Andrew J. Roger, Alastair G. B. Simpson

Metamonads are a large and exclusively anaerobic group of protists. Additionally, they are one of the three clades proposed to ancestrally possess an “excavate” cell morphology, with a conspicuous ventral groove accompanied by a posterior flagellum with a vane. Here, we cultivate and characterize four anaerobic bacterivorous flagellates from hypersaline and alkaline soda lake environments, which represent a novel clade. Small subunit ribosomal RNA (SSU rRNA) gene phylogenies support recent phylogenomic analyses in placing them as the sister of barthelonids, a group that is itself sister to or deeply branching within Fornicata (Metamonada). The new isolates have a distinctive morphology: the hunchbacked cell body is traversed by a narrow ventral groove ending in a large opening to a conspicuous recurrent cytopharynx. The right margin of the groove is defined by a thin “lip.” The posterior flagellum bears a wide ventral-facing vane. The narrow ventral groove and elongate cytopharynx are shared with barthelonids. We describe one isolate as Skoliomonas litria, gen. et sp. nov. Further investigation of their mitochondrial-related organelles (MROs) and detailed ultrastructural studies would be important to understanding the adaptation to anaerobic conditions in Metamonads—especially fornicates—as well as the evolution of the “excavate” cell architecture.

水螅虫是一种大型厌氧原生动物。此外,它们是被认为最早具有 "挖掘 "细胞形态的三个类群之一,具有明显的腹沟和带有叶片的后鞭毛。在这里,我们培养并描述了来自高碱性和碱性苏打湖环境的四种厌氧噬菌鞭毛虫,它们代表了一个新的支系。小亚基核糖体 RNA(SSU rRNA)基因系统进化支持最近的系统进化分析,将它们列为巴氏鞭毛虫的姊妹群,而巴氏鞭毛虫本身又是Fornicata(Metamonada)的姊妹群或深分支。新分离物具有独特的形态:驼背细胞体上有一条狭窄的腹沟,腹沟的末端有一个大开口,通向一个明显的复发性胞咽。凹槽的右侧边缘有一个薄薄的 "唇"。后鞭毛有一个面向腹侧的宽叶片。狭窄的腹沟和细长的胞咽是巴氏鞭毛虫的共同特征。我们将其中一个分离物命名为 Skoliomonas litria, gen.对其线粒体相关细胞器(MROs)的进一步研究和详细的超微结构研究对于了解水螅虫(尤其是啮齿类)对厌氧条件的适应以及 "挖掘 "细胞结构的进化非常重要。
{"title":"Characterization of Skoliomonas gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada)","authors":"Yana Eglit,&nbsp;Shelby K. Williams,&nbsp;Andrew J. Roger,&nbsp;Alastair G. B. Simpson","doi":"10.1111/jeu.13048","DOIUrl":"10.1111/jeu.13048","url":null,"abstract":"<p>Metamonads are a large and exclusively anaerobic group of protists. Additionally, they are one of the three clades proposed to ancestrally possess an “excavate” cell morphology, with a conspicuous ventral groove accompanied by a posterior flagellum with a vane. Here, we cultivate and characterize four anaerobic bacterivorous flagellates from hypersaline and alkaline soda lake environments, which represent a novel clade. Small subunit ribosomal RNA (SSU rRNA) gene phylogenies support recent phylogenomic analyses in placing them as the sister of barthelonids, a group that is itself sister to or deeply branching within Fornicata (Metamonada). The new isolates have a distinctive morphology: the hunchbacked cell body is traversed by a narrow ventral groove ending in a large opening to a conspicuous recurrent cytopharynx. The right margin of the groove is defined by a thin “lip.” The posterior flagellum bears a wide ventral-facing vane. The narrow ventral groove and elongate cytopharynx are shared with barthelonids. We describe one isolate as <i>Skoliomonas litria</i>, gen. et sp. nov. Further investigation of their mitochondrial-related organelles (MROs) and detailed ultrastructural studies would be important to understanding the adaptation to anaerobic conditions in Metamonads—especially fornicates—as well as the evolution of the “excavate” cell architecture.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.13048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HCN channels are essential for the escape response of Paramecium HCN通道对鹦鹉螺的逃逸反应至关重要。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-08-28 DOI: 10.1111/jeu.13057
Daisuke Kandabashi, Mutsumi Kawano, Shinobu Izutani, Hiyori Harada, Takashi Tominaga, Manabu Hori

When mechanical stimulation was applied to free swimming Paramecium, forward swimming velocity transiently increased due to activation of the posterior mechanosensory channels. The behavior response, known as “escape response,” requires membrane hyperpolarization and the activation of K-channel type adenylate cyclases. Our hypothesis is that this escape response also involves activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. HCN channels are activated by hyperpolarization and are modulated by cyclic nucleotides such as cAMP and cGMP. They play a critical role in many excitable cells in higher animals. If HCN channels act in Paramecium, this should help to enhance and prolong hyperpolarization, thereby increasing the swimming speed of Paramecium. This study used RNAi to examine the role of the HCN channel 1 in the escape responses by generating hcn1-gene knockdown cells (hcn1-KD). These cells showed reduced mechanically-stimulated escape responses and a lack of cGMP-dependent increases in swimming speed. Electrophysiological experiments demonstrated reduced hyperpolarization upon injection of large negative currents in hcn1-KD cells. This is consistent with a decrease in HCN1 channel activity and changes in the escape response. These findings suggest that HCN1 channels are K+ channels that regulate the escape response of Paramecium by amplifying the hyperpolarizations elicited by posterior mechanical stimulation.

当对自由游动的鹦鹉螺施加机械刺激时,由于后部机械感觉通道被激活,向前游动的速度会短暂增加。这种行为反应被称为 "逃逸反应",需要膜超极化和 K 通道型腺苷酸环化酶的激活。我们的假设是,这种逃避反应还涉及激活超极化激活的环核苷酸门控(HCN)通道。HCN 通道通过超极化激活,并受环核苷酸(如 cAMP 和 cGMP)的调节。它们在高等动物的许多兴奋细胞中发挥着关键作用。如果 HCN 通道在副跃类动物中发挥作用,这将有助于增强和延长超极化,从而提高副跃类动物的游泳速度。本研究使用 RNAi 技术,通过产生 hcn1 基因敲除细胞(hcn1-KD)来研究 HCN 通道 1 在逃逸反应中的作用。这些细胞表现出机械刺激的逃逸反应减弱,游速增加缺乏 cGMP 依赖性。电生理实验表明,在注入大负电流时,hcn1-KD 细胞的超极化程度降低。这与 HCN1 通道活性的降低和逃逸反应的变化是一致的。这些研究结果表明,HCN1 通道是一种 K+ 通道,可通过放大后机械刺激引起的超极化来调节鹦鹉螺的逃逸反应。
{"title":"HCN channels are essential for the escape response of Paramecium","authors":"Daisuke Kandabashi,&nbsp;Mutsumi Kawano,&nbsp;Shinobu Izutani,&nbsp;Hiyori Harada,&nbsp;Takashi Tominaga,&nbsp;Manabu Hori","doi":"10.1111/jeu.13057","DOIUrl":"10.1111/jeu.13057","url":null,"abstract":"<p>When mechanical stimulation was applied to free swimming <i>Paramecium</i>, forward swimming velocity transiently increased due to activation of the posterior mechanosensory channels. The behavior response, known as “escape response,” requires membrane hyperpolarization and the activation of K-channel type adenylate cyclases. Our hypothesis is that this escape response also involves activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. HCN channels are activated by hyperpolarization and are modulated by cyclic nucleotides such as cAMP and cGMP. They play a critical role in many excitable cells in higher animals. If HCN channels act in <i>Paramecium</i>, this should help to enhance and prolong hyperpolarization, thereby increasing the swimming speed of <i>Paramecium</i>. This study used RNAi to examine the role of the HCN channel 1 in the escape responses by generating <i>hcn1</i>-gene knockdown cells (<i>hcn1</i>-KD). These cells showed reduced mechanically-stimulated escape responses and a lack of cGMP-dependent increases in swimming speed. Electrophysiological experiments demonstrated reduced hyperpolarization upon injection of large negative currents in <i>hcn1</i>-KD cells. This is consistent with a decrease in HCN1 channel activity and changes in the escape response. These findings suggest that HCN1 channels are K<sup>+</sup> channels that regulate the escape response of <i>Paramecium</i> by amplifying the hyperpolarizations elicited by posterior mechanical stimulation.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remarkable genetic variability and high antigenicity of the octapeptide-repeat region in an Entamoeba nuttalli-specific surface protein 一种 Entamoeba nuttalli 特异性表面蛋白的八肽重复区域具有显著的遗传变异性和高度抗原性。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-08-19 DOI: 10.1111/jeu.13055
Tatsuya Imai, Azumi Kakino, Akitomo Sugawara, Xunjia Cheng, Hiroshi Tachibana

Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis. E. nuttalli is found in Macaca species, exhibiting no symptoms while potentially virulent. Using comparative genomics of Entamoeba species, we identified a gene encoding an E. nuttalli-specific protein containing 42 repeats of an octapeptide (PTORS). In the present study, we analyzed the genes in E. nuttalli strains derived from various geographic locations and host species. Sequence analysis of genomic DNA from four strains indicated 43, 44, and 48 repeat types in addition to 42 repeats and remarkable genetic diversity in the repeat region, although all nucleotide substitutions were synonymous. In contrast, the sequences of the N-terminal side region and C-terminus were identical among the strains. Monoclonal antibodies prepared against recombinant PTORS were reactive to the repeat regions but not to the N-terminal side regions. Polyclonal antibodies did not react with the N-terminal region, demonstrating that the repeat region had higher antigenicity. Analysis using synthetic peptides revealed that the two repeats of the octapeptide functioned as epitopes. Immunofluorescence microscopy using monoclonal antibodies demonstrated the surface localization of PTORS. These results suggest that the repeat region of PTORS plays an important role in host–parasite interactions.

从基因上讲,坚塔利恩塔米阿米巴与人类阿米巴病的病原体组织溶解恩塔米阿米巴最为接近。果塔利恩塔米巴虫存在于猕猴物种中,没有任何症状,但具有潜在的毒性。通过对恩塔米巴虫物种进行比较基因组学研究,我们发现了一种编码 nuttalli 特异蛋白的基因,该蛋白含有 42 个八肽重复序列(PTORS)。在本研究中,我们分析了来自不同地理位置和宿主物种的E. nuttalli菌株的基因。对四个菌株的基因组 DNA 进行的序列分析表明,除了 42 个重复序列外,还有 43、44 和 48 个重复序列,尽管所有核苷酸的替换都是同义的,但重复序列区域具有显著的遗传多样性。相反,各菌株的 N 端侧区和 C 端序列完全相同。针对重组 PTORS 制备的单克隆抗体对重复区有反应,但对 N 端侧区没有反应。多克隆抗体与 N 端区域没有反应,这表明重复区域具有更高的抗原性。使用合成肽进行的分析表明,八肽的两个重复区具有表位功能。使用单克隆抗体进行的免疫荧光显微镜检查证明了 PTORS 的表面定位。这些结果表明,PTORS的重复区在宿主与寄生虫的相互作用中发挥着重要作用。
{"title":"Remarkable genetic variability and high antigenicity of the octapeptide-repeat region in an Entamoeba nuttalli-specific surface protein","authors":"Tatsuya Imai,&nbsp;Azumi Kakino,&nbsp;Akitomo Sugawara,&nbsp;Xunjia Cheng,&nbsp;Hiroshi Tachibana","doi":"10.1111/jeu.13055","DOIUrl":"10.1111/jeu.13055","url":null,"abstract":"<p><i>Entamoeba nuttalli</i> is genetically the closest to <i>Entamoeba histolytica</i>, the causative agent of human amebiasis. <i>E</i>. <i>nuttalli</i> is found in <i>Macaca</i> species, exhibiting no symptoms while potentially virulent. Using comparative genomics of <i>Entamoeba</i> species, we identified a gene encoding an <i>E</i>. <i>nuttalli-</i>specific protein containing 42 repeats of an octapeptide (PTORS). In the present study, we analyzed the genes in <i>E</i>. <i>nuttalli</i> strains derived from various geographic locations and host species. Sequence analysis of genomic DNA from four strains indicated 43, 44, and 48 repeat types in addition to 42 repeats and remarkable genetic diversity in the repeat region, although all nucleotide substitutions were synonymous. In contrast, the sequences of the N-terminal side region and C-terminus were identical among the strains. Monoclonal antibodies prepared against recombinant PTORS were reactive to the repeat regions but not to the N-terminal side regions. Polyclonal antibodies did not react with the N-terminal region, demonstrating that the repeat region had higher antigenicity. Analysis using synthetic peptides revealed that the two repeats of the octapeptide functioned as epitopes. Immunofluorescence microscopy using monoclonal antibodies demonstrated the surface localization of PTORS. These results suggest that the repeat region of PTORS plays an important role in host–parasite interactions.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special issue on microsporidia 微孢子虫特刊。
IF 2.1 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-08-18 DOI: 10.1111/jeu.13056
Louis M. Weiss
{"title":"Special issue on microsporidia","authors":"Louis M. Weiss","doi":"10.1111/jeu.13056","DOIUrl":"10.1111/jeu.13056","url":null,"abstract":"","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"71 5","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Eukaryotic Microbiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1