Pub Date : 2024-07-03Print Date: 2024-08-01DOI: 10.1530/JOE-24-0024
Elisa Villalobos, Allende Miguelez-Crespo, Ruth A Morgan, Lisa Ivatt, Mhairi Paul, Joanna P Simpson, Natalie Z M Homer, Dominic Kurian, Judit Aguilar, Rachel A Kline, Thomas M Wishart, Nicholas M Morton, Roland H Stimson, Ruth Andrew, Brian R Walker, Mark Nixon
Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.
{"title":"ATP-binding cassette family C member 1 constrains metabolic responses to high-fat diet in male mice.","authors":"Elisa Villalobos, Allende Miguelez-Crespo, Ruth A Morgan, Lisa Ivatt, Mhairi Paul, Joanna P Simpson, Natalie Z M Homer, Dominic Kurian, Judit Aguilar, Rachel A Kline, Thomas M Wishart, Nicholas M Morton, Roland H Stimson, Ruth Andrew, Brian R Walker, Mark Nixon","doi":"10.1530/JOE-24-0024","DOIUrl":"10.1530/JOE-24-0024","url":null,"abstract":"<p><p>Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27Print Date: 2024-08-01DOI: 10.1530/JOE-24-0051
Michael Merkhassine, Reilly W Coch, Carol E Frederick, Lucinda L Bennett, Seth A Peng, Benjamin Morse, Bethany P Cummings, John P Loftus
Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) - low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90-120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon's glucose-independent modulation of the canine plasma metabolome and highlight the dog's relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.
胰高血糖素在氨基酸(AA)平衡中发挥着核心作用。狗是胰高血糖素生物学的一个成熟模型,最近也有报道称输注胰高血糖素后人体内的代谢组变化。胰高血糖素对肾脏也有影响;然而,与胰高血糖素相关的尿液 AA 浓度变化仍未得到充分研究。因此,我们旨在通过确定胰高血糖素对犬血浆代谢组的影响和测量尿液 AA 浓度来填补犬模型中的这些空白。我们采用两种恒定速率胰高血糖素输注(CRI)--低剂量(CRI-LO:3 纳克/千克/分钟)和高剂量(CRI-HI:50 纳克/千克/分钟)--对五只研究用小猎犬进行了监测,并对输注前后收集的血浆样本和尿液 AA 浓度进行了非靶向液相色谱串联质谱分析(LC-MS/MS)。CRI-HI 会诱发短暂的葡萄糖峰值(90-120 分钟),到输注结束时会恢复到基线附近,而只有 CRI-LO 会导致 372 种血浆代谢物发生显著变化,主要是减少(333)。同样,CRI-HI 影响了 414 种代谢物,减少了 369 种,这在输注后通过数据还原(PCA 和 sPLS-DA)进行明显聚类得到了证明。CRI-HI显著降低了循环中的AA水平,影响了各种与AA相关的和产生能量的代谢途径。尿液分析表明,灌注后 3-甲基-L-组氨酸和谷氨酰胺浓度升高,丙氨酸浓度降低。这些发现证明了胰高血糖素对犬血浆代谢组的调节与葡萄糖无关,并突出了犬作为胰高血糖素生物学转化模型的相关性。了解这些影响有助于控制胰高血糖素失调的情况,并为影响胰高血糖素平衡的治疗提供信息。
{"title":"Glucagon infusion alters the circulating metabolome and urine amino acid excretion in dogs.","authors":"Michael Merkhassine, Reilly W Coch, Carol E Frederick, Lucinda L Bennett, Seth A Peng, Benjamin Morse, Bethany P Cummings, John P Loftus","doi":"10.1530/JOE-24-0051","DOIUrl":"10.1530/JOE-24-0051","url":null,"abstract":"<p><p>Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) - low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90-120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon's glucose-independent modulation of the canine plasma metabolome and highlight the dog's relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena González, Ma Eugenia Díaz, Johanna G Miquet, Ana I Sotelo, Diego Fernández, Fernando P Dominici, Andrzej Bartke, Daniel Turyn
{"title":"ERRATUM: GH modulates hepatic epidermal growth factor signaling in the mouse.","authors":"Lorena González, Ma Eugenia Díaz, Johanna G Miquet, Ana I Sotelo, Diego Fernández, Fernando P Dominici, Andrzej Bartke, Daniel Turyn","doi":"10.1530/JOE-09-0372e","DOIUrl":"10.1530/JOE-09-0372e","url":null,"abstract":"","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"262 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24Print Date: 2024-08-01DOI: 10.1530/JOE-23-0368
Yu Zhou, Chao Lian, Yingfei Lu, Tianming Wang, Chengcheng Zhao, Cuilan Zhang, Min Gong, Jianquan Chen, Rong Ju
Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.
多囊卵巢综合征(PCOS)是环境因素和遗传因素相互作用的结果,对后代的发育产生深远影响。虽然该病的病因尚不清楚,但胎儿期雄激素暴露异常被认为是关键的致病因素之一。在此,我们证明了母体睾酮暴露导致的 F0 小鼠 F2 雌性后代 PCOS 类表型通过 F1 雄性的代际遗传。我们发现,经睾酮处理的 F1 雄性小鼠和 F2 雌性小鼠(PTF1 和 PTF2)的血清激素表达和生殖系统发育受损。此外,下调的N6-甲基腺苷(m6A)甲基转移酶和结合蛋白诱导了PTF1睾丸mRNA的低甲基化,包括Frizzled-6(Fzd6)。在 PTF2 卵巢中,FZD6 蛋白表达的减少抑制了哺乳动物雷帕霉素靶标(mTOR)信号通路,并激活了叉头框 O3(FoxO3)磷酸化,从而导致卵泡发育受损。这些数据表明,mTOR信号通路的表观遗传修饰可能参与了母体睾酮暴露通过雄性PTF1小鼠诱导的PTF2卵巢损伤的代际遗传。
{"title":"Maternal androgen exposure induces intergenerational effects via paternal inheritance.","authors":"Yu Zhou, Chao Lian, Yingfei Lu, Tianming Wang, Chengcheng Zhao, Cuilan Zhang, Min Gong, Jianquan Chen, Rong Ju","doi":"10.1530/JOE-23-0368","DOIUrl":"10.1530/JOE-23-0368","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24Print Date: 2024-08-01DOI: 10.1530/JOE-24-0072
Andrea Lovdel, Karla J Suchacki, Fiona Roberts, Richard J Sulston, Robert J Wallace, Benjamin J Thomas, Rachel M B Bell, Iris Pruñonosa Cervera, Gavin J Macpherson, Nicholas M Morton, Natalie Z M Homer, Karen E Chapman, William P Cawthorn
Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11β-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11β-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11β-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11β-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11β-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.
{"title":"Deletion of Hsd11b1 suppresses caloric restriction-induced bone marrow adiposity in male but not female mice.","authors":"Andrea Lovdel, Karla J Suchacki, Fiona Roberts, Richard J Sulston, Robert J Wallace, Benjamin J Thomas, Rachel M B Bell, Iris Pruñonosa Cervera, Gavin J Macpherson, Nicholas M Morton, Natalie Z M Homer, Karen E Chapman, William P Cawthorn","doi":"10.1530/JOE-24-0072","DOIUrl":"10.1530/JOE-24-0072","url":null,"abstract":"<p><p>Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11β-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11β-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11β-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11β-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11β-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07Print Date: 2024-07-01DOI: 10.1530/JOE-24-0058
Jane Stremming, Eileen I Chang, Alicia White, Paul J Rozance, Laura D Brown
Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.
{"title":"IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained.","authors":"Jane Stremming, Eileen I Chang, Alicia White, Paul J Rozance, Laura D Brown","doi":"10.1530/JOE-24-0058","DOIUrl":"10.1530/JOE-24-0058","url":null,"abstract":"<p><p>Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07Print Date: 2024-07-01DOI: 10.1530/JOE-23-0364
Graham W Aberdeen, Jeffery S Babischkin, Gerald J Pepe, Eugene D Albrecht
We recently showed that the ratio of capillaries to myofibers in skeletal muscle, which accounts for 80% of insulin-directed glucose uptake and metabolism, was reduced in baboon fetuses in which estrogen was suppressed by maternal letrozole administration. Since vascular endothelial growth factor (VEGF) promotes angiogenesis, the present study determined the impact of estrogen deprivation on fetal skeletal muscle VEGF expression, capillary development, and long-term vascular and metabolic function in 4- to 8-year-old adult offspring. Maternal baboons were untreated or treated with letrozole or letrozole plus estradiol on days 100-164 of gestation (term = 184 days). Skeletal muscle VEGF protein expression was suppressed by 45% (P < 0.05) and correlated (P = 0.01) with a 47% reduction (P < 0.05) in the number of capillaries per myofiber area in fetuses of baboons in which serum estradiol levels were suppressed 95% (P < 0.01) by letrozole administration. The reduction in fetal skeletal muscle microvascularization was associated with a 52% decline (P = 0.02) in acetylcholine-induced brachial artery dilation and a 23% increase (P = 0.01) in mean arterial blood pressure in adult progeny of letrozole-treated baboons, which was restored to normal by letrozole plus estradiol. The present study indicates that estrogen upregulates skeletal muscle VEGF expression and systemic microvessel development within the fetus as an essential programming event critical for ontogenesis of systemic vascular function and insulin sensitivity/glucose homeostasis after birth in primate offspring.
{"title":"Estrogen stimulates fetal vascular endothelial growth factor expression and microvascularization.","authors":"Graham W Aberdeen, Jeffery S Babischkin, Gerald J Pepe, Eugene D Albrecht","doi":"10.1530/JOE-23-0364","DOIUrl":"10.1530/JOE-23-0364","url":null,"abstract":"<p><p>We recently showed that the ratio of capillaries to myofibers in skeletal muscle, which accounts for 80% of insulin-directed glucose uptake and metabolism, was reduced in baboon fetuses in which estrogen was suppressed by maternal letrozole administration. Since vascular endothelial growth factor (VEGF) promotes angiogenesis, the present study determined the impact of estrogen deprivation on fetal skeletal muscle VEGF expression, capillary development, and long-term vascular and metabolic function in 4- to 8-year-old adult offspring. Maternal baboons were untreated or treated with letrozole or letrozole plus estradiol on days 100-164 of gestation (term = 184 days). Skeletal muscle VEGF protein expression was suppressed by 45% (P < 0.05) and correlated (P = 0.01) with a 47% reduction (P < 0.05) in the number of capillaries per myofiber area in fetuses of baboons in which serum estradiol levels were suppressed 95% (P < 0.01) by letrozole administration. The reduction in fetal skeletal muscle microvascularization was associated with a 52% decline (P = 0.02) in acetylcholine-induced brachial artery dilation and a 23% increase (P = 0.01) in mean arterial blood pressure in adult progeny of letrozole-treated baboons, which was restored to normal by letrozole plus estradiol. The present study indicates that estrogen upregulates skeletal muscle VEGF expression and systemic microvessel development within the fetus as an essential programming event critical for ontogenesis of systemic vascular function and insulin sensitivity/glucose homeostasis after birth in primate offspring.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03Print Date: 2024-07-01DOI: 10.1530/JOE-23-0384
Stephen P Fitzgerald, Nigel G Bean, Henrik Falhammar, Rudolf Hoermann, Yael Korem Kohanim, Hermann Pohlabeln, Niels Grote Beverborg, Sarah Tomassetti
The fundamental models underlying hormonal physiological regulation and homeostasis remain poorly understood. We aimed to derive quantitative evidence regarding these models from the study of population data of balance points of different parameters and their respective controlling hormones. We studied the slopes of correlations between concentrations of circulating free thyroxine and thyrotropin, calcium and parathyroid hormone, hemoglobin and erythropoietin, and glucose and insulin in such population data, as well as the slopes of the limbs of various feedback loops estimated empirically and by reverse engineering of the population data. We used computer simulations to model the factors that influence the slopes derived from the population data, and then matched these simulations with the empirically derived slopes. Our simulations showed that changes to the population distribution of feedback loop limbs may alter the slopes of correlations within population data in specific ways. Non-random (interdependent) associations of the limbs of feedback loops may also have this effect, as well as producing discrepancies between the slopes of feedback limb loops determined experimentally and the same slopes determined by derivation from population data. Our corresponding empirical findings were consistent with the presence of such interdependence in the free thyroxine/thyrotropin, hemoglobin/erythropoietin, and glucose/insulin systems. The glucose/insulin data provided evidence consistent with increasing interdependence with age in childhood. Our findings therefore provide strong evidence that the interdependence of the limbs of feedback loops is a general feature of endocrine homeostatic regulation. This interdependence potentially bestows evolutionary homeostatic and regulatory advantages.
{"title":"Population data evidence of interdependence of the limbs of hormonal feedback loops.","authors":"Stephen P Fitzgerald, Nigel G Bean, Henrik Falhammar, Rudolf Hoermann, Yael Korem Kohanim, Hermann Pohlabeln, Niels Grote Beverborg, Sarah Tomassetti","doi":"10.1530/JOE-23-0384","DOIUrl":"10.1530/JOE-23-0384","url":null,"abstract":"<p><p>The fundamental models underlying hormonal physiological regulation and homeostasis remain poorly understood. We aimed to derive quantitative evidence regarding these models from the study of population data of balance points of different parameters and their respective controlling hormones. We studied the slopes of correlations between concentrations of circulating free thyroxine and thyrotropin, calcium and parathyroid hormone, hemoglobin and erythropoietin, and glucose and insulin in such population data, as well as the slopes of the limbs of various feedback loops estimated empirically and by reverse engineering of the population data. We used computer simulations to model the factors that influence the slopes derived from the population data, and then matched these simulations with the empirically derived slopes. Our simulations showed that changes to the population distribution of feedback loop limbs may alter the slopes of correlations within population data in specific ways. Non-random (interdependent) associations of the limbs of feedback loops may also have this effect, as well as producing discrepancies between the slopes of feedback limb loops determined experimentally and the same slopes determined by derivation from population data. Our corresponding empirical findings were consistent with the presence of such interdependence in the free thyroxine/thyrotropin, hemoglobin/erythropoietin, and glucose/insulin systems. The glucose/insulin data provided evidence consistent with increasing interdependence with age in childhood. Our findings therefore provide strong evidence that the interdependence of the limbs of feedback loops is a general feature of endocrine homeostatic regulation. This interdependence potentially bestows evolutionary homeostatic and regulatory advantages.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiong Weng, Hao Jiang, David J Walker, Houjiang Zhou, De Lin, Jing Wang, Li Kang
CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44 deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARɣ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.
{"title":"Deletion of CD44 promotes adipogenesis by regulating PPARɣ and cell cycle-related pathways","authors":"Xiong Weng, Hao Jiang, David J Walker, Houjiang Zhou, De Lin, Jing Wang, Li Kang","doi":"10.1530/joe-24-0079","DOIUrl":"https://doi.org/10.1530/joe-24-0079","url":null,"abstract":"<p>CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44 deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARɣ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"38 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17Print Date: 2024-05-01DOI: 10.1530/JOE-23-0319
Yaxiong Huang, Zihan Wang, Bin Li, Lina Ke, Yao Xiong, Yuanzhen Zhang
The impaired endometrial receptivity is a major factor contributing to infertility in patients with endometriosis (EM), but the underlying mechanism remains unclear. Our study aimed to investigate the role of Kruppel-like factor 15 (KLF15) in endometrial receptivity and its regulation in EM. We observed a significant decrease in KLF15 expression in the mid-secretory epithelial endometrial cells of EM patients compared to normal females without EM. To confirm the role of KLF15 in endometrial receptivity, we found a significantly reduced KLF15 expression and a significant decrease in embryo implantation number in the rat model via uterine horn infection with siRNA. This highlights the importance of KLF15 as a regulator receptivity. Furthermore, through ChIP-qPCR, we discovered that the progesterone receptor (PR) directly binds to KLF15 promoter regions, indicating that progesterone resistance may mediate the decrease in KLF15 expression in EM patients. Additionally, we found that the mid-secretory endometrium of EM patients exhibited impaired epithelial-mesenchymal transition (EMT). Knockdown of KLF15 upregulated E-cadherin and downregulated vimentin expression, leading to inhibited invasiveness and migration of Ishikawa cells. Overexpression KLF15 promotes EMT, invasiveness, and migration ability, and increases the attachment rate of JAR cells to Ishikawa cells. Through RNA-seq analysis, we identified TWIST2 as a downstream gene of KLF15. We confirmed that KLF15 directly binds to the promoter region of TWIST2 via ChIP-qPCR, promoting epithelial cell EMT during the establishment of endometrial receptivity. Our study reveals the involvement of KLF15 in the regulation of endometrial receptivity and its downstream effects on EMT. These findings provide valuable insights into potential therapeutic approaches for treating non-receptive endometrium in patients with EM.
{"title":"Loss of KLF15 impairs endometrial receptivity by inhibiting EMT in endometriosis.","authors":"Yaxiong Huang, Zihan Wang, Bin Li, Lina Ke, Yao Xiong, Yuanzhen Zhang","doi":"10.1530/JOE-23-0319","DOIUrl":"10.1530/JOE-23-0319","url":null,"abstract":"<p><p>The impaired endometrial receptivity is a major factor contributing to infertility in patients with endometriosis (EM), but the underlying mechanism remains unclear. Our study aimed to investigate the role of Kruppel-like factor 15 (KLF15) in endometrial receptivity and its regulation in EM. We observed a significant decrease in KLF15 expression in the mid-secretory epithelial endometrial cells of EM patients compared to normal females without EM. To confirm the role of KLF15 in endometrial receptivity, we found a significantly reduced KLF15 expression and a significant decrease in embryo implantation number in the rat model via uterine horn infection with siRNA. This highlights the importance of KLF15 as a regulator receptivity. Furthermore, through ChIP-qPCR, we discovered that the progesterone receptor (PR) directly binds to KLF15 promoter regions, indicating that progesterone resistance may mediate the decrease in KLF15 expression in EM patients. Additionally, we found that the mid-secretory endometrium of EM patients exhibited impaired epithelial-mesenchymal transition (EMT). Knockdown of KLF15 upregulated E-cadherin and downregulated vimentin expression, leading to inhibited invasiveness and migration of Ishikawa cells. Overexpression KLF15 promotes EMT, invasiveness, and migration ability, and increases the attachment rate of JAR cells to Ishikawa cells. Through RNA-seq analysis, we identified TWIST2 as a downstream gene of KLF15. We confirmed that KLF15 directly binds to the promoter region of TWIST2 via ChIP-qPCR, promoting epithelial cell EMT during the establishment of endometrial receptivity. Our study reveals the involvement of KLF15 in the regulation of endometrial receptivity and its downstream effects on EMT. These findings provide valuable insights into potential therapeutic approaches for treating non-receptive endometrium in patients with EM.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}