首页 > 最新文献

Journal of Endocrinology最新文献

英文 中文
Liraglutide alleviates experimental diabetic cardiomyopathy in a PDH-dependent manner. 利拉鲁肽以 PDH 依赖性方式缓解实验性糖尿病心肌病。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-08 Print Date: 2024-08-01 DOI: 10.1530/JOE-24-0032
Jordan S F Chan, Amanda A Greenwell, Christina T Saed, Magnus J Stenlund, Indiresh A Mangra-Bala, Seyed Amirhossein Tabatabaei Dakhili, Kunyan Yang, Sally R Ferrari, Farah Eaton, Keshav Gopal, John R Ussher

Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide's ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM-/- mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM-/- mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM-/- mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM-/- mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e'/a' and E/e' ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM-/- mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.

利拉鲁肽是一种用于治疗 T2D 的胰高血糖素样肽-1 受体(GLP-1R)激动剂,已被证明能缓解实验性 T2D 中的糖尿病心肌病(DbCM),而这种病与心肌葡萄糖氧化增加有关。为了确定葡萄糖氧化的增加是否是心脏保护所必需的,我们假设利拉鲁肽缓解 DbCM 的能力会在心肌细胞特异性缺失丙酮酸脱氢酶(PDH;Pdha1CM-/-小鼠)(葡萄糖氧化的限速酶)的小鼠中消失。雄性 Pdha1CM-/- 小鼠及其肌球蛋白重链-α Cre 表达同系物(αMHCCre 小鼠)通过 10 周的高脂饮食补充接受实验性 T2D,并在第 4 周注射单次低剂量链脲佐菌素(75 毫克/千克)。所有小鼠在最后2.5周随机接受药物对照(VC)或利拉鲁肽(30 μg/kg)治疗,每天两次,并通过超声波超声心动图评估心脏功能。不出所料,利拉鲁肽治疗改善了αMHCCre和Pdha1CM-/-T2D小鼠的糖稳态,但体重并未减轻。在患有 T2D 的 αMHCCre 和 Pdha1CM-/- 小鼠中,利拉鲁肽治疗对收缩功能参数没有影响。然而,利拉鲁肽治疗缓解了αMHCCre小鼠的舒张功能障碍,这分别表现为e'/a'和E/e'比率的增加和减少。相反,利拉鲁肽未能挽救 Pdha1CM-/- 小鼠舒张功能障碍的这些指数。我们的研究结果表明,葡萄糖氧化的增加是 GLP-1R 激动剂介导的 DbCM 缓解所必需的。因此,旨在提高 PDH 活性的策略可能是治疗 DbCM 的一种新方法。
{"title":"Liraglutide alleviates experimental diabetic cardiomyopathy in a PDH-dependent manner.","authors":"Jordan S F Chan, Amanda A Greenwell, Christina T Saed, Magnus J Stenlund, Indiresh A Mangra-Bala, Seyed Amirhossein Tabatabaei Dakhili, Kunyan Yang, Sally R Ferrari, Farah Eaton, Keshav Gopal, John R Ussher","doi":"10.1530/JOE-24-0032","DOIUrl":"10.1530/JOE-24-0032","url":null,"abstract":"<p><p>Liraglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist used for the treatment of T2D, has been shown to alleviate diabetic cardiomyopathy (DbCM) in experimental T2D, which was associated with increased myocardial glucose oxidation. To determine whether this increase in glucose oxidation is necessary for cardioprotection, we hypothesized that liraglutide's ability to alleviate DbCM would be abolished in mice with cardiomyocyte-specific deletion of pyruvate dehydrogenase (PDH; Pdha1CM-/- mice), the rate-limiting enzyme of glucose oxidation. Male Pdha1CM-/- mice and their α-myosin heavy chain Cre expressing littermates (αMHCCre mice) were subjected to experimental T2D via 10 weeks of high-fat diet supplementation, with a single low-dose injection of streptozotocin (75 mg/kg) provided at week 4. All mice were randomized to treatment with either vehicle control or liraglutide (30 µg/kg) twice daily during the final 2.5 weeks, with cardiac function assessed via ultrasound echocardiography. As expected, liraglutide treatment improved glucose homeostasis in both αMHCCre and Pdha1CM-/- mice with T2D, in the presence of mild weight loss. Parameters of systolic function were unaffected by liraglutide treatment in both αMHCCre and Pdha1CM-/- mice with T2D. However, liraglutide treatment alleviated diastolic dysfunction in αMHCCre mice, as indicated by an increase and decrease in the e'/a' and E/e' ratios, respectively. Conversely, liraglutide failed to rescue these indices of diastolic dysfunction in Pdha1CM-/- mice. Our findings suggest that increases in glucose oxidation are necessary for GLP-1R agonist mediated alleviation of DbCM. As such, strategies aimed at increasing PDH activity may represent a novel approach for the treatment of DbCM.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RISING STARS: Evidence for established and emerging forms of β-cell death. 已有的和新出现的β细胞死亡形式的证据。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-04 Print Date: 2024-08-01 DOI: 10.1530/JOE-23-0378
Kaitlyn A Colglazier, Noyonika Mukherjee, Christopher J Contreras, Andrew T Templin

β-Cell death contributes to β-cell loss and insulin insufficiency in type 1 diabetes (T1D), and this β-cell demise has been attributed to apoptosis and necrosis. Apoptosis has been viewed as the lone form of programmed β-cell death, and evidence indicates that β-cells also undergo necrosis, regarded as an unregulated or accidental form of cell demise. More recently, studies in non-islet cell types have identified and characterized novel forms of cell death that are biochemically and morphologically distinct from apoptosis and necrosis. Several of these mechanisms of cell death have been categorized as forms of regulated necrosis and linked to inflammation and disease pathogenesis. In this review, we revisit discoveries of β-cell death in humans with diabetes and describe studies characterizing β-cell apoptosis and necrosis. We explore literature on mechanisms of regulated necrosis including necroptosis, ferroptosis and pyroptosis, review emerging literature on the significance of these mechanisms in β-cells, and discuss experimental approaches to differentiate between various mechanisms of β-cell death. Our review of the literature leads us to conclude that more detailed experimental characterization of the mechanisms of β-cell death is warranted, along with studies to better understand the impact of various forms of β-cell demise on islet inflammation and β-cell autoimmunity in pathophysiologically relevant models. Such studies will provide insight into the mechanisms of β-cell loss in T1D and may shed light on new therapeutic approaches to protect β-cells in this disease.

β细胞死亡是导致1型糖尿病(T1D)患者β细胞丢失和胰岛素分泌不足的原因之一,这种β细胞死亡被归因于细胞凋亡和坏死。细胞凋亡被认为是β细胞程序性死亡的唯一形式,有证据表明,β细胞也会发生坏死,这被认为是一种不受控制或偶然的细胞死亡形式。最近,对非胰岛细胞类型的研究发现并描述了新的细胞死亡形式,它们在生化和形态上有别于细胞凋亡和坏死。其中几种细胞死亡机制被归类为调节性坏死,并与炎症和疾病发病机制有关。在这篇综述中,我们重温了糖尿病患者β细胞死亡的发现,并描述了有关β细胞凋亡和坏死特征的研究。我们探讨了有关调节性坏死机制(包括坏死凋亡、铁凋亡和热凋亡)的文献,回顾了有关这些机制在β细胞中的重要性的新兴文献,并讨论了区分各种β细胞死亡机制的实验方法。通过对文献的回顾,我们得出结论:有必要对β细胞的死亡机制进行更详细的实验描述,同时开展研究,以更好地了解各种形式的β细胞死亡对病理生理学相关模型中胰岛炎症和β细胞自身免疫的影响。这些研究将有助于深入了解 T1D 中 β 细胞丢失的机制,并可能为保护这种疾病中的β细胞提供新的治疗方法。
{"title":"RISING STARS: Evidence for established and emerging forms of β-cell death.","authors":"Kaitlyn A Colglazier, Noyonika Mukherjee, Christopher J Contreras, Andrew T Templin","doi":"10.1530/JOE-23-0378","DOIUrl":"10.1530/JOE-23-0378","url":null,"abstract":"<p><p>β-Cell death contributes to β-cell loss and insulin insufficiency in type 1 diabetes (T1D), and this β-cell demise has been attributed to apoptosis and necrosis. Apoptosis has been viewed as the lone form of programmed β-cell death, and evidence indicates that β-cells also undergo necrosis, regarded as an unregulated or accidental form of cell demise. More recently, studies in non-islet cell types have identified and characterized novel forms of cell death that are biochemically and morphologically distinct from apoptosis and necrosis. Several of these mechanisms of cell death have been categorized as forms of regulated necrosis and linked to inflammation and disease pathogenesis. In this review, we revisit discoveries of β-cell death in humans with diabetes and describe studies characterizing β-cell apoptosis and necrosis. We explore literature on mechanisms of regulated necrosis including necroptosis, ferroptosis and pyroptosis, review emerging literature on the significance of these mechanisms in β-cells, and discuss experimental approaches to differentiate between various mechanisms of β-cell death. Our review of the literature leads us to conclude that more detailed experimental characterization of the mechanisms of β-cell death is warranted, along with studies to better understand the impact of various forms of β-cell demise on islet inflammation and β-cell autoimmunity in pathophysiologically relevant models. Such studies will provide insight into the mechanisms of β-cell loss in T1D and may shed light on new therapeutic approaches to protect β-cells in this disease.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential regulation of STARD1, STARD4 and STARD6 in the human ovary. 人类卵巢中 STARD1、STARD4 和 STARD6 的差异调控。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-03 Print Date: 2024-08-01 DOI: 10.1530/JOE-23-0385
Nawal A Yahya, Steven R King, Bo Shi, Aisha Shaaban, Nicole E Whitfield, Chunmei Yan, Richard J Kordus, Gail F Whitman-Elia, Holly A LaVoie

Cells actively engaged in de novo steroidogenesis rely on an expansive intracellular network to efficiently transport cholesterol. The final link in the transport chain is STARD1, which transfers cholesterol to the enzyme complex that initiates steroidogenesis. However, the regulation of ovarian STARD1 is not fully characterized, and even less is known about the upstream cytosolic cholesterol transporters STARD4 and STARD6. Here, we identified both STARD4 and STARD6 mRNAs in the human ovary but only detected STARD4 protein since the primary STARD6 transcript turned out to be a splice variant. Corpora lutea contained the highest levels of STARD4 and STARD1 mRNA and STARD1 protein, while STARD4 protein was uniformly distributed across ovarian tissues. Cyclic AMP analog (8Br-cAMP) and phorbol ester (PMA) individually increased STARD1 and STARD4 mRNA along with STARD1 protein and its phosphoform in cultured primary human luteinized granulosa cells (hGCs). STARD6 transcripts and STARD4 protein were unresponsive to these stimuli. Combining lower doses of PMA and 8Br-cAMP blunted the 8Br-cAMP stimulation of STARD1 protein. Increasing cholesterol levels by blocking its conversion to steroid with aminoglutethimide or by adding LDL reduced the STARD4 mRNA response to stimuli. Sterol depletion reduced the STARD1 mRNA and protein response to PMA. These data support a possible role for STARD4, but not STARD6, in supplying cholesterol for steroidogenesis in the ovary. We demonstrate for the first time how cAMP, PMA and sterol pathways separately and in combination differentially regulate STARD4, STARD6 and STARD1 mRNA levels, as well as STARD1 and STARD4 protein in human primary ovarian cells.

积极进行类固醇新生的细胞依赖于一个庞大的细胞内网络来有效运输胆固醇。运输链的最后一环是 STARD1,它将胆固醇转移到启动类固醇生成的酶复合物中。然而,卵巢 STARD1 的调控机制尚未完全确定,对上游细胞胆固醇转运体 STARD4 和 STARD6 的了解就更少了。在这里,我们在人类卵巢中发现了 STARD4 和 STARD6 mRNA,但只检测到了 STARD4 蛋白,因为主要的 STARD6 转录本是一个剪接变体。黄体含有最高水平的 STARD4 和 STARD1 mRNA 以及 STARD1 蛋白,而 STARD4 蛋白则均匀地分布在卵巢的各个组织中。在培养的原代人黄体化颗粒细胞(hGC)中,环磷酸腺苷类似物(8Br-cAMP)和光稳定剂(PMA)可单独增加STARD1和STARD4 mRNA以及STARD1蛋白及其磷酸化形式。STARD6 转录物和 STARD4 蛋白对这些刺激没有反应。将较低剂量的 PMA 和 8Br-cAMP 结合使用会减弱 8Br-cAMP 对 STARD1 蛋白质的刺激。用氨丁三醇阻断胆固醇向类固醇的转化或加入低密度脂蛋白来增加胆固醇水平,可降低 STARD4 mRNA 对刺激的反应。消耗类固醇会降低 STARD1 mRNA 和蛋白质对 PMA 的反应。这些数据支持 STARD4(而非 STARD6)在为卵巢中的类固醇生成提供胆固醇方面可能发挥的作用。我们首次证明了 cAMP、PMA 和固醇通路是如何在人类原代卵巢细胞中分别和联合对 STARD4、STARD6 和 STARD1 mRNA 水平以及 STARD1 和 STARD4 蛋白进行不同调控的。
{"title":"Differential regulation of STARD1, STARD4 and STARD6 in the human ovary.","authors":"Nawal A Yahya, Steven R King, Bo Shi, Aisha Shaaban, Nicole E Whitfield, Chunmei Yan, Richard J Kordus, Gail F Whitman-Elia, Holly A LaVoie","doi":"10.1530/JOE-23-0385","DOIUrl":"10.1530/JOE-23-0385","url":null,"abstract":"<p><p>Cells actively engaged in de novo steroidogenesis rely on an expansive intracellular network to efficiently transport cholesterol. The final link in the transport chain is STARD1, which transfers cholesterol to the enzyme complex that initiates steroidogenesis. However, the regulation of ovarian STARD1 is not fully characterized, and even less is known about the upstream cytosolic cholesterol transporters STARD4 and STARD6. Here, we identified both STARD4 and STARD6 mRNAs in the human ovary but only detected STARD4 protein since the primary STARD6 transcript turned out to be a splice variant. Corpora lutea contained the highest levels of STARD4 and STARD1 mRNA and STARD1 protein, while STARD4 protein was uniformly distributed across ovarian tissues. Cyclic AMP analog (8Br-cAMP) and phorbol ester (PMA) individually increased STARD1 and STARD4 mRNA along with STARD1 protein and its phosphoform in cultured primary human luteinized granulosa cells (hGCs). STARD6 transcripts and STARD4 protein were unresponsive to these stimuli. Combining lower doses of PMA and 8Br-cAMP blunted the 8Br-cAMP stimulation of STARD1 protein. Increasing cholesterol levels by blocking its conversion to steroid with aminoglutethimide or by adding LDL reduced the STARD4 mRNA response to stimuli. Sterol depletion reduced the STARD1 mRNA and protein response to PMA. These data support a possible role for STARD4, but not STARD6, in supplying cholesterol for steroidogenesis in the ovary. We demonstrate for the first time how cAMP, PMA and sterol pathways separately and in combination differentially regulate STARD4, STARD6 and STARD1 mRNA levels, as well as STARD1 and STARD4 protein in human primary ovarian cells.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced serum CLCF1 levels in hyperthyroidism patients and T3-treated mice. 甲状腺功能亢进症患者和 T3 治疗小鼠的血清 CLCF1 水平降低。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-03 Print Date: 2024-08-01 DOI: 10.1530/JOE-23-0412
Xuan Zhou, Yanan Zhang, Youwen Yuan, Fei Teng, Jiayang Lin, Xueru Ye, Yaojin Pan, Huijie Zhang

Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation, and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome, with recent research also indicating a link between CLCF1 and brown adipose tissue thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential possibilities of thyroid hormone in regulating energy metabolism by modulating Clcf1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in CLCF1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating CLCF1 expression in adipose tissue.

甲状腺功能亢进症的特征性症状包括体重减轻、心悸和出汗。甲状腺激素(TH)可通过中枢和外周机制刺激产热。以往的研究表明,心肌营养素样细胞因子因子1(CLCF1)的功能障碍与寒冷诱发出汗综合征(CISS)之间存在关联,最近的研究还表明CLCF1与棕色脂肪组织(BAT)的产热之间存在关联。然而,CLCF1和TH对产热是协同作用还是拮抗作用仍不清楚。本研究旨在调查甲状腺激素对人体循环中CLCF1水平的影响,并通过调节小鼠体内的CLCF1来探索甲状腺激素在调节能量代谢中的潜在作用。通过招募甲状腺功能亢进患者和健康受试者,我们观察到甲状腺功能亢进患者的血清CLCF1水平明显低于健康受试者,在调整潜在的混杂因素后,血清CLCF1水平与甲状腺功能亢进独立相关。用T3治疗的小鼠组织分析显示,C57BL/6小鼠的BAT和iWAT中的CLCF1表达量减少。这些研究结果表明,TH可能在调节产热脂肪组织中Clcf1的表达和影响产热方面发挥作用。
{"title":"Reduced serum CLCF1 levels in hyperthyroidism patients and T3-treated mice.","authors":"Xuan Zhou, Yanan Zhang, Youwen Yuan, Fei Teng, Jiayang Lin, Xueru Ye, Yaojin Pan, Huijie Zhang","doi":"10.1530/JOE-23-0412","DOIUrl":"10.1530/JOE-23-0412","url":null,"abstract":"<p><p>Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation, and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome, with recent research also indicating a link between CLCF1 and brown adipose tissue thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential possibilities of thyroid hormone in regulating energy metabolism by modulating Clcf1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in CLCF1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating CLCF1 expression in adipose tissue.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATP-binding cassette family C member 1 constrains metabolic responses to high-fat diet in male mice. ATP 结合盒 C 家族成员 1 限制了对高脂肪饮食的代谢反应。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-03 Print Date: 2024-08-01 DOI: 10.1530/JOE-24-0024
Elisa Villalobos, Allende Miguelez-Crespo, Ruth A Morgan, Lisa Ivatt, Mhairi Paul, Joanna P Simpson, Natalie Z M Homer, Dominic Kurian, Judit Aguilar, Rachel A Kline, Thomas M Wishart, Nicholas M Morton, Roland H Stimson, Ruth Andrew, Brian R Walker, Mark Nixon

Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.

糖皮质激素可调节葡萄糖稳态,作用于肝脏、骨骼肌和脂肪组织等代谢活跃的组织。糖皮质激素在脂肪组织中的细胞内调节作用影响着对肥胖的代谢反应。ATP 结合盒 C 家族成员 1(ABCC1)是一种跨膜糖皮质激素转运体,已知可限制外源性皮质酮在脂肪组织中的蓄积。然而,ABCC1 在调节内源性糖皮质激素作用中的作用及其对燃料代谢的影响尚未得到研究。在这里,我们研究了 Abcc1 缺乏对糖皮质激素作用和高脂饮食(HFD)诱导肥胖的影响。在瘦小鼠中,缺乏 Abcc1 会增加骨骼肌和脂肪组织中的内源性皮质酮水平,但不会影响胰岛素敏感性。相反,高密度脂蛋白胆固醇(HFD)小鼠缺乏 Abcc1 会出现葡萄糖和胰岛素耐受性受损以及空腹高胰岛素血症,但组织中的皮质酮水平不会发生变化。蛋白质组学和大量 RNA 测序显示,Abcc1 缺乏会扩大脂肪组织对肥胖饮食的转录反应,但不会扩大骨骼肌对肥胖饮食的转录反应。此外,缺乏 Abcc1 会损害骨骼肌和脂肪组织中与葡萄糖代谢有关的关键信号通路,尤其是与 OXPHOS 机制和 Glut4 有关的信号通路。总之,我们的研究结果突显了 ABCC1 在调节葡萄糖稳态中的作用,并显示了与组织糖皮质激素浓度改变无关的饮食依赖性效应。
{"title":"ATP-binding cassette family C member 1 constrains metabolic responses to high-fat diet in male mice.","authors":"Elisa Villalobos, Allende Miguelez-Crespo, Ruth A Morgan, Lisa Ivatt, Mhairi Paul, Joanna P Simpson, Natalie Z M Homer, Dominic Kurian, Judit Aguilar, Rachel A Kline, Thomas M Wishart, Nicholas M Morton, Roland H Stimson, Ruth Andrew, Brian R Walker, Mark Nixon","doi":"10.1530/JOE-24-0024","DOIUrl":"10.1530/JOE-24-0024","url":null,"abstract":"<p><p>Glucocorticoids modulate glucose homeostasis, acting on metabolically active tissues such as liver, skeletal muscle, and adipose tissue. Intracellular regulation of glucocorticoid action in adipose tissue impacts metabolic responses to obesity. ATP-binding cassette family C member 1 (ABCC1) is a transmembrane glucocorticoid transporter known to limit the accumulation of exogenously administered corticosterone in adipose tissue. However, the role of ABCC1 in the regulation of endogenous glucocorticoid action and its impact on fuel metabolism has not been studied. Here, we investigate the impact of Abcc1 deficiency on glucocorticoid action and high-fat-diet (HFD)-induced obesity. In lean male mice, deficiency of Abcc1 increased endogenous corticosterone levels in skeletal muscle and adipose tissue but did not impact insulin sensitivity. In contrast, Abcc1-deficient male mice on HFD displayed impaired glucose and insulin tolerance, and fasting hyperinsulinaemia, without alterations in tissue corticosterone levels. Proteomics and bulk RNA sequencing revealed that Abcc1 deficiency amplified the transcriptional response to an obesogenic diet in adipose tissue but not in skeletal muscle. Moreover, Abcc1 deficiency impairs key signalling pathways related to glucose metabolism in both skeletal muscle and adipose tissue, in particular those related to OXPHOS machinery and Glut4. Together, our results highlight a role for ABCC1 in regulating glucose homeostasis, demonstrating diet-dependent effects that are not associated with altered tissue glucocorticoid concentrations.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucagon infusion alters the circulating metabolome and urine amino acid excretion in dogs. 输注胰高血糖素会改变狗的循环代谢组和尿液氨基酸排泄。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-06-27 Print Date: 2024-08-01 DOI: 10.1530/JOE-24-0051
Michael Merkhassine, Reilly W Coch, Carol E Frederick, Lucinda L Bennett, Seth A Peng, Benjamin Morse, Bethany P Cummings, John P Loftus

Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) - low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90-120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon's glucose-independent modulation of the canine plasma metabolome and highlight the dog's relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.

胰高血糖素在氨基酸(AA)平衡中发挥着核心作用。狗是胰高血糖素生物学的一个成熟模型,最近也有报道称输注胰高血糖素后人体内的代谢组变化。胰高血糖素对肾脏也有影响;然而,与胰高血糖素相关的尿液 AA 浓度变化仍未得到充分研究。因此,我们旨在通过确定胰高血糖素对犬血浆代谢组的影响和测量尿液 AA 浓度来填补犬模型中的这些空白。我们采用两种恒定速率胰高血糖素输注(CRI)--低剂量(CRI-LO:3 纳克/千克/分钟)和高剂量(CRI-HI:50 纳克/千克/分钟)--对五只研究用小猎犬进行了监测,并对输注前后收集的血浆样本和尿液 AA 浓度进行了非靶向液相色谱串联质谱分析(LC-MS/MS)。CRI-HI 会诱发短暂的葡萄糖峰值(90-120 分钟),到输注结束时会恢复到基线附近,而只有 CRI-LO 会导致 372 种血浆代谢物发生显著变化,主要是减少(333)。同样,CRI-HI 影响了 414 种代谢物,减少了 369 种,这在输注后通过数据还原(PCA 和 sPLS-DA)进行明显聚类得到了证明。CRI-HI显著降低了循环中的AA水平,影响了各种与AA相关的和产生能量的代谢途径。尿液分析表明,灌注后 3-甲基-L-组氨酸和谷氨酰胺浓度升高,丙氨酸浓度降低。这些发现证明了胰高血糖素对犬血浆代谢组的调节与葡萄糖无关,并突出了犬作为胰高血糖素生物学转化模型的相关性。了解这些影响有助于控制胰高血糖素失调的情况,并为影响胰高血糖素平衡的治疗提供信息。
{"title":"Glucagon infusion alters the circulating metabolome and urine amino acid excretion in dogs.","authors":"Michael Merkhassine, Reilly W Coch, Carol E Frederick, Lucinda L Bennett, Seth A Peng, Benjamin Morse, Bethany P Cummings, John P Loftus","doi":"10.1530/JOE-24-0051","DOIUrl":"10.1530/JOE-24-0051","url":null,"abstract":"<p><p>Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) - low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90-120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon's glucose-independent modulation of the canine plasma metabolome and highlight the dog's relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal androgen exposure induces intergenerational effects via paternal inheritance. 母体雄激素暴露通过父系遗传诱导代际效应。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-06-24 Print Date: 2024-08-01 DOI: 10.1530/JOE-23-0368
Yu Zhou, Chao Lian, Yingfei Lu, Tianming Wang, Chengcheng Zhao, Cuilan Zhang, Min Gong, Jianquan Chen, Rong Ju

Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.

多囊卵巢综合征(PCOS)是环境因素和遗传因素相互作用的结果,对后代的发育产生深远影响。虽然该病的病因尚不清楚,但胎儿期雄激素暴露异常被认为是关键的致病因素之一。在此,我们证明了母体睾酮暴露导致的 F0 小鼠 F2 雌性后代 PCOS 类表型通过 F1 雄性的代际遗传。我们发现,经睾酮处理的 F1 雄性小鼠和 F2 雌性小鼠(PTF1 和 PTF2)的血清激素表达和生殖系统发育受损。此外,下调的N6-甲基腺苷(m6A)甲基转移酶和结合蛋白诱导了PTF1睾丸mRNA的低甲基化,包括Frizzled-6(Fzd6)。在 PTF2 卵巢中,FZD6 蛋白表达的减少抑制了哺乳动物雷帕霉素靶标(mTOR)信号通路,并激活了叉头框 O3(FoxO3)磷酸化,从而导致卵泡发育受损。这些数据表明,mTOR信号通路的表观遗传修饰可能参与了母体睾酮暴露通过雄性PTF1小鼠诱导的PTF2卵巢损伤的代际遗传。
{"title":"Maternal androgen exposure induces intergenerational effects via paternal inheritance.","authors":"Yu Zhou, Chao Lian, Yingfei Lu, Tianming Wang, Chengcheng Zhao, Cuilan Zhang, Min Gong, Jianquan Chen, Rong Ju","doi":"10.1530/JOE-23-0368","DOIUrl":"10.1530/JOE-23-0368","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is a condition resulting from the interaction between environmental factors and hereditary components, profoundly affecting offspring development. Although the etiology of this disease remains unclear, aberrant in utero androgen exposure is considered one of the pivotal pathogenic factors. Herein, we demonstrate the intergenerational inheritance of PCOS-like phenotypes in F2 female offspring through F1 males caused by maternal testosterone exposure in F0 mice. We found impaired serum hormone expression and reproductive system development in prenatal testosterone-treated F1 male and F2 female mice (PTF1 and PTF2). In addition, downregulated N6-methyladenosine (m6A) methyltransferase and binding proteins induced mRNA hypomethylation in the PTF1 testis, including frizzled-6 (Fzd6). In the PTF2 ovary, decreased FZD6 protein expression inhibited the mammalian target of rapamycin (mTOR) signaling pathway and activated Forkhead box O3 (FoxO3) phosphorylation, which led to impaired follicular development. These data indicate that epigenetic modification of the mTOR signaling pathway could be involved in the intergenerational inheritance of maternal testosterone exposure-induced impairments in the PTF2 ovary through male PTF1 mice.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ERRATUM: GH modulates hepatic epidermal growth factor signaling in the mouse. ERRATUM:GH 可调节小鼠肝脏表皮生长因子信号传导。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-06-24 DOI: 10.1530/JOE-09-0372e
Lorena González, Ma Eugenia Díaz, Johanna G Miquet, Ana I Sotelo, Diego Fernández, Fernando P Dominici, Andrzej Bartke, Daniel Turyn
{"title":"ERRATUM: GH modulates hepatic epidermal growth factor signaling in the mouse.","authors":"Lorena González, Ma Eugenia Díaz, Johanna G Miquet, Ana I Sotelo, Diego Fernández, Fernando P Dominici, Andrzej Bartke, Daniel Turyn","doi":"10.1530/JOE-09-0372e","DOIUrl":"10.1530/JOE-09-0372e","url":null,"abstract":"","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"262 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deletion of Hsd11b1 suppresses caloric restriction-induced bone marrow adiposity in male but not female mice. 缺失 Hsd11b1 可抑制热量限制引起的雄性小鼠骨髓肥胖。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-06-24 Print Date: 2024-08-01 DOI: 10.1530/JOE-24-0072
Andrea Lovdel, Karla J Suchacki, Fiona Roberts, Richard J Sulston, Robert J Wallace, Benjamin J Thomas, Rachel M B Bell, Iris Pruñonosa Cervera, Gavin J Macpherson, Nicholas M Morton, Natalie Z M Homer, Karen E Chapman, William P Cawthorn

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11β-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11β-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11β-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11β-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11β-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.

骨髓脂肪组织(BMAT)占健康人脂肪总量的 10%以上。骨髓脂肪组织在各种情况下都会增加,包括老化、肥胖、骨质疏松症、糖皮质激素治疗,尤其是在热量限制(CR)期间。BMAT可能会影响骨骼、新陈代谢和免疫功能,但人们对BMAT扩张的机制仍知之甚少。我们的假设是,在热量限制期间,过度的糖皮质激素活性会推动 BMAT 的扩张。11β-hydroxysteroid dehydrogenase type 1(11β-HSD1)酶通过催化细胞内活性糖皮质激素从惰性 11-keto 形式再生,从而增强糖皮质激素的活性。缺乏 11β-HSD1 的小鼠在外源性糖皮质激素过量时能抵抗代谢失调和骨质流失;因此,我们假设 11β-HSD1 基因敲除小鼠在 CR 期间也能抵抗糖皮质激素的过度作用,从而抑制 BMAT 的扩张和骨质流失。为了验证这一假设,我们首先确认了 11β-HSD1 在小鼠和人类骨髓中的表达。然后,我们研究了 CR 对 9-15 周龄雌雄对照小鼠和 11β-HSD1 基因敲除小鼠的影响。CR 增加了脂肪组织和骨髓中的 Hsd11b1 mRNA。在以对照组饮食喂养的小鼠中,Hsd11b1的缺失不会改变骨骼或BMAT的特征,而且在CR期间对胫骨的微观结构影响很小。值得注意的是,在雄性小鼠中,Hsd11b1的缺失会减弱CR诱导的骨髓促肾上腺皮质激素的增加,并阻止骨髓皮质酮的增加,而雌性小鼠则不会。这与抑制骨髓中的糖皮质激素靶基因无关。相反,基因敲除的雄性动物血浆和骨髓中的孕酮增加了。总之,我们的研究结果表明,11β-HSD1基因敲除能以性别特异性的方式防止CR诱导的BMAT扩张,并强调孕酮是BM脂肪的潜在新调节因子。
{"title":"Deletion of Hsd11b1 suppresses caloric restriction-induced bone marrow adiposity in male but not female mice.","authors":"Andrea Lovdel, Karla J Suchacki, Fiona Roberts, Richard J Sulston, Robert J Wallace, Benjamin J Thomas, Rachel M B Bell, Iris Pruñonosa Cervera, Gavin J Macpherson, Nicholas M Morton, Natalie Z M Homer, Karen E Chapman, William P Cawthorn","doi":"10.1530/JOE-24-0072","DOIUrl":"10.1530/JOE-24-0072","url":null,"abstract":"<p><p>Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11β-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11β-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11β-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11β-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11β-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained. 在维持胰岛素血症的情况下,输注 IGF-1 可促进胎羊的生长。
IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-06-07 Print Date: 2024-07-01 DOI: 10.1530/JOE-24-0058
Jane Stremming, Eileen I Chang, Alicia White, Paul J Rozance, Laura D Brown

Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.

胰岛素样生长因子 1(IGF-1)是一种重要的胎儿同化激素。给正常生长的绵羊胎儿输注 IGF-1 会增加某些器官的重量,但不会持续增加体重。然而,输注 IGF-1 会显著降低胎儿血浆中的胰岛素浓度,从而限制胎儿的生长潜力。在这项研究中,正常生长的妊娠晚期胎羊接受了以下任一种IGF-1(IGF-1)的静脉注射:IGF-1(IGF)、IGF-1与胰岛素和葡萄糖一起维持胎儿优胰岛素血症和优血症(IGF+INS)或药物对照(CON),为期一周。胎儿在输注开始前和输注一周后接受代谢研究,以测量子宫和脐带对营养物质和氧气的吸收率。IGF+INS胎儿的体重比CON胎儿重23%(P=0.0081),心脏、肝脏和肾上腺也比IGF和CON胎儿重(P=0.0081)。
{"title":"IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained.","authors":"Jane Stremming, Eileen I Chang, Alicia White, Paul J Rozance, Laura D Brown","doi":"10.1530/JOE-24-0058","DOIUrl":"10.1530/JOE-24-0058","url":null,"abstract":"<p><p>Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Endocrinology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1