This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.
Reaction of o- or p-hydroxybenzaldehydes with sulfanilamide, homosulfanilamide and p-(2-aminoethyl)- benzene-sulfonamide afforded several new Schiff bases which were subsequently derivatized at the phenolic hydroxy moiety by reaction with arylsulfonylisocyanates. The new arylsulfonylcarbamates obtained in this way possessed interesting inhibitory properties against three carbonic anhydrase (CA) isozymes, hCA I, hCA II and bCA IV (h = human, b = bovine isozyme). All these new derivatives, the simple Schiff bases and the arylsulfonylcarbamates obtained as outlined above, were more inhibitory against all isozymes as compared to the corresponding parent sulfonamide from which they were obtained. Generally, the p-hydroxybenzaldehyde derivatives were more active than the corresponding ortho isomers. An interesting behavior was evidenced for some of the ortho-substituted arylsulfonylcarbamato-sulfonamides, which showed higher affinities for the isozyme hCA I, as compared to hCA II and bCA IV (generally hCA I is 10-1000 less sensitive to "normal" sulfonamide inhibitors, such as acetazolamide, methazolamide or dorzolamide, as compared to hCA II). This make the new derivatives attractive leads for designing isozyme I-specific inhibitors.
The ability of vitamins C, E and K to inhibit enzymes directly has been investigated. It was found that vitamin E and some analogs and menadione (vitamin K3) inhibited several enzymes irreversibility at concentrations below one millimolar. Ascorbate inhibits rabbit muscle 6-phosphofructokinase (MPFK-1; EC 2.7.1.11), muscle type LDH (EC 1.1.1.27), and muscle AK (EC 2.7.4.3) at low concentrations that do not inhibit equivalent liver isozymes. Ascorbate Ki values for muscle-type LDH and heart-type LDH isozymes are 0.007 and 3 mM, respectively. The ascorbate Ki value for rabbit skeletal muscle PFK-1 is 0.16 mM; liver PFK-I is not inhibited by ascorbate. Dehydroascorbate does not inhibit any enzyme at ascorbate concentrations normally found in cells. All ascorbate inhibitions are completely reactivated or nearly so by L-ascorbate oxidase, CYS, GSH, or DTT. We propose a hypothesis that ascorbate facilitates glycogen storage in muscle by inhibiting glycolysis. The relationship between ascorbate metabolism and diabetes is discussed.
The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.
Reaction of the acyl chlorides of phthalimido-glycine or phthalimido-beta-alanine with 5-amino-1,3,4-thiadiazole-2-sulfonamide afforded after hydrazinolysis and deprotection of the phthalimido group the corresponding 5-(omega-aminoalkylcarboxamido)-1,3,4-thiadiazole-2-sulfonamides. Reaction of 5-(beta-aminoethylcarboxamido)-1,3,4-thiadiazole-2-sulfonamide with sulfonyl halides or acyl halides afforded a series of compounds possessing beta-alkyl/arylsulfonyl/carbonylamidoethylcarboxamido moieties in the 5 position of the thiadiazole-2-sulfonamide ring. The new derivatives were efficient inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II (cytosolic forms) and IV (membrane-bound form), but especially against CA II and CA IV (in nanomolar range), the two isozymes known to play an important role in aqueous humor secretion within the ciliary processes of the eye. Some of the synthesized inhibitors possessed good water solubility (as hydrochlorides or sodium salts) and were applied as 2% solutions directly into the eye of normotensive or glaucomatous albino rabbits. Very strong intraocular pressure (IOP) lowering was observed for many of them for prolonged periods of 1-2 h, and the active drug was detected in eye tissues and fluids indicating that the antiglaucoma effect is due to CA inhibition within the eye.
The steady state velocity equation for a bireactant enzyme in the presence of a partial inhibitor or nonessential activator, M, contains squared substrate concentration and higher-ordered M concentration terms. The equation is too complex to be useful in kinetic analyses. Simplification by the method of Cha (J. Biol. Chem. 243, 820 825 (1968)) eliminates squared substrate concentration terms, but retains higher-ordered terms in [M]. It is shown that if strict equilibrium is assumed between free E, M, and EM and for all but one other M-binding reaction, a velocity equation is obtained for an ordered bireactant enzyme that is first degree in all ligands in the absence of products. The equation is an approximation (because it was derived assuming only one M-binding reaction in the steady state), but it contains five inhibition (or activation) constants associated with M, all of which can be obtained by diagnostic replots and/or curve-fitting procedures. The equation also provides a framework for obtaining limiting constants (V'max, K'ia, K'mA, K'mB) that characterize the enzyme at saturating M. The same approach is applicable to an enzyme that catalyzes a steady state ping pong reaction.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisubstituted-pyridinium-ethylcarboxy moieties (obtained from 2,4,6-trisubstituted-pyrylium salts and beta-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by ex vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides, only the membrane-bound enzyme (CA IV) was inhibited, whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, benzolamide, etc.) were used, unselective inhibition of all CA isozymes (I, II and IV) occurred.
The effect of Triphenyltin salicylate (TPS) was tested against six bacteria, Escherichia coli, Staphylococcus aureus, Shigella flexneri, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella typhi and five fungi, Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhodotorula spp. and Saccharomyces spp. Sensitivity tests were determined with 5-500 microg/ml of TPS. All organisms were sensitive to the compound except Klebsiella pneumoniae, Pseudomonas aeruginosa, Rhodotorula spp. and Saccharomyces spp. The minimum dose of TPS that can kill 50% of the susceptible microorganisms is in the range 5-50 microg/ml. Membrane bound pyrophosphatase(s) from the organisms was non-competitively inhibited by 5 microM TPS with Ki values of 7.6, 18, 8.8 and 6.9 microM for Escherichia coli, Shigella flexneri, Aspergillus niger, and Aspergillus fumigatus, respectively. The physiological index of efficiency of the enzyme (Vmax/KM) for TPS susceptible organisms was reduced by 17-68% in the presence of 5-10 microM of the compound. In contrast the index for the non-susceptible organisms was unaffected. The mode of action of TPS is discussed.
Alkaloids mimicking the structures of sugars inhibit glycosidases because of a structural resemblance to the sugar moiety of the natural substrate. Glycosidases are involved in a wide range of important biological processes, such as intestinal digestion, post-translational processing of glycoproteins and the lysosomal catabolism of glycoconjugates. The realization that alkaloidal sugar mimics might have enormous therapeutic potential in many diseases such as viral infection, cancer and diabetes led to increasing interest and demand for these compounds. In this review, the structural basis of the specificity of alkaloidal sugar mimics and their current and potential applications to biomedical problems are reviewed.