Clavibacter michiganensis subsp. michiganensis (Cmm) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting Cmm was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported Xylella phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus Sanovirus under the class Caudoviricetes.
{"title":"Whole-genome sequence of a novel lytic bacteriophage infecting <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> from Turkey.","authors":"Duygu Bekircan Eski, Donus Gencer, Cihan Darcan","doi":"10.1099/jgv.0.002006","DOIUrl":"https://doi.org/10.1099/jgv.0.002006","url":null,"abstract":"<p><p><i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> (<i>Cmm</i>) is an important plant-pathogenic bacterium that causes canker and wilt diseases. Biological control of the disease with bacteriophages is an alternative to conventional methods. In this study, Phage33 infecting <i>Cmm</i> was characterized based on morphological and genomic properties. Morphological characteristics such as shape and size were investigated using electron microscopy. The whole genome was sequenced using the Illumina Novaseq 6000 platform and the sequence was assembled and annotated. VICTOR and VIRIDIC were used for determining the phylogeny and comparing viral genomes, respectively. Electron microscopy showed that Phage33 has an icosahedral head with a diameter of ~55 nm and a long, thin, non-contractile tail ~169 nm in length. The genome of Phage33 is 56 324 bp in size, has a GC content of 62.49 % and encodes 67 open reading frames. Thirty-seven ORFs showed high homology to functionally annotated bacteriophage proteins in the NCBI database. The remaining 30 ORFs were identified as hypothetical with unknown functions. The genome contains no antimicrobial resistance, no lysogenicity and no virulence signatures, suggesting that it is a suitable candidate for biocontrol agents. The results of a blastn search showed similarity to the previously reported <i>Xylella</i> phage Sano, with an average nucleotide sequence identity of 92.37 % and query coverage of 91 %. This result was verified using VICTOR and VIRIDIC analysis, and suggests that Phage33 is a new member of the genus <i>Sanovirus</i> under the class Caudoviricetes.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phasmaviridae is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phasmaviridae, which is available at ictv.global/report/phasmaviridae.
{"title":"ICTV Virus Taxonomy Profile: <i>Phasmaviridae</i> 2024.","authors":"Jens H Kuhn, Holly R Hughes","doi":"10.1099/jgv.0.002002","DOIUrl":"10.1099/jgv.0.002002","url":null,"abstract":"<p><p><i>Phasmaviridae</i> is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family <i>Phasmaviridae,</i> which is available at ictv.global/report/phasmaviridae.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacqueline King, Anne Pohlmann, Andreas Bange, Elisabeth Horn, Bernd Hälterlein, Angele Breithaupt, Anja Globig, Anne Günther, Angie Kelm, Christian Wiedemann, Christian Grund, Karena Haecker, Stefan Garthe, Timm Harder, Martin Beer, Philipp Schwemmer
The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots (Calidris canutus islandica) in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of islandica red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.
{"title":"Red knots in Europe: a dead end host species or a new niche for highly pathogenic avian influenza?","authors":"Jacqueline King, Anne Pohlmann, Andreas Bange, Elisabeth Horn, Bernd Hälterlein, Angele Breithaupt, Anja Globig, Anne Günther, Angie Kelm, Christian Wiedemann, Christian Grund, Karena Haecker, Stefan Garthe, Timm Harder, Martin Beer, Philipp Schwemmer","doi":"10.1099/jgv.0.002003","DOIUrl":"10.1099/jgv.0.002003","url":null,"abstract":"<p><p>The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots (<i>Calidris canutus islandica</i>) in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of <i>islandica</i> red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinlong Han, Meihua Cui, Jordan Withycombe, Max Schmidtbauer, Judith Chiginsky, Oliver T Neher, Carl A Strausbaugh, Rajtilak Majumdar, Vamsi J Nalam, Punya Nachappa
Curly top disease, caused by beet curly top virus (BCTV), is among the most serious viral diseases affecting sugar beets in western USA. The virus is exclusively transmitted by the beet leafhopper (BLH, Circulifer tenellus) in a circulative and non-propagative manner. Despite the growing knowledge on virus-vector interactions, our understanding of the molecular interactions between BCTV and BLH is hampered by limited information regarding the virus impact on the vector and the lack of genomic and transcriptomic resources for BLH. This study unveils the significant impact of BCTV on both the performance and transcriptome response of BLHs. Viruliferous BLHs had higher fecundity than non-viruliferous counterparts, which was evident by upregulation of differentially expressed transcripts (DETs) associated with development, viability and fertility of germline and embryos in viruliferous insects. Conversely, most DETs associated with muscle movement and locomotor activities were downregulated in viruliferous insects, implying potential behavioural modifications by BCTV. Additionally, a great proportion of DETs related to innate immunity and detoxification were upregulated in viruliferous insects. Viral infection also induced notable alterations in primary metabolisms, including energy metabolism, namely glucosidases, lipid digestion and transport, and protein degradation, along with other cellular functions, particularly in chromatin remodelling and DNA repair. This study represents the first comprehensive transcriptome analysis for BLH. The presented findings provide new insights into the multifaceted effects of viral infection on various biological processes in BLH, offering a foundation for future investigations into the complex virus-vector relationship and potential management strategies for curly top disease.
{"title":"Beet curly top virus affects vector biology: the first transcriptome analysis of the beet leafhopper.","authors":"Jinlong Han, Meihua Cui, Jordan Withycombe, Max Schmidtbauer, Judith Chiginsky, Oliver T Neher, Carl A Strausbaugh, Rajtilak Majumdar, Vamsi J Nalam, Punya Nachappa","doi":"10.1099/jgv.0.002012","DOIUrl":"https://doi.org/10.1099/jgv.0.002012","url":null,"abstract":"<p><p>Curly top disease, caused by beet curly top virus (BCTV), is among the most serious viral diseases affecting sugar beets in western USA. The virus is exclusively transmitted by the beet leafhopper (BLH, <i>Circulifer tenellus</i>) in a circulative and non-propagative manner. Despite the growing knowledge on virus-vector interactions, our understanding of the molecular interactions between BCTV and BLH is hampered by limited information regarding the virus impact on the vector and the lack of genomic and transcriptomic resources for BLH. This study unveils the significant impact of BCTV on both the performance and transcriptome response of BLHs. Viruliferous BLHs had higher fecundity than non-viruliferous counterparts, which was evident by upregulation of differentially expressed transcripts (DETs) associated with development, viability and fertility of germline and embryos in viruliferous insects. Conversely, most DETs associated with muscle movement and locomotor activities were downregulated in viruliferous insects, implying potential behavioural modifications by BCTV. Additionally, a great proportion of DETs related to innate immunity and detoxification were upregulated in viruliferous insects. Viral infection also induced notable alterations in primary metabolisms, including energy metabolism, namely glucosidases, lipid digestion and transport, and protein degradation, along with other cellular functions, particularly in chromatin remodelling and DNA repair. This study represents the first comprehensive transcriptome analysis for BLH. The presented findings provide new insights into the multifaceted effects of viral infection on various biological processes in BLH, offering a foundation for future investigations into the complex virus-vector relationship and potential management strategies for curly top disease.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joe James, Saumya S Thomas, Amanda H Seekings, Sahar Mahmood, Michael Kelly, Ashley C Banyard, Alejandro Núñez, Sharon M Brookes, Marek J Slomka
Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.
{"title":"Evaluating the epizootic and zoonotic threat of an H7N9 low-pathogenicity avian influenza virus (LPAIV) variant associated with enhanced pathogenicity in turkeys.","authors":"Joe James, Saumya S Thomas, Amanda H Seekings, Sahar Mahmood, Michael Kelly, Ashley C Banyard, Alejandro Núñez, Sharon M Brookes, Marek J Slomka","doi":"10.1099/jgv.0.002008","DOIUrl":"10.1099/jgv.0.002008","url":null,"abstract":"<p><p>Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) <i>wild-type</i> (<i>wt</i>) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both <i>wt</i> and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the <i>wt</i> virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for <i>in vitro</i> replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dickson S Tayebwa, David Hyeroba, Christopher D Dunn, Emily Dunay, Jordan C Richard, Savino Biryomumaisho, James O Acai, Tony L Goldberg
<p><p>Domestic dogs (<i>Canis lupus familiaris</i>) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, <i>Sedoreoviridae</i>, <i>Parvoviridae</i> and <i>Anelloviridae</i>. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family <i>Anelloviridae</i>, genus <i>Thetatorquevirus</i>, and by one novel virus in the family <i>Sedoreoviridae</i>, genus <i>Orbivirus</i>. The genus <i>Orbivirus</i> contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical impor
{"title":"Viruses of free-roaming and hunting dogs in Uganda show elevated prevalence, richness and abundance across a gradient of contact with wildlife.","authors":"Dickson S Tayebwa, David Hyeroba, Christopher D Dunn, Emily Dunay, Jordan C Richard, Savino Biryomumaisho, James O Acai, Tony L Goldberg","doi":"10.1099/jgv.0.002011","DOIUrl":"10.1099/jgv.0.002011","url":null,"abstract":"<p><p>Domestic dogs (<i>Canis lupus familiaris</i>) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, <i>Sedoreoviridae</i>, <i>Parvoviridae</i> and <i>Anelloviridae</i>. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family <i>Anelloviridae</i>, genus <i>Thetatorquevirus</i>, and by one novel virus in the family <i>Sedoreoviridae</i>, genus <i>Orbivirus</i>. The genus <i>Orbivirus</i> contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical impor","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melissa M Hamilton, Emily M Webb, Max C Peterson, Grishma Patel, Maciel Porto, Tatyana Orekov, Jesse H Erasmus, Brad Finneyfrock, Anthony Cook, Albert J Auguste, Swagata Kar
Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.
{"title":"Comparative pathogenesis of three Mayaro virus genotypes in the cynomolgus macaque.","authors":"Melissa M Hamilton, Emily M Webb, Max C Peterson, Grishma Patel, Maciel Porto, Tatyana Orekov, Jesse H Erasmus, Brad Finneyfrock, Anthony Cook, Albert J Auguste, Swagata Kar","doi":"10.1099/jgv.0.002001","DOIUrl":"10.1099/jgv.0.002001","url":null,"abstract":"<p><p>Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (<i>Macaca facicularis</i>, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.
{"title":"ICTV Virus Taxonomy Profile: <i>Turriviridae</i> 2024.","authors":"Sydnie K Chase, Jamie C Snyder","doi":"10.1099/jgv.0.002000","DOIUrl":"10.1099/jgv.0.002000","url":null,"abstract":"<p><p>The family <i>Turriviridae</i> includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family <i>Turriviridae</i> infect extremophilic archaea of the genera <i>Sulfolobus</i> and <i>Saccharolobus</i>. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family <i>Turriviridae</i>, which is available at ictv.global/report/turriviridae.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruth Haverty, Janet McCormack, Christopher Evans, Kevin Purves, Sophie O'Reilly, Virginie Gautier, Keith Rochfort, Aurelie Fabre, Nicola F Fletcher
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.
{"title":"SARS-CoV-2 infects neurons, astrocytes, choroid plexus epithelial cells and pericytes of the human central nervous system <i>in vitro</i>.","authors":"Ruth Haverty, Janet McCormack, Christopher Evans, Kevin Purves, Sophie O'Reilly, Virginie Gautier, Keith Rochfort, Aurelie Fabre, Nicola F Fletcher","doi":"10.1099/jgv.0.002009","DOIUrl":"10.1099/jgv.0.002009","url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with neurological sequelae including haemorrhage, thrombosis and ischaemic necrosis and encephalitis. However, the mechanism by which this occurs is unclear. Neurological disease associated with COVID-19 has been proposed to occur following direct infection of the central nervous system and/or indirectly by local or systemic immune activation. We evaluated the expression of angiotensin-converting enzyme-2 and transmembrane protease, serine 2 (TMPRSS2) in brain tissue from five healthy human donors and observed low-level expression of these proteins in cells morphologically consistent with astrocytes, neurons and choroidal ependymal cells within the frontal cortex and medulla oblongata. Primary human astrocytes, neurons, choroid plexus epithelial cells and pericytes supported productive SARS-CoV-2 infection with ancestral, Alpha, Delta and Omicron variants. Infected cells supported the full viral life cycle, releasing infectious virus particles. In contrast, primary brain microvascular endothelial cells and microglia were refractory to SARS-CoV-2 infection. These data support a model whereby SARS-CoV-2 can infect human brain cells, and the mechanism of viral entry warrants further investigation.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 7","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloé Feltin, Julian R Garneau, Cindy E Morris, Annette Bérard, Clara Torres-Barceló
Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.
对感染植物病原体的噬菌体进行分离和研究的相对较少。丁香假单胞菌复合菌种存在于包括植物在内的各种环境中。它能引起主要的农作物病害,如杏树上的细菌性腐烂病。本研究收集了 25 个感染丁香假单胞菌的独特噬菌体基因组。这些噬菌体是用 21 株 P. syringae 菌株富集后从出现细菌性腐烂病症状的杏园中分离出来的。这些噬菌体主要是毒性噬菌体,其中只有 3 种是温性噬菌体。这些噬菌体属于 14 个属,其中 11 个属是新发现的,还有 18 个新种,揭示了这些噬菌体的遗传多样性。在其中一个新的噬菌体物种中,通过生物信息学方法发现了新的 DNA 包装系统,但要确定其确切的机制还需要实验证实。此外,许多噬菌体基因组包含许多潜在的辅助代谢基因,其推测功能多种多样。至少有三种噬菌体编码涉及细菌抗碲酸盐(一种有毒的类金属)的基因。这表明病毒可能在细菌耐受压力方面发挥作用。这项研究强调了在农业生态系统中继续寻找新噬菌体以揭示新的生态多样性和新的基因功能的重要性。这项工作为今后开展感染植物病原菌的噬菌体的基础研究和应用研究奠定了基础。
{"title":"Novel phages of <i>Pseudomonas syringae</i> unveil numerous potential auxiliary metabolic genes.","authors":"Chloé Feltin, Julian R Garneau, Cindy E Morris, Annette Bérard, Clara Torres-Barceló","doi":"10.1099/jgv.0.001990","DOIUrl":"10.1099/jgv.0.001990","url":null,"abstract":"<p><p>Relatively few phages that infect plant pathogens have been isolated and investigated. The <i>Pseudomonas syringae</i> species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect <i>P. syringae</i>. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of <i>P. syringae</i>. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"105 6","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}