Nucleated red blood cells (NRBCs) are precursors of red blood cells (RBCs), but also possess variety of immunomodulatory effects. However, among the three types of NRBCs, the immunological effects of human CD45- NRBCs remain largely unknown. We have previously shown that cord blood-derived CD45- NRBCs and adult peripheral blood-derived monocytes cocultured in a lipopolysaccharide (LPS)-stimulated indirect coculture system that avoided cell-to-cell contact, increase IL-10 and decrease TNF-α secretion, suggesting an immunosuppressive function of CD45- NRBCs via an unknown soluble factor. The peripheral blood of fetuses and neonates has abundant NRBCs and is physiologically polycythemic, which may lead to the peripheral accumulation of toxic plasma-free hemoglobin. Plasma-free hemoglobin binds to haptoglobin, forming a haptoglobin-hemoglobin complex, which is processed within monocytes via the CD163- heme oxygenase 1 (HO-1) axis and secretes IL-10. Therefore, we hypothesized that NRBCs secrete haptoglobin and induce the immunosuppressive function of monocytes by activating the CD163-HO-1 axis. We found that immunosuppressive response decreased when the coculture medium was supplemented with an anti-CD163 blocking antibody or the HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX). Haptoglobin levels in the culture medium containing NRBCs were high and expressed the haptoglobin gene. Thus, CD45- NRBCs secreted haptoglobin and activated the immunosuppressive function of monocytes.
{"title":"Nucleated Red Blood Cells Secrete Haptoglobin to Induce Immunosuppressive Function in Monocytes.","authors":"Shusuke Takeuchi, Satoshi Fujiyama, Motomichi Nagafuji, Miyuki Mayumi, Makoto Saito, Mana Obata-Yasuoka, Hiromi Hamada, Yayoi Miyazono, Hidetoshi Takada","doi":"10.1155/jimr/8085784","DOIUrl":"10.1155/jimr/8085784","url":null,"abstract":"<p><p>Nucleated red blood cells (NRBCs) are precursors of red blood cells (RBCs), but also possess variety of immunomodulatory effects. However, among the three types of NRBCs, the immunological effects of human CD45- NRBCs remain largely unknown. We have previously shown that cord blood-derived CD45- NRBCs and adult peripheral blood-derived monocytes cocultured in a lipopolysaccharide (LPS)-stimulated indirect coculture system that avoided cell-to-cell contact, increase IL-10 and decrease TNF-<i>α</i> secretion, suggesting an immunosuppressive function of CD45- NRBCs via an unknown soluble factor. The peripheral blood of fetuses and neonates has abundant NRBCs and is physiologically polycythemic, which may lead to the peripheral accumulation of toxic plasma-free hemoglobin. Plasma-free hemoglobin binds to haptoglobin, forming a haptoglobin-hemoglobin complex, which is processed within monocytes via the CD163- heme oxygenase 1 (HO-1) axis and secretes IL-10. Therefore, we hypothesized that NRBCs secrete haptoglobin and induce the immunosuppressive function of monocytes by activating the CD163-HO-1 axis. We found that immunosuppressive response decreased when the coculture medium was supplemented with an anti-CD163 blocking antibody or the HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX). Haptoglobin levels in the culture medium containing NRBCs were high and expressed the haptoglobin gene. Thus, CD45- NRBCs secreted haptoglobin and activated the immunosuppressive function of monocytes.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"8085784"},"PeriodicalIF":3.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hepatic macrophages respond to various microenvironmental signals and play a central role in maintaining hepatic homeostasis, dysregulation of which leads to various liver diseases. Fatty acid-binding protein 7 (FABP7), an intracellular lipid chaperone for polyunsaturated fatty acids (PUFAs), is highly expressed in liver macrophages. However, the mechanisms by which FABP7 regulates hepatic macrophage activation remain unclear. Therefore, we aimed to elucidate the mechanisms underlying the effects of FABP7 on the functions of hepatic macrophages in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis models. In this study, we found that FABP7-deficient macrophages exhibited impaired M2 polarization, which reduced the fibrotic response of myofibroblasts and CD4+ T-cell infiltration into the liver tissues in a carbon tetrachloride (CCl4)-induced hepatic fibrosis model. In vitro, FABP7-deficient macrophages exhibited decreased levels of peroxisome proliferator-activated receptor (PPAR)-γ and its target genes, including C-C motif chemokine ligand (CCL)-17 and transforming growth factor-β (TGF-β), compared to the wild-type (WT) macrophages post-interleukin (IL)-4 stimulation. However, these effects were inhibited by a PPARγ inhibitor. IL-4-stimulated WT macrophages also promoted CD4+ T-cell migration and hepatic fibroblast (TWNT-1 hepatic stellate cell [HSC]) activation, indicated by increased mRNA levels of actin alpha 2, smooth muscle (ACTA2), and collagen type I alpha 1 (COL1A1); however, these effects were inhibited in FABP7-deficient macrophages. Overall, FABP7 in hepatic macrophages modulated the crosstalk between hepatic fibroblasts and T cells by regulating M2 polarization. Therefore, regulation of hepatic macrophage function by FABP7 is a potential therapeutic target for liver fibrosis.
{"title":"FABP7 in Hepatic Macrophages Promotes Fibroblast Activation and CD4<sup>+</sup> T-Cell Migration by Regulating M2 Polarization During Liver Fibrosis.","authors":"Hirofumi Miyazaki, Tunyanat Wannakul, Shuhan Yang, Dandan Yang, Ayano Karasawa, Ai Shishido, Ruizhu Cao, Yui Yamamoto, Yoshiteru Kagawa, Shuhei Kobayashi, Masaki Ogata, Motoko Maekawa, Yuji Owada","doi":"10.1155/jimr/6987981","DOIUrl":"10.1155/jimr/6987981","url":null,"abstract":"<p><p>Hepatic macrophages respond to various microenvironmental signals and play a central role in maintaining hepatic homeostasis, dysregulation of which leads to various liver diseases. Fatty acid-binding protein 7 (FABP7), an intracellular lipid chaperone for polyunsaturated fatty acids (PUFAs), is highly expressed in liver macrophages. However, the mechanisms by which FABP7 regulates hepatic macrophage activation remain unclear. Therefore, we aimed to elucidate the mechanisms underlying the effects of FABP7 on the functions of hepatic macrophages in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis models. In this study, we found that FABP7-deficient macrophages exhibited impaired M2 polarization, which reduced the fibrotic response of myofibroblasts and CD4<sup>+</sup> T-cell infiltration into the liver tissues in a carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic fibrosis model. In vitro, FABP7-deficient macrophages exhibited decreased levels of peroxisome proliferator-activated receptor (PPAR)-<i>γ</i> and its target genes, including C-C motif chemokine ligand (CCL)-17 and transforming growth factor-<i>β</i> (TGF-<i>β</i>), compared to the wild-type (WT) macrophages post-interleukin (IL)-4 stimulation. However, these effects were inhibited by a PPAR<i>γ</i> inhibitor. IL-4-stimulated WT macrophages also promoted CD4<sup>+</sup> T-cell migration and hepatic fibroblast (TWNT-1 hepatic stellate cell [HSC]) activation, indicated by increased mRNA levels of actin alpha 2, smooth muscle (<i>ACTA2</i>), and collagen type I alpha 1 (<i>COL1A1</i>); however, these effects were inhibited in FABP7-deficient macrophages. Overall, FABP7 in hepatic macrophages modulated the crosstalk between hepatic fibroblasts and T cells by regulating M2 polarization. Therefore, regulation of hepatic macrophage function by FABP7 is a potential therapeutic target for liver fibrosis.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"6987981"},"PeriodicalIF":3.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: Primary Sjögren's syndrome (pSS) is associated with a risk allele T of rs117026326 located at a potential splicing enhancer within the intronic region of general transcription factor II-I (GTF2I). This study aimed to explore the rs117026326-regulated alternative splicing of GTF2I and its role in B cell overactivation in pSS. Methods: GTF2I isoform expressions and rs117026326 genotypes of pSS peripheral blood mononuclear cells (PBMCs) were examined using quantitative PCR and Sanger sequencing, respectively. GTF2IΔ was overexpressed in B cells, T cells, and macrophages using plasmid transfection. Proliferation of B cells and T cells was determined using Cell Counting Kit-8 (CCK8) assay. CD4+ T cell differentiation was inspected using flow cytometry. Proinflammatory cytokine production of macrophages was investigated using quantitative PCR. c-FOS expression in GTF2IΔ-transfected B cells was tested by quantitative PCR, and proliferation of GTF2IΔ-transfected B cells treated with c-FOS siRNA or c-FOS inhibitor was interrogated using CCK8 assay. Results: pSS patients with risk allele of rs117026326 expressed higher levels of GTF2IΔ and GTF2Iζ isoforms. GTF2IΔ expression was correlated with serum immunoglobulin G (IgG). GTF2IΔ promoted B cell proliferation and upregulated c-FOS expression. Knocking down or inhibition of c-FOS reversed B cell proliferation driven by GTF2IΔ. Conclusion: pSS risk allele of rs117026326 modulates alternative splicing of GTF2I and upregulates GTF2IΔ isoform, which promotes B cell proliferation through enhancing binding and transcription of c-FOS.
目的:原发性Sjögren's综合征(pSS)与rs117026326的风险等位基因T相关,该等位基因位于通用转录因子i - i - i (GTF2I)内含子区域的潜在剪接增强子上。本研究旨在探讨rs117026326调控的GTF2I选择性剪接及其在pSS B细胞过度激活中的作用。方法:分别采用定量PCR和Sanger测序检测pSS外周血单个核细胞GTF2I亚型表达和rs117026326基因型。通过质粒转染,GTF2IΔ在B细胞、T细胞和巨噬细胞中过表达。采用细胞计数试剂盒-8 (CCK8)检测B细胞和T细胞的增殖情况。流式细胞术检测CD4+ T细胞分化情况。采用定量PCR方法研究巨噬细胞促炎细胞因子的产生。定量PCR检测GTF2IΔ-transfected B细胞中c-FOS的表达,CCK8检测c-FOS siRNA或c-FOS抑制剂处理GTF2IΔ-transfected B细胞的增殖情况。结果:rs117026326风险等位基因的pSS患者GTF2IΔ和GTF2Iζ亚型表达水平较高。GTF2IΔ表达与血清免疫球蛋白G (IgG)相关。GTF2IΔ促进B细胞增殖,上调c-FOS表达。敲低或抑制c-FOS可逆转GTF2IΔ驱动的B细胞增殖。结论:rs117026326 pSS风险等位基因调控GTF2I选择性剪接,上调GTF2IΔ亚型,通过增强c-FOS的结合和转录促进B细胞增殖。
{"title":"Risk Allele rs117026326-Mediated Alternative Splicing of GTF2I Promotes B Cell Proliferation in Primary Sjögren's Syndrome.","authors":"Chaowen Luo, Chaofeng Lian, Jinlei Sun, Liling Zhao, Shuo Zhang, Yongzhe Li, Hua Chen, Fengchun Zhang","doi":"10.1155/jimr/4821639","DOIUrl":"10.1155/jimr/4821639","url":null,"abstract":"<p><p><b>Objectives:</b> Primary Sjögren's syndrome (pSS) is associated with a risk allele T of rs117026326 located at a potential splicing enhancer within the intronic region of general transcription factor II-I (GTF2I). This study aimed to explore the rs117026326-regulated alternative splicing of GTF2I and its role in B cell overactivation in pSS. <b>Methods:</b> GTF2I isoform expressions and rs117026326 genotypes of pSS peripheral blood mononuclear cells (PBMCs) were examined using quantitative PCR and Sanger sequencing, respectively. GTF2IΔ was overexpressed in B cells, T cells, and macrophages using plasmid transfection. Proliferation of B cells and T cells was determined using Cell Counting Kit-8 (CCK8) assay. CD4<sup>+</sup> T cell differentiation was inspected using flow cytometry. Proinflammatory cytokine production of macrophages was investigated using quantitative PCR. c-FOS expression in GTF2IΔ-transfected B cells was tested by quantitative PCR, and proliferation of GTF2IΔ-transfected B cells treated with c-FOS siRNA or c-FOS inhibitor was interrogated using CCK8 assay. <b>Results:</b> pSS patients with risk allele of rs117026326 expressed higher levels of GTF2IΔ and GTF2Iζ isoforms. GTF2IΔ expression was correlated with serum immunoglobulin G (IgG). GTF2IΔ promoted B cell proliferation and upregulated c-FOS expression. Knocking down or inhibition of c-FOS reversed B cell proliferation driven by GTF2IΔ. <b>Conclusion:</b> pSS risk allele of rs117026326 modulates alternative splicing of GTF2I and upregulates GTF2IΔ isoform, which promotes B cell proliferation through enhancing binding and transcription of c-FOS.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"4821639"},"PeriodicalIF":3.5,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143501771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research on long-term follow-up in individuals who have recovered from coronavirus disease-19 (COVID-19) would yield insights regarding their immunity status and identify those who need booster vaccinations. This study evaluated the longevity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular and humoral memory responses, as well as T cell effector functionalities, at 1-2 months (n = 40), 8-9 months (n = 40), and 12 months/1 year (n = 27) following recovery from SARS-CoV-2 infection. CTL response by enzyme-linked immunospot (ELISPOT); levels of cytokine by Bio-Plex, natural killer (NK), CD4+ helper, and CD8+ cytotoxic T cell functionalities using flow cytometry; anti-SARS-CoV-2 IgG by ELISA; and levels of neutralizing antibodies (NAbs) by surrogate virus NAb assay were assessed. The levels of SARS-CoV-2-specific IgG and NAb at 1-2 and 8-9 months postrecovery were hand in hand and appeared declining. SARS-CoV-2-specific B, memory B and plasma cells, and T cells sustained up to 8-9 months. Increased expression of CD107a/IFN-γ by NK cells and cytotoxic T cells at 8-9 months could be indicative of SARS-CoV-2-specific effector functions. Recovered individuals with positive and negative IgG antibody status displayed T cell response up to 1 year and 8-9 months, respectively, emphasizing the durabilty of effector immunity up to 8-9 months regardless of IgG antibody status. Overall, the recovered individuals exhibited robust immunological memory, sustained T cell response with effector functionality against SARS-CoV-2 that persists for at least 8-9 months.
{"title":"Durability of Functional SARS-CoV-2-Specific Immunological Memory and T Cell Response up to 8-9 Months Postrecovery From COVID-19.","authors":"Diptee Trimbake, Dharmendra Singh, Yogesh Gurav K, Prasad Babar, Varsha Dange S, Anuradha S Tripathy","doi":"10.1155/jimr/9743866","DOIUrl":"10.1155/jimr/9743866","url":null,"abstract":"<p><p>Research on long-term follow-up in individuals who have recovered from coronavirus disease-19 (COVID-19) would yield insights regarding their immunity status and identify those who need booster vaccinations. This study evaluated the longevity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific cellular and humoral memory responses, as well as T cell effector functionalities, at 1-2 months (<i>n</i> = 40), 8-9 months (<i>n</i> = 40), and 12 months/1 year (<i>n</i> = 27) following recovery from SARS-CoV-2 infection. CTL response by enzyme-linked immunospot (ELISPOT); levels of cytokine by Bio-Plex, natural killer (NK), CD4+ helper, and CD8+ cytotoxic T cell functionalities using flow cytometry; anti-SARS-CoV-2 IgG by ELISA; and levels of neutralizing antibodies (NAbs) by surrogate virus NAb assay were assessed. The levels of SARS-CoV-2-specific IgG and NAb at 1-2 and 8-9 months postrecovery were hand in hand and appeared declining. SARS-CoV-2-specific B, memory B and plasma cells, and T cells sustained up to 8-9 months. Increased expression of CD107a/IFN-γ by NK cells and cytotoxic T cells at 8-9 months could be indicative of SARS-CoV-2-specific effector functions. Recovered individuals with positive and negative IgG antibody status displayed T cell response up to 1 year and 8-9 months, respectively, emphasizing the durabilty of effector immunity up to 8-9 months regardless of IgG antibody status. Overall, the recovered individuals exhibited robust immunological memory, sustained T cell response with effector functionality against SARS-CoV-2 that persists for at least 8-9 months.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"9743866"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10eCollection Date: 2025-01-01DOI: 10.1155/jimr/3176927
Ana Valério-Bolas, Mafalda Meunier, Armanda Rodrigues, Joana Palma-Marques, Rui Ferreira, Inês Cardoso, Lis Lobo, Marta Monteiro, Telmo Nunes, Ana Armada, Wilson T Antunes, Graça Alexandre-Pires, Isabel Pereira da Fonseca, Gabriela Santos-Gomes
Leishmaniasis is a group of parasitic diseases whose etiological agent is the protozoa Leishmania. These diseases afflict impoverished populations in tropical and subtropical regions and affect wild and domestic animals. Canine leishmaniasis is a global disease mostly caused by L. infantum. Dogs are recognized as a good reservoir since harbor the infection long before developing the disease, facilitating parasite transmission. Furthermore, there is growing evidence that dogs may also be the reservoir of the American Leishmania spp. as L. amazonensis. The innate immune response is the first defense line against pathogens, which includes natural killer (NK) and dendritic cells (DCs). By recognizing and ultimately destroying infected cells, and by secreting immune mediators that favor inflammatory microenvironments, NK cells take the lead in the infectious process. When interacting with Leishmania parasites, DCs become activated and play a key role in driving the host immune response. While activated DCs can modulate NK cell activity, Leishmania parasites can directly activate NK cells by interacting with innate immune receptors. Once activated, NK cells can engage in a bidirectional interplay with DCs. However, the complexity of these interactions during Leishmania infection makes it challenging to fully understand the underlying processes. To further explore this, the present study investigated the dynamic interplay established between monocyte-derived DCs (moDCs) and putative NK (pNK) cells of dogs during Leishmania infection. Findings indicate that the crosstalk between moDCs exposed to L. infantum or L. amazonensis and pNK cells enhances chemokine upregulation, potentially attracting other leukocytes to the site of infection. pNK cells activated by L. infantum infected DCs upregulate IL-10, which can lead to a regulatory immune response while moDCs exposed to L. amazonensis induced pNK cells to overexpress IFN-γ and IL-13, favoring a mix of pro- and anti-inflammatory response. In addition, parasite-derived extracellular vesicles (EVs) can modulate the host immune response by stimulating the upregulation of anti-inflammatory cytokines and perforin release, which may impact infection outcomes. Thus, Leishmania and parasitic EVs can influence the bidirectional interplay between canine NK cells and DCs.
{"title":"Unveiling the Interplay Between Dendritic Cells and Natural Killer Cells as Key Players in <i>Leishmania</i> Infection.","authors":"Ana Valério-Bolas, Mafalda Meunier, Armanda Rodrigues, Joana Palma-Marques, Rui Ferreira, Inês Cardoso, Lis Lobo, Marta Monteiro, Telmo Nunes, Ana Armada, Wilson T Antunes, Graça Alexandre-Pires, Isabel Pereira da Fonseca, Gabriela Santos-Gomes","doi":"10.1155/jimr/3176927","DOIUrl":"10.1155/jimr/3176927","url":null,"abstract":"<p><p>Leishmaniasis is a group of parasitic diseases whose etiological agent is the protozoa <i>Leishmania</i>. These diseases afflict impoverished populations in tropical and subtropical regions and affect wild and domestic animals. Canine leishmaniasis is a global disease mostly caused by <i>L. infantum</i>. Dogs are recognized as a good reservoir since harbor the infection long before developing the disease, facilitating parasite transmission. Furthermore, there is growing evidence that dogs may also be the reservoir of the American <i>Leishmania</i> spp. as <i>L. amazonensis</i>. The innate immune response is the first defense line against pathogens, which includes natural killer (NK) and dendritic cells (DCs). By recognizing and ultimately destroying infected cells, and by secreting immune mediators that favor inflammatory microenvironments, NK cells take the lead in the infectious process. When interacting with <i>Leishmania</i> parasites, DCs become activated and play a key role in driving the host immune response. While activated DCs can modulate NK cell activity, <i>Leishmania</i> parasites can directly activate NK cells by interacting with innate immune receptors. Once activated, NK cells can engage in a bidirectional interplay with DCs. However, the complexity of these interactions during <i>Leishmania</i> infection makes it challenging to fully understand the underlying processes. To further explore this, the present study investigated the dynamic interplay established between monocyte-derived DCs (moDCs) and putative NK (pNK) cells of dogs during <i>Leishmania</i> infection. Findings indicate that the crosstalk between moDCs exposed to <i>L. infantum</i> or <i>L. amazonensis</i> and pNK cells enhances chemokine upregulation, potentially attracting other leukocytes to the site of infection. pNK cells activated by <i>L. infantum</i> infected DCs upregulate <i>IL-10</i>, which can lead to a regulatory immune response while moDCs exposed to <i>L. amazonensis</i> induced pNK cells to overexpress <i>IFN-γ</i> and <i>IL-13</i>, favoring a mix of pro- and anti-inflammatory response. In addition, parasite-derived extracellular vesicles (EVs) can modulate the host immune response by stimulating the upregulation of anti-inflammatory cytokines and perforin release, which may impact infection outcomes. Thus, <i>Leishmania</i> and parasitic EVs can influence the bidirectional interplay between canine NK cells and DCs.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"3176927"},"PeriodicalIF":3.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-05eCollection Date: 2025-01-01DOI: 10.1155/jimr/8888730
Piao Guo, Xue Ning Zhang, Xin Yu Jin, Wen Juan Xia, Li Zhou, Wei Song Sheng, Dan Rong Zhu
Objective: This study was conducted to evaluate the effectiveness of transcutaneous electrical nerve stimulation (TENS) in treating pediatric functional constipation (FC) and to explore its mechanisms by analyzing changes in serum neurotransmitters and gut microbiota. Materials and Methods: This was a prospective cohort study conducted on 60 children aged 4-14 years diagnosed with FC. Participants were divided into two groups, namely, one receiving TENS therapy three times a week for 4 weeks and the control group receiving lactulose. Pretreatment and posttreatment evaluations included serum neurotransmitters, immunological indicators, and gut microbiota composition. Results: The TENS group demonstrated significant improvements in defecation frequency and constipation symptoms compared with the lactulose group (p < 0.001). Posttreatment, remarkable increases were detected in serum motilin and vasoactive intestinal peptide (VIP) levels, along with a significant decrease in interleukin-12 levels (p < 0.05), indicating anti-inflammatory effects. Gut microbiota analysis revealed significant shifts in microbial composition, with an increase in the abundance of Bacteroidetes and a decrease in the abundance of Firmicutes/Bacteroidetes ratio, suggesting improved gut health and metabolic function. Conclusion: TENS effectively improves symptoms of pediatric FC and induces beneficial changes in immunological indicators and gut microbiota. These results suggest potential anti-inflammatory and microbiota-modulating effects. However, due to the limited sample size, further studies are needed to confirm these findings and explore the long-term benefits of TENS therapy. Trial Registration: Clinical Trial Registry identifier: ChiCTR2200059549.
{"title":"Clinical Efficacy of Transcutaneous Electrical Nerve Stimulation (TENS) in Pediatric Functional Constipation: Impact on Immunological Indicators and Gut Microbiota.","authors":"Piao Guo, Xue Ning Zhang, Xin Yu Jin, Wen Juan Xia, Li Zhou, Wei Song Sheng, Dan Rong Zhu","doi":"10.1155/jimr/8888730","DOIUrl":"10.1155/jimr/8888730","url":null,"abstract":"<p><p><b>Objective:</b> This study was conducted to evaluate the effectiveness of transcutaneous electrical nerve stimulation (TENS) in treating pediatric functional constipation (FC) and to explore its mechanisms by analyzing changes in serum neurotransmitters and gut microbiota. <b>Materials and Methods:</b> This was a prospective cohort study conducted on 60 children aged 4-14 years diagnosed with FC. Participants were divided into two groups, namely, one receiving TENS therapy three times a week for 4 weeks and the control group receiving lactulose. Pretreatment and posttreatment evaluations included serum neurotransmitters, immunological indicators, and gut microbiota composition. <b>Results:</b> The TENS group demonstrated significant improvements in defecation frequency and constipation symptoms compared with the lactulose group (<i>p</i> < 0.001). Posttreatment, remarkable increases were detected in serum motilin and vasoactive intestinal peptide (VIP) levels, along with a significant decrease in interleukin-12 levels (<i>p</i> < 0.05), indicating anti-inflammatory effects. Gut microbiota analysis revealed significant shifts in microbial composition, with an increase in the abundance of Bacteroidetes and a decrease in the abundance of Firmicutes/Bacteroidetes ratio, suggesting improved gut health and metabolic function. <b>Conclusion:</b> TENS effectively improves symptoms of pediatric FC and induces beneficial changes in immunological indicators and gut microbiota. These results suggest potential anti-inflammatory and microbiota-modulating effects. However, due to the limited sample size, further studies are needed to confirm these findings and explore the long-term benefits of TENS therapy. <b>Trial Registration:</b> Clinical Trial Registry identifier: ChiCTR2200059549.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"8888730"},"PeriodicalIF":3.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143542238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-25eCollection Date: 2025-01-01DOI: 10.1155/jimr/3393342
Jiaona Xu, Yinan Yu, Shijie Li, Fanghui Qiu
Amino acid metabolism in T cells determines the therapeutic efficacy of T-cell-targeting drugs. To assess the direction of amino acid metabolism in T cells and construct related knowledge structure, we performed a bibliometric analysis aiming at amino acid metabolism in T cells utilizing studies publicized in recent 15 years. Three hundred thirty-seven related studies were downloaded from the Web of Science Core Collection (WoSCC), and the information on countries, institutes, and authors was collected and analyzed. In addition, the present research status and future trends were explored according to the results yielded from the analysis of cited references and keywords. This study revealed that publications regarding amino acid metabolism in T cells gradually increased each year. The USA is the top producer and most influential country in this field. Recent research has focused on the correlation between the metabolism of several amino acids and regulatory T cells (Tregs) and CD8+ T cells. Overall, this research offers a comprehensive exhibition on the field of amino acid metabolism in T cells, which will help researchers to study this domain more effectively and intuitively.
T细胞内氨基酸代谢决定了T细胞靶向药物的治疗效果。为了评估T细胞氨基酸代谢的研究方向,构建相关知识结构,我们利用近15年来发表的研究成果,对T细胞氨基酸代谢进行了文献计量分析。从Web of Science Core Collection (WoSCC)下载了337项相关研究,并收集和分析了国家、研究所和作者的信息。此外,根据被引文献和关键词的分析结果,对研究现状和未来趋势进行了探讨。这项研究表明,关于T细胞氨基酸代谢的出版物逐年增加。美国是该领域最大的生产国和最具影响力的国家。最近的研究集中在几种氨基酸代谢与调节性T细胞(Tregs)和CD8+ T细胞之间的关系。总的来说,本研究为T细胞氨基酸代谢领域提供了一个全面的展示,这将有助于研究人员更有效和直观地研究这一领域。
{"title":"Global Trends in Research of Amino Acid Metabolism in T Lymphocytes in Recent 15 Years: A Bibliometric Analysis.","authors":"Jiaona Xu, Yinan Yu, Shijie Li, Fanghui Qiu","doi":"10.1155/jimr/3393342","DOIUrl":"10.1155/jimr/3393342","url":null,"abstract":"<p><p>Amino acid metabolism in T cells determines the therapeutic efficacy of T-cell-targeting drugs. To assess the direction of amino acid metabolism in T cells and construct related knowledge structure, we performed a bibliometric analysis aiming at amino acid metabolism in T cells utilizing studies publicized in recent 15 years. Three hundred thirty-seven related studies were downloaded from the Web of Science Core Collection (WoSCC), and the information on countries, institutes, and authors was collected and analyzed. In addition, the present research status and future trends were explored according to the results yielded from the analysis of cited references and keywords. This study revealed that publications regarding amino acid metabolism in T cells gradually increased each year. The USA is the top producer and most influential country in this field. Recent research has focused on the correlation between the metabolism of several amino acids and regulatory T cells (Tregs) and CD8<sup>+</sup> T cells. Overall, this research offers a comprehensive exhibition on the field of amino acid metabolism in T cells, which will help researchers to study this domain more effectively and intuitively.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"3393342"},"PeriodicalIF":3.5,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11824865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1155/jimr/5845167
Chenyun Zhang, Haizhou Liu
In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer. These advantages highlight the potential future prospects in this field, showing varying degrees of advancement in preclinical and clinical studies. Herein, we aimed to review different dual-target CAR-T studies conducted on a wide range of tumor models, summarizing the selection of target combinations, the efficacy and safety demonstrated in preclinical and clinical settings, the existing limitations, and the potential future directions of this promising therapeutic strategy.
{"title":"Advancements and Future Directions of Dual-Target Chimeric Antigen Receptor T-Cell Therapy in Preclinical and Clinical Studies.","authors":"Chenyun Zhang, Haizhou Liu","doi":"10.1155/jimr/5845167","DOIUrl":"10.1155/jimr/5845167","url":null,"abstract":"<p><p>In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer. These advantages highlight the potential future prospects in this field, showing varying degrees of advancement in preclinical and clinical studies. Herein, we aimed to review different dual-target CAR-T studies conducted on a wide range of tumor models, summarizing the selection of target combinations, the efficacy and safety demonstrated in preclinical and clinical settings, the existing limitations, and the potential future directions of this promising therapeutic strategy.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"5845167"},"PeriodicalIF":3.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation is a critical response of the immune system to infection or injury, serving to repair and restore tissue homeostasis. While acute inflammation generally protects against harmful stimuli, prolonged and chronic inflammation have detrimental effects and disrupts tissue homeostasis. Due to the complex and multifactorial etiology of chronic inflammation, effective treatment remains elusive. We found that piperlongumine (PL)-18, a di-hydroxy derivative of PL from long pepper, inhibits the nuclear factor kappa B (NF-kB), a master transcription factor of numerous components of the inflammatory response. NF-kB was inhibited by PL-18 in two human cell-lines, L428 and A549, by preventing the nuclear translocation of p65 NF-kB. We also found that IκB kinase (IKK) was degraded in the presence of PL-18. Furthermore, PL-18 inhibited the production of proinflammatory cytokines expressed by L428, a cell line with a constitutive active NF-kB. Altogether, our results suggest that PL-18 is a molecule of interest to be further developed to treat persistent infections with severe inflammation.
炎症是免疫系统对感染或损伤的关键反应,用于修复和恢复组织稳态。虽然急性炎症通常可以防止有害刺激,但长期和慢性炎症具有有害影响并破坏组织稳态。由于慢性炎症的病因复杂且多因素,有效的治疗仍然难以捉摸。我们发现胡椒明(PL)-18是长辣椒中PL的二羟基衍生物,可以抑制核因子κ B (NF-kB), NF-kB是炎症反应的许多组成部分的主要转录因子。在L428和A549两种人类细胞系中,PL-18通过阻止p65 NF-kB的核易位而抑制NF-kB。我们还发现i - κ b激酶(IKK)在PL-18的存在下被降解。此外,PL-18还能抑制L428(一种具有NF-kB构成活性的细胞系)表达的促炎细胞因子的产生。总之,我们的研究结果表明,PL-18是一种值得进一步开发的分子,可用于治疗严重炎症的持续性感染。
{"title":"NF-<i>κ</i>B Inhibitory Activity of the Di-Hydroxy Derivative of Piperlongumine (PL-18).","authors":"Yael Schlichter Kadosh, Subramani Muthuraman, Ariel Kushmaro, Rajendran Saravana Kumar, Jacob Gopas","doi":"10.1155/jimr/9915695","DOIUrl":"10.1155/jimr/9915695","url":null,"abstract":"<p><p>Inflammation is a critical response of the immune system to infection or injury, serving to repair and restore tissue homeostasis. While acute inflammation generally protects against harmful stimuli, prolonged and chronic inflammation have detrimental effects and disrupts tissue homeostasis. Due to the complex and multifactorial etiology of chronic inflammation, effective treatment remains elusive. We found that piperlongumine (PL)-18, a di-hydroxy derivative of PL from long pepper, inhibits the nuclear factor kappa B (NF-<i>k</i>B), a master transcription factor of numerous components of the inflammatory response. NF-<i>k</i>B was inhibited by PL-18 in two human cell-lines, L428 and A549, by preventing the nuclear translocation of p65 NF-<i>k</i>B. We also found that I<i>κ</i>B kinase (IKK) was degraded in the presence of PL-18. Furthermore, PL-18 inhibited the production of proinflammatory cytokines expressed by L428, a cell line with a constitutive active NF-<i>k</i>B. Altogether, our results suggest that PL-18 is a molecule of interest to be further developed to treat persistent infections with severe inflammation.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"9915695"},"PeriodicalIF":3.5,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07eCollection Date: 2025-01-01DOI: 10.1155/jimr/5006201
Lei Han, Tianxiang Wu, Qin Zhang, Anning Qi, Xiaohui Zhou
The body's immune response plays a critical role in defending against external or foreign antigens while also preserving tolerance to self-antigens. This equilibrium, referred to as immune homeostasis, is paramount for overall health. The regulatory mechanisms governing the maintenance of this delicate immune balance are notably complex. It is currently accepted that immune tolerance is a dynamic outcome regulated by multiple factors, including central and peripheral mechanisms. Its induction or elimination plays a significant role in autoimmune diseases, organ transplantation, and cancer therapy, markedly impacting various major diseases in modern clinical practice. Overall, our current understanding of immune tolerance is still very limited. In this review article, we summarized the main mechanisms that have been known to mediate immune tolerance so far, including endogenous immune tolerance, adaptive immune tolerance, other immune tolerance mechanisms, and the homeostasis of immune tolerance, identified the key factors that regulate immune tolerance, and provided new clues for immune system recovery in many autoimmune diseases, organ transplantation, and tumor therapy.
{"title":"Immune Tolerance Regulation Is Critical to Immune Homeostasis.","authors":"Lei Han, Tianxiang Wu, Qin Zhang, Anning Qi, Xiaohui Zhou","doi":"10.1155/jimr/5006201","DOIUrl":"10.1155/jimr/5006201","url":null,"abstract":"<p><p>The body's immune response plays a critical role in defending against external or foreign antigens while also preserving tolerance to self-antigens. This equilibrium, referred to as immune homeostasis, is paramount for overall health. The regulatory mechanisms governing the maintenance of this delicate immune balance are notably complex. It is currently accepted that immune tolerance is a dynamic outcome regulated by multiple factors, including central and peripheral mechanisms. Its induction or elimination plays a significant role in autoimmune diseases, organ transplantation, and cancer therapy, markedly impacting various major diseases in modern clinical practice. Overall, our current understanding of immune tolerance is still very limited. In this review article, we summarized the main mechanisms that have been known to mediate immune tolerance so far, including endogenous immune tolerance, adaptive immune tolerance, other immune tolerance mechanisms, and the homeostasis of immune tolerance, identified the key factors that regulate immune tolerance, and provided new clues for immune system recovery in many autoimmune diseases, organ transplantation, and tumor therapy.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2025 ","pages":"5006201"},"PeriodicalIF":3.5,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11824399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}