首页 > 最新文献

燃料化学学报最新文献

英文 中文
Effect of operating conditions on release and transformation of sodium during CFB gasification of Zhundong coal 操作条件对准东煤CFB气化过程中钠释放转化的影响
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60348-2
Zi-jian YANG , Shuai GUO , Xiao-fang WANG

To provide some useful suggestions to the operation of circulating fluidized bed (CFB) gasifier, the effect of gasification temperature, residence time and agent on the release and transformation of sodium was studied by using a fixed bed reactor combined with Factsage software. The results indicated that gasification temperature was the significant factor to the release and transformation of sodium. For the promoting effect of sodium release, it was ascribed to the intense of sodium volatilization and competitive reaction between lime and meta-kaolin. Meanwhile, the high temperature promoted the formation of nepheline and slag. The threshold temperature of latter was near 950 °C. It was interesting to find that the release of sodium could be divided into two stages: coal pyrolysis and char gasification. In coal pyrolysis, part of organic and water-soluble sodium was released. The remainder either combined with char structure, or reacted with minerals. In char gasification, sodium, combined with char structure, was released along with char gasification. Due to the decrease of melting temperature and the formation of NaOH, steam showed a promoting effect on the sodium release. Oppositely, oxygen and nitrogen presented an inhibiting effect. The former was ascribed to the formation of Na2SO4, while the latter was caused by the chemical binding and physical wrapping effect of char.

为了给循环流化床(CFB)气化炉的运行提供参考,采用固定床反应器结合Factsage软件,研究了气化温度、停留时间和药剂对钠的释放和转化的影响。结果表明,气化温度是影响钠释放转化的重要因素。对于钠的释放促进作用,归因于钠的挥发强度和石灰与偏高岭土之间的竞争反应。同时,高温促进了霞石和炉渣的形成。后者的阈值温度在950℃附近。有趣的是,钠的释放可以分为两个阶段:煤热解和炭气化。在煤热解过程中,部分有机水溶性钠被释放。其余的要么与碳结构结合,要么与矿物质反应。在煤焦气化过程中,钠与煤焦结构结合,随着煤焦气化而释放。由于熔化温度的降低和NaOH的形成,蒸汽对钠的释放有促进作用。相反,氧和氮表现出抑制作用。前者归因于Na2SO4的形成,后者是由于炭的化学结合和物理包裹作用造成的。
{"title":"Effect of operating conditions on release and transformation of sodium during CFB gasification of Zhundong coal","authors":"Zi-jian YANG ,&nbsp;Shuai GUO ,&nbsp;Xiao-fang WANG","doi":"10.1016/S1872-5813(23)60348-2","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60348-2","url":null,"abstract":"<div><p>To provide some useful suggestions to the operation of circulating fluidized bed (CFB) gasifier, the effect of gasification temperature, residence time and agent on the release and transformation of sodium was studied by using a fixed bed reactor combined with Factsage software. The results indicated that gasification temperature was the significant factor to the release and transformation of sodium. For the promoting effect of sodium release, it was ascribed to the intense of sodium volatilization and competitive reaction between lime and meta-kaolin. Meanwhile, the high temperature promoted the formation of nepheline and slag. The threshold temperature of latter was near 950 °C. It was interesting to find that the release of sodium could be divided into two stages: coal pyrolysis and char gasification. In coal pyrolysis, part of organic and water-soluble sodium was released. The remainder either combined with char structure, or reacted with minerals. In char gasification, sodium, combined with char structure, was released along with char gasification. Due to the decrease of melting temperature and the formation of NaOH, steam showed a promoting effect on the sodium release. Oppositely, oxygen and nitrogen presented an inhibiting effect. The former was ascribed to the formation of Na<sub>2</sub>SO<sub>4</sub>, while the latter was caused by the chemical binding and physical wrapping effect of char.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1232-1239"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose PdAg/CDs复合材料的制备及其对葡萄糖氢解的催化性能
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60340-8
De-quan CHEN , An WANG , Gui-rong BAO , Peng GAO , Jia LUO , Xue-wu JI , Wen-yao Deng , Li LIU

With carbon dots (CDs) as the reducing agent and support, a PdAg/CDs composite catalyst was prepared by simple light reduction method. The results of XRD, TEM, FT-IR and XPS characterization indicate that the PdAg/CDs composite has an average particle size of about 10.45 nm, where Pd and Ag exist on the surface of CDs mainly in the alloy form of zero valence. The catalytic performance of the PdAg/CDs composite was evaluated in the hydrogenolysis of glucose in water. The results illustrate that the PdAg/CDs composite catalyst is highly active in the glucose hydrogenolysis; after reaction for 3 h under 140 °C, 4 MPa of initial H2 pressure, 100 mg of glucose and 25 mg of catalyst, the conversion of glucose is 68.85% and the yield of acetol reaches 8.36%.

以碳点(CDs)为还原剂和载体,采用简单光还原法制备了PdAg/CDs复合催化剂。XRD、TEM、FT-IR和XPS表征结果表明,PdAg/CDs复合材料的平均粒径约为10.45 nm,其中Pd和Ag主要以零价合金形式存在于CDs表面。考察了PdAg/CDs复合材料对葡萄糖在水中氢解的催化性能。结果表明:PdAg/CDs复合催化剂在葡萄糖氢解反应中具有较高的活性;在140℃、H2初始压力4 MPa、葡萄糖用量100 mg、催化剂用量25 mg条件下反应3h,葡萄糖转化率为68.85%,丙酮收率为8.36%。
{"title":"Preparation of the PdAg/CDs composite and its catalytic performance in the hydrogenolysis of glucose","authors":"De-quan CHEN ,&nbsp;An WANG ,&nbsp;Gui-rong BAO ,&nbsp;Peng GAO ,&nbsp;Jia LUO ,&nbsp;Xue-wu JI ,&nbsp;Wen-yao Deng ,&nbsp;Li LIU","doi":"10.1016/S1872-5813(23)60340-8","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60340-8","url":null,"abstract":"<div><p>With carbon dots (CDs) as the reducing agent and support, a PdAg/CDs composite catalyst was prepared by simple light reduction method. The results of XRD, TEM, FT-IR and XPS characterization indicate that the PdAg/CDs composite has an average particle size of about 10.45 nm, where Pd and Ag exist on the surface of CDs mainly in the alloy form of zero valence. The catalytic performance of the PdAg/CDs composite was evaluated in the hydrogenolysis of glucose in water. The results illustrate that the PdAg/CDs composite catalyst is highly active in the glucose hydrogenolysis; after reaction for 3 h under 140 °C, 4 MPa of initial H<sub>2</sub> pressure, 100 mg of glucose and 25 mg of catalyst, the conversion of glucose is 68.85% and the yield of acetol reaches 8.36%.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1273-1281"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar 温和条件下ZnCl2原位催化热解松粉制生物油及生物炭的应用
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60344-5
Zhao-bin PANG , Jian-gang WANG , Hong-you CUI , Jing-hua WANG

Fast pyrolysis of biomass is an effective way for biomass conversion and utilization. However, the pyrolysis temperature is usually high because it is a non-catalytic process, resulting in the complicated composition of bio-oil and difficulty to control. Aiming to explore in-situ catalysis in this paper, the fast pyrolysis of lignin, cellulose, corncob and pine wood powder was studied using ZnCl2 as the catalyst. The activation energies of non-catalytic pyrolysis and catalytic pyrolysis were obtained based on kinetic fitting of their thermal gravimetric curves. The variation in pyrolysis oil composition was analyzed. It was found that ZnCl2 in situ catalysis could not only significantly reduce the pyrolysis temperature, but also simplify the resultant bio-oil composition. Even under pyrolysis temperature as low as 350 °C, fast pyrolysis of pine wood powder could achieve a yield of 47% of bio-oil, which was predominantly composed of the derivatives of cellulose and hemicellulose. ZnCl2 in situ catalysis could significantly decrease the activation energy of cellulose cracking from 304.78 to 112.46 kJ/mol, but has little effect on that of lignin. The carbon residue from ZnCl2-catalyzed pyrolysis was further carbonized at 600 °C, affording activated carbon with adsorption capacity of phenol up to 165 mg/g. The research work provides guidance and reference for the development of in-situ catalytic pyrolysis technology with high efficiency.

生物质快速热解是生物质转化利用的有效途径。但由于是非催化过程,热解温度通常较高,导致生物油组成复杂,难以控制。本文以原位催化为研究对象,以ZnCl2为催化剂,对木质素、纤维素、玉米芯和松木粉的快速热解进行了研究。通过热重曲线的动力学拟合,得到了非催化热解和催化热解的活化能。分析了热解油组分的变化规律。研究发现,ZnCl2原位催化不仅可以显著降低热解温度,而且可以简化产物的生物油组成。即使在低至350℃的热解温度下,松木粉快速热解得到的生物油收率也可达47%,生物油主要由纤维素和半纤维素衍生物组成。ZnCl2原位催化可使纤维素裂解活化能从304.78降低到112.46 kJ/mol,但对木质素裂解活化能影响不大。zncl2催化热解后的炭渣在600℃下进一步炭化,得到的活性炭对苯酚的吸附量可达165 mg/g。研究工作为原位高效催化热解技术的发展提供了指导和参考。
{"title":"In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar","authors":"Zhao-bin PANG ,&nbsp;Jian-gang WANG ,&nbsp;Hong-you CUI ,&nbsp;Jing-hua WANG","doi":"10.1016/S1872-5813(23)60344-5","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60344-5","url":null,"abstract":"<div><p>Fast pyrolysis of biomass is an effective way for biomass conversion and utilization. However, the pyrolysis temperature is usually high because it is a non-catalytic process, resulting in the complicated composition of bio-oil and difficulty to control. Aiming to explore <em>in-situ</em> catalysis in this paper, the fast pyrolysis of lignin, cellulose, corncob and pine wood powder was studied using ZnCl<sub>2</sub> as the catalyst. The activation energies of non-catalytic pyrolysis and catalytic pyrolysis were obtained based on kinetic fitting of their thermal gravimetric curves. The variation in pyrolysis oil composition was analyzed. It was found that ZnCl<sub>2</sub> <em>in situ</em> catalysis could not only significantly reduce the pyrolysis temperature, but also simplify the resultant bio-oil composition. Even under pyrolysis temperature as low as 350 °C, fast pyrolysis of pine wood powder could achieve a yield of 47% of bio-oil, which was predominantly composed of the derivatives of cellulose and hemicellulose. ZnCl<sub>2</sub> <em>in situ</em> catalysis could significantly decrease the activation energy of cellulose cracking from 304.78 to 112.46 kJ/mol, but has little effect on that of lignin. The carbon residue from ZnCl<sub>2</sub>-catalyzed pyrolysis was further carbonized at 600 °C, affording activated carbon with adsorption capacity of phenol up to 165 mg/g. The research work provides guidance and reference for the development of <em>in-situ</em> catalytic pyrolysis technology with high efficiency.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1250-1258"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers 铁酸钙为氧载体的生物炭化学环气化动力学分析
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60356-1
Pan GAO , Xing-qi HUANG , Yu-tong LIU , Aikeremu ABULAITI , Shao-xia YANG

The chemical looping gasification (CLG) kinetics of biochars with calcium ferrite as oxygen carriers and the effects of different kinds of calcium ferrite and biochars were investigated by TGA. The properties of biochars and calcium ferrite were analyzed by XRD, SEM, BET, etc. The Škvára-Šesták method was used to determine the kinetic mechanism function. The results show that the reduction reaction rate and the oxygen carrying capacity of oxygen carriers follow the sequence: Ca2Fe2O5 > CaFe2O4 > Fe2O3, and CaFe2O4 > Ca2Fe2O5 > Fe2O3, respectively. The oxygen carriers can be completely reduced to Fe and CaO by biochar. The activation energy of CaFe2O4 reduction is in the range of 167.44–600.83 kJ/mol; and the activation energy of Ca2Fe2O5 reduction is in the range of 413.62–583.51 kJ/mol. The CaFe3O5 generated during the reduction of CaFe2O4 may have a negative influence on the lattice oxygen diffusion. The reduction of CaFe2O4 can be divided into two stages: when the conversion degree α is less than 0.15, the CaFe2O4 is reduced to Ca2Fe2O5 following the random nucleation and nuclei growth model; when α is greater than 0.15, Ca2Fe2O5 is further reduced to CaO and Fe following the 3-D diffusion mechanism. The mechanism function of the reduction of Ca2Fe2O5 is the same as that of the second stage of CaFe2O4 reduction.

采用热重分析仪研究了以铁酸钙为氧载体的生物炭的化学环气化动力学,以及不同种类铁酸钙和生物炭对化学环气化的影响。采用XRD、SEM、BET等分析了生物炭和铁酸钙的性质。采用Škvára-Šesták法确定其动力学机理函数。结果表明,氧载体的还原反应速率和载氧能力顺序为:Ca2Fe2O5 >CaFe2O4祝辞Fe2O3和CaFe2O4 >Ca2Fe2O5祝辞分别Fe2O3。生物炭可以将氧载体完全还原为Fe和CaO。CaFe2O4的还原活化能在167.44 ~ 600.83 kJ/mol之间;Ca2Fe2O5的还原活化能在413.62 ~ 583.51 kJ/mol之间。CaFe2O4还原过程中产生的CaFe3O5可能对晶格氧扩散产生负面影响。CaFe2O4的还原可分为两个阶段:当转化率α < 0.15时,CaFe2O4遵循随机成核和核生长模式还原为Ca2Fe2O5;当α大于0.15时,Ca2Fe2O5进一步还原为CaO和Fe。Ca2Fe2O5的还原机理与CaFe2O4的第二阶段还原作用相同。
{"title":"Kinetic analysis of biochar chemical looping gasification with calcium ferrite as oxygen carriers","authors":"Pan GAO ,&nbsp;Xing-qi HUANG ,&nbsp;Yu-tong LIU ,&nbsp;Aikeremu ABULAITI ,&nbsp;Shao-xia YANG","doi":"10.1016/S1872-5813(23)60356-1","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60356-1","url":null,"abstract":"<div><p>The chemical looping gasification (CLG) kinetics of biochars with calcium ferrite as oxygen carriers and the effects of different kinds of calcium ferrite and biochars were investigated by TGA. The properties of biochars and calcium ferrite were analyzed by XRD, SEM, BET, etc. The Škvára-Šesták method was used to determine the kinetic mechanism function. The results show that the reduction reaction rate and the oxygen carrying capacity of oxygen carriers follow the sequence: Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> &gt; CaFe<sub>2</sub>O<sub>4</sub> &gt; Fe<sub>2</sub>O<sub>3</sub>, and CaFe<sub>2</sub>O<sub>4</sub> &gt; Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> &gt; Fe<sub>2</sub>O<sub>3</sub>, respectively. The oxygen carriers can be completely reduced to Fe and CaO by biochar. The activation energy of CaFe<sub>2</sub>O<sub>4</sub> reduction is in the range of 167.44–600.83 kJ/mol; and the activation energy of Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> reduction is in the range of 413.62–583.51 kJ/mol. The CaFe<sub>3</sub>O<sub>5</sub> generated during the reduction of CaFe<sub>2</sub>O<sub>4</sub> may have a negative influence on the lattice oxygen diffusion. The reduction of CaFe<sub>2</sub>O<sub>4</sub> can be divided into two stages: when the conversion degree α is less than 0.15, the CaFe<sub>2</sub>O<sub>4</sub> is reduced to Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> following the random nucleation and nuclei growth model; when α is greater than 0.15, Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> is further reduced to CaO and Fe following the 3-D diffusion mechanism. The mechanism function of the reduction of Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> is the same as that of the second stage of CaFe<sub>2</sub>O<sub>4</sub> reduction.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1259-1272"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks 预处理条件对金属-有机骨架负载型钴催化剂结构和催化性能的影响
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60352-4
Jia-qiang SUN , Shen-ke ZHENG , Jian-gang CHEN

Supported cobalt catalysts (Co@C-ZnZrO2 and Co/ZnZrO2) were prepared through a metal-organic frameworks (MOFs)-mediated synthesis strategy. The influence of MOFs pyrolysis on the structure and Fischer-Tropsch synthesis performance of supported cobalt catalysts was investigated. The crystalline phase and microstructure of supported cobalt catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), N2 adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The Co/ZnZrO2 showed the CO conversion of 18.1% and the C5+ selectivity of 77.4%, whereas the Co@C-ZnZrO2 exhibited the CO conversion of 8.5% and the C5+ selectivity of 35.2%. The excellent CO conversion for Co/ZnZrO2 was attributed to the more exposure of active Co sites. Meanwhile, the activity of Co sites on Co@C-ZnZrO2 catalyst was restricted by the carbon layer, suppressing the adsorption and activation of syngas on Co sites.

通过金属有机骨架(MOFs)介导合成策略制备了负载型钴催化剂(Co@C-ZnZrO2和Co/ZnZrO2)。研究了MOFs热解对负载型钴催化剂结构和费托合成性能的影响。采用粉末x射线衍射(XRD)、透射电镜(TEM)、高分辨率透射电镜(HRTEM)、N2吸附-解吸和x射线光电子能谱(XPS)对负载型钴催化剂的晶相和微观结构进行了表征。Co/ZnZrO2的Co转化率为18.1%,C5+选择性为77.4%,而Co@C-ZnZrO2的Co转化率为8.5%,C5+选择性为35.2%。CO /ZnZrO2的良好CO转化归因于更多的活性CO位点的暴露。同时,Co@C-ZnZrO2催化剂上Co位点的活性受到碳层的限制,抑制了合成气在Co位点上的吸附和活化。
{"title":"Influence of pretreatment conditions on the structure and catalytic performance of supported cobalt catalysts derived from metal-organic frameworks","authors":"Jia-qiang SUN ,&nbsp;Shen-ke ZHENG ,&nbsp;Jian-gang CHEN","doi":"10.1016/S1872-5813(23)60352-4","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60352-4","url":null,"abstract":"<div><p>Supported cobalt catalysts (Co@C-ZnZrO<sub>2</sub> and Co/ZnZrO<sub>2</sub>) were prepared through a metal-organic frameworks (MOFs)-mediated synthesis strategy. The influence of MOFs pyrolysis on the structure and Fischer-Tropsch synthesis performance of supported cobalt catalysts was investigated. The crystalline phase and microstructure of supported cobalt catalysts were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), N<sub>2</sub> adsorption-desorption and X-ray photoelectron spectroscopy (XPS). The Co/ZnZrO<sub>2</sub> showed the CO conversion of 18.1% and the C<sub>5+</sub> selectivity of 77.4%, whereas the Co@C-ZnZrO<sub>2</sub> exhibited the CO conversion of 8.5% and the C<sub>5+</sub> selectivity of 35.2%. The excellent CO conversion for Co/ZnZrO<sub>2</sub> was attributed to the more exposure of active Co sites. Meanwhile, the activity of Co sites on Co@C-ZnZrO<sub>2</sub> catalyst was restricted by the carbon layer, suppressing the adsorption and activation of syngas on Co sites.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1291-1297"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of silicon oxide additive on the transformation characteristics of sodium and sulfur in Zhundong coal ash under atmospheric and elevated pressure 氧化硅添加剂对准东煤灰中钠和硫在常压和高压下转化特性的影响
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60353-6
Wu-yang XIAO , Bo WEI , Jian-jiang WANG , Jin-rong MA , Maierhaba ABUDOUREHEMAN , Xian LI , Hong YAO , Ze-ning CHENG

The effects of silicon oxide additive on the transformation characteristics of sodium and sulfur in coal ash under atmospheric and elevated pressure were investigated in this study. The results indicated that silicon oxide additive significantly inhibited the release of sodium under high pressure. The sodium content in ash with 4% of silicon oxide additive was 3.5% at 0.1 MPa, which was higher than that without additive. However, the sodium content increased to 5.4% without additive and 6.9% with 4% additive at 4 MPa, respectively. The sodium mainly existed in the forms of NaAlSiO4 and NaAlSi3O8 at 0.1 MPa, and the content of NaAlSiO4 increased with increasing additive dosage, which weakened the agglomeration of ash. The decomposition of low melting point mineral CaSO4 was inhibited at 4 MPa, and the formation of Na6Ca2Al6Si6O24(SO4)2 from NaAlSiO4 and CaSO4 was promoted significantly with increasing additive dosage. Furthermore, the inhibition mechanism of sodium and sulfur released from coal ash by silicon oxide under high pressure was proposed.

研究了氧化硅添加剂对粉煤灰中钠和硫在常压和高压下转化特性的影响。结果表明,氧化硅添加剂能明显抑制高压下钠的释放。在0.1 MPa下,添加4%氧化硅的灰分钠含量为3.5%,高于未添加氧化硅的灰分钠含量。在4 MPa条件下,钠含量分别为5.4%和6.9%。在0.1 MPa下,钠主要以NaAlSiO4和NaAlSi3O8的形式存在,随着添加量的增加,NaAlSiO4的含量增加,减弱了灰分的团聚。在4 MPa时,低熔点矿物CaSO4的分解受到抑制,随着添加量的增加,NaAlSiO4和CaSO4生成Na6Ca2Al6Si6O24(SO4)2的速度显著加快。进一步探讨了高压氧化硅抑制煤灰中钠和硫释放的机理。
{"title":"Effect of silicon oxide additive on the transformation characteristics of sodium and sulfur in Zhundong coal ash under atmospheric and elevated pressure","authors":"Wu-yang XIAO ,&nbsp;Bo WEI ,&nbsp;Jian-jiang WANG ,&nbsp;Jin-rong MA ,&nbsp;Maierhaba ABUDOUREHEMAN ,&nbsp;Xian LI ,&nbsp;Hong YAO ,&nbsp;Ze-ning CHENG","doi":"10.1016/S1872-5813(23)60353-6","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60353-6","url":null,"abstract":"<div><p>The effects of silicon oxide additive on the transformation characteristics of sodium and sulfur in coal ash under atmospheric and elevated pressure were investigated in this study. The results indicated that silicon oxide additive significantly inhibited the release of sodium under high pressure. The sodium content in ash with 4% of silicon oxide additive was 3.5% at 0.1 MPa, which was higher than that without additive. However, the sodium content increased to 5.4% without additive and 6.9% with 4% additive at 4 MPa, respectively. The sodium mainly existed in the forms of NaAlSiO<sub>4</sub> and NaAlSi<sub>3</sub>O<sub>8</sub> at 0.1 MPa, and the content of NaAlSiO<sub>4</sub> increased with increasing additive dosage, which weakened the agglomeration of ash. The decomposition of low melting point mineral CaSO<sub>4</sub> was inhibited at 4 MPa, and the formation of Na<sub>6</sub>Ca<sub>2</sub>Al<sub>6</sub>Si<sub>6</sub>O<sub>24</sub>(SO<sub>4</sub>)<sub>2</sub> from NaAlSiO<sub>4</sub> and CaSO<sub>4</sub> was promoted significantly with increasing additive dosage. Furthermore, the inhibition mechanism of sodium and sulfur released from coal ash by silicon oxide under high pressure was proposed.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1220-1231"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between fluorescence characteristics of coal macerals and excitation time 煤显微组织荧光特性与激发时间的关系
Q3 Energy Pub Date : 2023-09-01 DOI: 10.1016/S1872-5813(23)60339-1
Ya-ru ZHANG , Jin-feng BAI , Li-jun JIN , Yang LI , Hao-quan HU

The fluorescence characteristics of coal macerals can be used as one of the indexes to evaluate the properties of coking coal. In this work, a single-wavelength laser with a wavelength of 360 nm was used as the excitation source to excite the surface of particulate block under a polarizing microscope. Effect of excitation time on fluorescence characteristics of the macerals was studied. The relationship between spontaneous fluorescence intensity and the excitation time of each maceral of six kinds of coking coals show that the fluorescence characteristics of coal macerals are related to the type and metamorphism of coal. The excitation time has a certain effect on the fluorescence parameters of the macerals. By comparing the relative fluorescence intensity values under different excitation times, it is found that the mean relative fluorescence intensity within 15 s can be used as an optical parameter to characterize the structure and metamorphic grade of different macerals. The essence of this method is to express movement of electrons in outer layer of nucleus by macroscopic fluorescence spectrum and relative fluorescence intensity of the initial state value and simplify microscopic complexity into macroscopic and numerical form generally accepted.

煤显微组织的荧光特性可作为评价焦煤性能的指标之一。本文采用波长为360 nm的单波长激光作为激发源,在偏光显微镜下激发颗粒块表面。研究了激发时间对微观结构荧光特性的影响。6种炼焦煤各显微组分的自发荧光强度与激发时间的关系表明,煤显微组分的荧光特性与煤的类型和变质有关。激发时间对产物的荧光参数有一定的影响。通过比较不同激发次数下的相对荧光强度值,发现15s内的平均相对荧光强度可以作为表征不同显微结构和变质等级的光学参数。该方法的实质是通过宏观荧光光谱和初始状态值的相对荧光强度来表示原子核外层电子的运动,将微观复杂性简化为普遍接受的宏观和数值形式。
{"title":"Relationship between fluorescence characteristics of coal macerals and excitation time","authors":"Ya-ru ZHANG ,&nbsp;Jin-feng BAI ,&nbsp;Li-jun JIN ,&nbsp;Yang LI ,&nbsp;Hao-quan HU","doi":"10.1016/S1872-5813(23)60339-1","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60339-1","url":null,"abstract":"<div><p>The fluorescence characteristics of coal macerals can be used as one of the indexes to evaluate the properties of coking coal. In this work, a single-wavelength laser with a wavelength of 360 nm was used as the excitation source to excite the surface of particulate block under a polarizing microscope. Effect of excitation time on fluorescence characteristics of the macerals was studied. The relationship between spontaneous fluorescence intensity and the excitation time of each maceral of six kinds of coking coals show that the fluorescence characteristics of coal macerals are related to the type and metamorphism of coal. The excitation time has a certain effect on the fluorescence parameters of the macerals. By comparing the relative fluorescence intensity values under different excitation times, it is found that the mean relative fluorescence intensity within 15 s can be used as an optical parameter to characterize the structure and metamorphic grade of different macerals. The essence of this method is to express movement of electrons in outer layer of nucleus by macroscopic fluorescence spectrum and relative fluorescence intensity of the initial state value and simplify microscopic complexity into macroscopic and numerical form generally accepted.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 9","pages":"Pages 1209-1219"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49900263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of flotation refined carbon from gasification slag 以气化渣为原料制备浮选精炭
Q3 Energy Pub Date : 2023-08-01 DOI: 10.1016/S1872-5813(23)60354-8
Peng ZHAO , Gang WANG , Li-hong KOU , Hao WANG , Min LIU , Peng HUANG , Zhen CUI

Highly efficient and environmentally friendly utilization of coal gasification slag is a hot research subject in the coal chemical industry at present. The preparation of activated carbon with a flotation refined carbon from gasification slag, a long flame coal, a high temperature coal tar containing 70% asphalt and an active agent in proper proportion was carried out. The influence of activation temperature and time on the surface properties and compressive strength of the produced activated carbon was investigated in a tube furnace. The oxygen functional group, pore structure and absorption performance of the produced activated carbon were characterized by FT-IR, N2 adsorption-desorption, SEM and iodine adsorption. The COD removal from biochemical waste water by the produced activated carbon was verified. The results show that the key factors for the effective formation and expansion of pore are the suitable activation temperature and time for the floatation refined carbon from gasification slag as the feedstock. The activated carbon prepared by carbonization at 550 °C for 30 min and steam activation at 950 °C for 2 h exhibits a crisscross morphology of organic carbon components and minerals. The surface area, pore capacity and average pore diameter are 566 m2/g, 0.5611 mL/g and 5.1 nm, respectively, with the characteristics of a concentrated pore distribution and a certain quantity of mesopore. Both iodine value (650 mg/g) and methylene blue value (128 mg/g) meet the requirements of the Chinese standard “Technical Specifications and Test Methods of Activated Carbon for Purification of Industrial Wastewater”. The COD in biochemical waste water treated by the activated carbon for 60 min with a solid-to-liquid ratio of 0.6 g/L can be reduced to lower than 30 mg/L, meeting the B class water quality of the Chinese standard “Integrated Discharge Standard of Water Pollutants” (DB11/307—2013).

煤气化渣的高效环保利用是目前煤化工领域的研究热点。以气化渣浮选精制炭、长焰煤、含70%沥青的高温煤焦油和适当比例的活性剂为原料制备活性炭。在管式炉上研究了活化温度和活化时间对活性炭表面性能和抗压强度的影响。采用红外光谱(FT-IR)、氮气吸附-解吸、扫描电镜(SEM)和碘吸附等手段对活性炭的氧官能团、孔隙结构和吸附性能进行了表征。验证了所制活性炭对生化废水中COD的去除效果。结果表明,以气化渣浮选精炭为原料的活化温度和活化时间是孔隙有效形成和膨胀的关键因素。经550℃炭化30 min, 950℃蒸汽活化2 h制备的活性炭具有有机碳组分和矿物的纵横交错形态。比表面积为566 m2/g,孔容量为0.5611 mL/g,平均孔径为5.1 nm,具有孔隙分布集中和一定量中孔的特点。碘值(650 mg/g)和亚甲基蓝值(128 mg/g)均符合中国标准《工业废水净化用活性炭技术规范及试验方法》的要求。在料液比为0.6 g/L的条件下,活性炭处理生化废水60 min后,COD可降至30 mg/L以下,达到国家标准《水污染物综合排放标准》(DB11/307-2013) B类水质标准。
{"title":"Preparation of flotation refined carbon from gasification slag","authors":"Peng ZHAO ,&nbsp;Gang WANG ,&nbsp;Li-hong KOU ,&nbsp;Hao WANG ,&nbsp;Min LIU ,&nbsp;Peng HUANG ,&nbsp;Zhen CUI","doi":"10.1016/S1872-5813(23)60354-8","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60354-8","url":null,"abstract":"<div><p>Highly efficient and environmentally friendly utilization of coal gasification slag is a hot research subject in the coal chemical industry at present. The preparation of activated carbon with a flotation refined carbon from gasification slag, a long flame coal, a high temperature coal tar containing 70% asphalt and an active agent in proper proportion was carried out. The influence of activation temperature and time on the surface properties and compressive strength of the produced activated carbon was investigated in a tube furnace. The oxygen functional group, pore structure and absorption performance of the produced activated carbon were characterized by FT-IR, N<sub>2</sub> adsorption-desorption, SEM and iodine adsorption. The COD removal from biochemical waste water by the produced activated carbon was verified. The results show that the key factors for the effective formation and expansion of pore are the suitable activation temperature and time for the floatation refined carbon from gasification slag as the feedstock. The activated carbon prepared by carbonization at 550 °C for 30 min and steam activation at 950 °C for 2 h exhibits a crisscross morphology of organic carbon components and minerals. The surface area, pore capacity and average pore diameter are 566 m<sup>2</sup>/g, 0.5611 mL/g and 5.1 nm, respectively, with the characteristics of a concentrated pore distribution and a certain quantity of mesopore. Both iodine value (650 mg/g) and methylene blue value (128 mg/g) meet the requirements of the Chinese standard “Technical Specifications and Test Methods of Activated Carbon for Purification of Industrial Wastewater”. The COD in biochemical waste water treated by the activated carbon for 60 min with a solid-to-liquid ratio of 0.6 g/L can be reduced to lower than 30 mg/L, meeting the B class water quality of the Chinese standard “Integrated Discharge Standard of Water Pollutants” (DB11/307—2013).</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 8","pages":"Pages 1193-1200"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49887744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory 通过实验和密度泛函理论分析了阿维菌素的热解机理
Q3 Energy Pub Date : 2023-08-01 DOI: 10.1016/S1872-5813(23)60367-6
Hao ZHOU , Su-xiang LIU , Bao-feng ZHAO , Jing-wei WANG , Hai-bin GUAN , Di ZHU , Huan LI , An-gang SONG

In this study, the thermal degradation mechanism of avermectin (AVM) was analyzed via experiments and density functional theory calculations (DFT). The experimental results of AVMD pyrolysis indicated that the removal rate of AVM residues reached peak value of 99.88% above 250 °C. The main product of AVM pyrolysis was alcohols. Based on the C–O bonds breaking, four potential degradation pathways were proposed. The findings of the calculations were in agreement with those of the experiments. These results provide theoretical and empirical guidance for the development of safe antibiotic disposal technology.

本文通过实验和密度泛函理论计算(DFT)分析了阿维菌素(AVM)的热降解机理。AVMD热解实验结果表明,在250℃以上,AVM残渣的去除率最高达到99.88%。AVM热解的主要产物是醇类。基于C-O键断裂,提出了四种潜在的降解途径。计算结果与实验结果一致。这些结果为抗菌药物安全处置技术的发展提供了理论和实证指导。
{"title":"Analyzing the pyrolysis mechanism of avermectin via experiments and density functional theory","authors":"Hao ZHOU ,&nbsp;Su-xiang LIU ,&nbsp;Bao-feng ZHAO ,&nbsp;Jing-wei WANG ,&nbsp;Hai-bin GUAN ,&nbsp;Di ZHU ,&nbsp;Huan LI ,&nbsp;An-gang SONG","doi":"10.1016/S1872-5813(23)60367-6","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60367-6","url":null,"abstract":"<div><p>In this study, the thermal degradation mechanism of avermectin (AVM) was analyzed via experiments and density functional theory calculations (DFT). The experimental results of AVMD pyrolysis indicated that the removal rate of AVM residues reached peak value of 99.88% above 250 °C. The main product of AVM pyrolysis was alcohols. Based on the C–O bonds breaking, four potential degradation pathways were proposed. The findings of the calculations were in agreement with those of the experiments. These results provide theoretical and empirical guidance for the development of safe antibiotic disposal technology.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 8","pages":"Pages 1137-1145"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49887742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of rice husk-based carbon supported ruthenium catalyst for the hydrolysis of ammonia borane to produce hydrogen 稻壳基碳负载钌催化氨硼烷水解制氢的制备
Q3 Energy Pub Date : 2023-08-01 DOI: 10.1016/S1872-5813(23)60349-4
Hui WU , Jun-ning ZHENG , You-hua ZUO , Li-xin XU , Ming-fu YE , Chao WAN

An efficient dehydrogenation catalyst is crucial for the application of ammonia borane (NH3BH3, AB) as a solid chemical hydrogen storage material. In this work, a kind of nitrogen-doped rice husk activated carbon (N-RHC) was prepared by roasting melamine and rice husk at high temperature under nitrogen atmosphere. With N-RHC as the support, the rice husk-based carbon supported ruthenium catalyst (Ru/N-RHC) was prepared through impregnation with the RuCl3 solution and its catalytic performance in the hydrolysis of ammonia borane to produce hydrogen was investigated. The results indicate that the Ru/N-RHC catalyst with a Ru loading of 5% performs excellently in the hydrolysis of ammonia borane; the reaction turnover frequency (TOF) reaches 83.71 min−1 and the apparent activation energy decreases from 88.9 to 64.9 kJ/mol under light irradiation. In addition, the hydrogen production rate is positively correlated with the content of ammonia borane and catalyst.

高效的脱氢催化剂对氨硼烷(NH3BH3, AB)作为固体化学储氢材料的应用至关重要。在氮气气氛下,对稻壳和三聚氰胺进行高温焙烧,制备了氮掺杂稻壳活性炭(N-RHC)。以N-RHC为载体,用RuCl3溶液浸渍制备了稻壳基碳负载钌催化剂(Ru/N-RHC),并考察了其催化氨硼烷水解制氢的性能。结果表明,Ru负载5%的Ru/N-RHC催化剂对氨硼烷的水解效果较好;在光照下,反应周转率(TOF)达到83.71 min−1,表观活化能从88.9 kJ/mol降低到64.9 kJ/mol。此外,制氢速率与氨硼和催化剂的含量呈正相关。
{"title":"Preparation of rice husk-based carbon supported ruthenium catalyst for the hydrolysis of ammonia borane to produce hydrogen","authors":"Hui WU ,&nbsp;Jun-ning ZHENG ,&nbsp;You-hua ZUO ,&nbsp;Li-xin XU ,&nbsp;Ming-fu YE ,&nbsp;Chao WAN","doi":"10.1016/S1872-5813(23)60349-4","DOIUrl":"https://doi.org/10.1016/S1872-5813(23)60349-4","url":null,"abstract":"<div><p>An efficient dehydrogenation catalyst is crucial for the application of ammonia borane (NH<sub>3</sub>BH<sub>3</sub>, AB) as a solid chemical hydrogen storage material. In this work, a kind of nitrogen-doped rice husk activated carbon (N-RHC) was prepared by roasting melamine and rice husk at high temperature under nitrogen atmosphere. With N-RHC as the support, the rice husk-based carbon supported ruthenium catalyst (Ru/N-RHC) was prepared through impregnation with the RuCl<sub>3</sub> solution and its catalytic performance in the hydrolysis of ammonia borane to produce hydrogen was investigated. The results indicate that the Ru/N-RHC catalyst with a Ru loading of 5% performs excellently in the hydrolysis of ammonia borane; the reaction turnover frequency (TOF) reaches 83.71 min<sup>−1</sup> and the apparent activation energy decreases from 88.9 to 64.9 kJ/mol under light irradiation. In addition, the hydrogen production rate is positively correlated with the content of ammonia borane and catalyst.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 8","pages":"Pages 1201-1208"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49887743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
燃料化学学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1