Maria Fernanda Cifuentes Girard, Patrick Knight, Gérard Hopfgartner
The use of differential mobility spectrometry at low pressure coupled to liquid chromatography-mass spectrometry (LC-vDMS-MS) was investigated for the analysis of 13 drugs of abuse (DoA) including the following: cocaine, ecgonine methyl ester, cocaethylene, benzoylecgonine, norcocaine, tramadol, isomeric pairs of metabolites; O-desmethyl-cis-tramadol and N-desmethyl-cis-tramadol, and cannabinoids: Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabidiol, 11-hydroxy-Δ9-tetrahydrocannabinol, 11-nor-9carboxy-Δ9-tetrahydrocannabinol, and 11-nor-9carboxy-Δ9-tetrahydrocannabinol glucuronide. Different parameters were optimized for isomeric separation, such as LC mobile phase composition (20%-100% methanol acetonitrile and isopropanol, flow rate: 8-100 μL/min) and DMS separation voltage. Methanol and acetonitrile significantly affected the compensation voltage of the analytes and improved DMS separation. A short trap/elute LC-vDMS-SIM/MS screening method of 1 min was developed to quantify 11 drugs of abuse (except THC/CBD), in addition to a 4-min LC-vDMS-SIM/MS method to identify and quantify five cannabinoids including the isomers THC/CBD and three THC metabolites. THC is the principal psychoactive constituent of cannabis and is a controlled substance in comparison to its isomeric counterpart CBD; this highlights the importance and challenges to resolve these isomeric pairs by analytical techniques. The signal responses were linear over a concentration range of 0.005-10 μg/mL for the DoA and 1-1000 ng/mL for cannabinoids. The intraday and interday precision were better than 12.2% and accuracy better than 115%. Urine samples from subjects who tested positive for THC and/or cocaine during roadside drug testing were evaluated to assess the performance of the methods LC-vDMS-SIM/MS and LC-MRM/MS. Results show that the developed LC-vDMS-SIM/MS method presents similar performance to LC-MRM/MS with improved sample throughput.
{"title":"High-throughput liquid chromatography-vacuum differential mobility spectrometry-mass spectrometry for the analysis of isomeric drugs of abuse in human urine.","authors":"Maria Fernanda Cifuentes Girard, Patrick Knight, Gérard Hopfgartner","doi":"10.1002/dta.3778","DOIUrl":"https://doi.org/10.1002/dta.3778","url":null,"abstract":"<p><p>The use of differential mobility spectrometry at low pressure coupled to liquid chromatography-mass spectrometry (LC-vDMS-MS) was investigated for the analysis of 13 drugs of abuse (DoA) including the following: cocaine, ecgonine methyl ester, cocaethylene, benzoylecgonine, norcocaine, tramadol, isomeric pairs of metabolites; O-desmethyl-cis-tramadol and N-desmethyl-cis-tramadol, and cannabinoids: Δ<sup>9</sup>-tetrahydrocannabinol, Δ<sup>9</sup>-tetrahydrocannabidiol, 11-hydroxy-Δ<sup>9</sup>-tetrahydrocannabinol, 11-nor-9carboxy-Δ<sup>9</sup>-tetrahydrocannabinol, and 11-nor-9carboxy-Δ<sup>9</sup>-tetrahydrocannabinol glucuronide. Different parameters were optimized for isomeric separation, such as LC mobile phase composition (20%-100% methanol acetonitrile and isopropanol, flow rate: 8-100 μL/min) and DMS separation voltage. Methanol and acetonitrile significantly affected the compensation voltage of the analytes and improved DMS separation. A short trap/elute LC-vDMS-SIM/MS screening method of 1 min was developed to quantify 11 drugs of abuse (except THC/CBD), in addition to a 4-min LC-vDMS-SIM/MS method to identify and quantify five cannabinoids including the isomers THC/CBD and three THC metabolites. THC is the principal psychoactive constituent of cannabis and is a controlled substance in comparison to its isomeric counterpart CBD; this highlights the importance and challenges to resolve these isomeric pairs by analytical techniques. The signal responses were linear over a concentration range of 0.005-10 μg/mL for the DoA and 1-1000 ng/mL for cannabinoids. The intraday and interday precision were better than 12.2% and accuracy better than 115%. Urine samples from subjects who tested positive for THC and/or cocaine during roadside drug testing were evaluated to assess the performance of the methods LC-vDMS-SIM/MS and LC-MRM/MS. Results show that the developed LC-vDMS-SIM/MS method presents similar performance to LC-MRM/MS with improved sample throughput.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serena Mestria, Sara Odoardi, Valeria Valentini, Giorgia Corli, Marta Bassi, Matteo Marti, Sabina Strano-Rossi
The metabolism of 3-chloromethcathinone (3-CMC) was studied after controlled administration in a murine model using the dried blood spot (DBS) technique for the sampling, storage and purification of blood samples. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was used for the identification of metabolites and investigation of their fragmentation pattern. Subsequently, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for their identification and 3-CMC quantification in routine workload. The main metabolites identified were two stereoisomers of dihydro-CMC, N-demethyl-CMC, and dihydro-N-demethyl-CMC. The stability of 3-CMC and of its metabolites deposited on DBS was evaluated by replicate analyses after 30, 50, and 90 days, demonstrating a decrease in concentration. It was more pronounced for 3-CMC, with -67% and -82% percentage deviation from the initial concentrations, and for N-demethyl 3-CMC (decrease comprised between -48% and -88%) than for the di-hydro metabolites, ranging from -5% to -37%. Regardless, all of them were detectable till 90 days after deposition as DBS. The possibility of identifying 3-CMC and its metabolites with high sensitivity is an invaluable tool for the diagnosis of exposure to the substance, also in low doses or after some hours, and for various applications in clinical and forensic toxicology, such as driving under the influence, drug-facilitated crimes, and addiction to intoxications. DBS demonstrated to be a reliable technique for the sampling, storage, and purification of the blood specimen for 3-CMC and metabolite detection.
{"title":"Metabolism study of 3-chloromethcathinone (3-CMC) by dried blood spot (DBS) sampling after controlled administration using a murine model.","authors":"Serena Mestria, Sara Odoardi, Valeria Valentini, Giorgia Corli, Marta Bassi, Matteo Marti, Sabina Strano-Rossi","doi":"10.1002/dta.3782","DOIUrl":"https://doi.org/10.1002/dta.3782","url":null,"abstract":"<p><p>The metabolism of 3-chloromethcathinone (3-CMC) was studied after controlled administration in a murine model using the dried blood spot (DBS) technique for the sampling, storage and purification of blood samples. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was used for the identification of metabolites and investigation of their fragmentation pattern. Subsequently, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for their identification and 3-CMC quantification in routine workload. The main metabolites identified were two stereoisomers of dihydro-CMC, N-demethyl-CMC, and dihydro-N-demethyl-CMC. The stability of 3-CMC and of its metabolites deposited on DBS was evaluated by replicate analyses after 30, 50, and 90 days, demonstrating a decrease in concentration. It was more pronounced for 3-CMC, with -67% and -82% percentage deviation from the initial concentrations, and for N-demethyl 3-CMC (decrease comprised between -48% and -88%) than for the di-hydro metabolites, ranging from -5% to -37%. Regardless, all of them were detectable till 90 days after deposition as DBS. The possibility of identifying 3-CMC and its metabolites with high sensitivity is an invaluable tool for the diagnosis of exposure to the substance, also in low doses or after some hours, and for various applications in clinical and forensic toxicology, such as driving under the influence, drug-facilitated crimes, and addiction to intoxications. DBS demonstrated to be a reliable technique for the sampling, storage, and purification of the blood specimen for 3-CMC and metabolite detection.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The screening of drugs in plasma and urine often requires initial extraction (such as liquid-liquid extraction and solid-phase extraction) before the samples are submitted to instrumental analyses. These extraction procedures are often laborious and time-consuming. In this manuscript, a high-throughput automated assay based on liquid chromatography-high-resolution mass spectrometry (LC-HRMS) suitable for use as an initial testing procedure covering multiple classes of compounds prohibited in horse racing is described. The assay requires a 600-μL plasma aliquot, which is subjected to solid phase extraction (SPE) using OASIS HLB 96-well SPE with Biotage Extrahera system, evaporation, and reconstitution in a 96-well collection plate. LC-HRMS analyses were carried out on a Thermo Q-Exactive Mass spectrometer coupled with Thermo UHPLC system equipped with Thermo Accela ALS 2.4.0 autosampler linked to ACE Excel column. Drug targets were detected by retention time and accurate mass, with a mass tolerance window of 5 ppm in positive and negative ionization mode. The screening method was validated for over 300 drug targets in a 13-min run. Validation data including sensitivity, specificity, extraction recovery, and precision are presented. As the method employs full-scan mass spectrometry, unlimited number of drug targets can theoretically be incorporated into this method.
{"title":"Development and validation of general plasma screening method for performance enhancing drugs in racehorses utilizing liquid chromatography-high-resolution mass spectrometry (LC-HRMS).","authors":"Izabela Lomnicka, Saurabh Dubey, Pamela Waller, Dharmikkumar Vora, Levent Dirikolu","doi":"10.1002/dta.3774","DOIUrl":"https://doi.org/10.1002/dta.3774","url":null,"abstract":"<p><p>The screening of drugs in plasma and urine often requires initial extraction (such as liquid-liquid extraction and solid-phase extraction) before the samples are submitted to instrumental analyses. These extraction procedures are often laborious and time-consuming. In this manuscript, a high-throughput automated assay based on liquid chromatography-high-resolution mass spectrometry (LC-HRMS) suitable for use as an initial testing procedure covering multiple classes of compounds prohibited in horse racing is described. The assay requires a 600-μL plasma aliquot, which is subjected to solid phase extraction (SPE) using OASIS HLB 96-well SPE with Biotage Extrahera system, evaporation, and reconstitution in a 96-well collection plate. LC-HRMS analyses were carried out on a Thermo Q-Exactive Mass spectrometer coupled with Thermo UHPLC system equipped with Thermo Accela ALS 2.4.0 autosampler linked to ACE Excel column. Drug targets were detected by retention time and accurate mass, with a mass tolerance window of 5 ppm in positive and negative ionization mode. The screening method was validated for over 300 drug targets in a 13-min run. Validation data including sensitivity, specificity, extraction recovery, and precision are presented. As the method employs full-scan mass spectrometry, unlimited number of drug targets can theoretically be incorporated into this method.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paula Helena Sieber, Dirk Steinritz, Franz Worek, Harald John
Malodorants comprise notoriously smelling mercaptans and might be applied for crowd control. Because exposure to malodorants may lead to irritation of the respiratory system, choking, and coma, bioanalytical verification of poisoning might be required in a medical and forensic context. We herein present the detection and identification of novel biomarkers of exposure to ethyl mercaptan, n-butyl mercaptan, tert-butyl mercaptan, and iso-amyl mercaptan. These alkyl thiol compounds were found to form disulfide adducts in human serum albumin (HSA) in plasma in vitro with the only non-disulfide-bridged Cys34 residue and with other residues being part of the disulfide-bridged pattern in HSA. After proteinase K-catalyzed proteolysis, adducts of all mercaptans were detected simultaneously as the tripeptide Cys34*ProPhe and the dipeptides Cys369*Tyr, ValCys316*, and Cysx*Ala (x denominates either Positions 91, 200, 253, 361, and/or 448) by a sensitive micro-liquid chromatography-electrospray ionization tandem mass spectrometry (μLC-ESI MS/MS) method working in the scheduled multiple reaction monitoring (sMRM) mode. Time- and concentration-dependent adduct formations while exposure and proteolysis were investigated and the suitability of adducts as biomarkers of exposure was elaborated. Adducts at Cys34 showed the lowest limits of identification (LOIs, 6 nM to 1.2 μM mercaptan in plasma) and superior stability in plasma at 37°C. Therefore, Cys34*ProPhe appears as the most promising target to prove exposure to mercaptans at least in vitro.
{"title":"Mercaptans in malodorants break disulfide bridges in human serum albumin and form adducts suitable as biomarkers of exposure in vitro.","authors":"Paula Helena Sieber, Dirk Steinritz, Franz Worek, Harald John","doi":"10.1002/dta.3776","DOIUrl":"https://doi.org/10.1002/dta.3776","url":null,"abstract":"<p><p>Malodorants comprise notoriously smelling mercaptans and might be applied for crowd control. Because exposure to malodorants may lead to irritation of the respiratory system, choking, and coma, bioanalytical verification of poisoning might be required in a medical and forensic context. We herein present the detection and identification of novel biomarkers of exposure to ethyl mercaptan, n-butyl mercaptan, tert-butyl mercaptan, and iso-amyl mercaptan. These alkyl thiol compounds were found to form disulfide adducts in human serum albumin (HSA) in plasma in vitro with the only non-disulfide-bridged Cys<sup>34</sup> residue and with other residues being part of the disulfide-bridged pattern in HSA. After proteinase K-catalyzed proteolysis, adducts of all mercaptans were detected simultaneously as the tripeptide Cys<sup>34</sup>*ProPhe and the dipeptides Cys<sup>369</sup>*Tyr, ValCys<sup>316</sup>*, and Cys<sup>x</sup>*Ala (x denominates either Positions 91, 200, 253, 361, and/or 448) by a sensitive micro-liquid chromatography-electrospray ionization tandem mass spectrometry (μLC-ESI MS/MS) method working in the scheduled multiple reaction monitoring (sMRM) mode. Time- and concentration-dependent adduct formations while exposure and proteolysis were investigated and the suitability of adducts as biomarkers of exposure was elaborated. Adducts at Cys<sup>34</sup> showed the lowest limits of identification (LOIs, 6 nM to 1.2 μM mercaptan in plasma) and superior stability in plasma at 37°C. Therefore, Cys<sup>34</sup>*ProPhe appears as the most promising target to prove exposure to mercaptans at least in vitro.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias Rautio, Robin Obrist, Lucas Krebs, Therése Klingstedt, Johan Dahlén, Xiongyu Wu, Henrik Gréen
Synthetic cannabinoids (SCs) remain a major public health concern, as they continuously are linked to severe intoxications and drug-related deaths worldwide. As new SCs continue to emerge on the illicit drug market, an understanding of SC metabolism is needed to identify formed metabolites that may serve as biomarkers in forensic toxicology screening and for understanding the pharmacokinetics of the drugs. In this work, the metabolism of ADB-4en-P-5Br-INACA and ADB-P-5Br-INACA ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-(pent-4-en-1-yl)-1H-indazole-3-carboxamide, (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-pentyl-1H-indazole-3-carboxamide respectively) were investigated using human hepatocytes in vitro and in-house synthesized references. Both SCs were incubated with pooled human hepatocytes over 3 h, with the aim to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In total nine metabolites were identified for ADB-4en-P-5Br-INACA and 10 metabolites for ADB-P-5Br-INACA. The observed biotransformations included dihydrodiol formation, terminal amide hydrolysis, hydroxylation, dehydrogenation, carbonyl formation, glucuronidation, and combinations thereof. The major metabolites were confirmed by in-house synthesized references. Recommended biomarkers for ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA are the terminal hydroxy and dihydrodiol metabolite respectively.
{"title":"In vitro metabolism study of ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA using human hepatocytes, liver microsomes, and in-house synthesized references.","authors":"Tobias Rautio, Robin Obrist, Lucas Krebs, Therése Klingstedt, Johan Dahlén, Xiongyu Wu, Henrik Gréen","doi":"10.1002/dta.3773","DOIUrl":"https://doi.org/10.1002/dta.3773","url":null,"abstract":"<p><p>Synthetic cannabinoids (SCs) remain a major public health concern, as they continuously are linked to severe intoxications and drug-related deaths worldwide. As new SCs continue to emerge on the illicit drug market, an understanding of SC metabolism is needed to identify formed metabolites that may serve as biomarkers in forensic toxicology screening and for understanding the pharmacokinetics of the drugs. In this work, the metabolism of ADB-4en-P-5Br-INACA and ADB-P-5Br-INACA ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-(pent-4-en-1-yl)-1H-indazole-3-carboxamide, (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-pentyl-1H-indazole-3-carboxamide respectively) were investigated using human hepatocytes in vitro and in-house synthesized references. Both SCs were incubated with pooled human hepatocytes over 3 h, with the aim to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In total nine metabolites were identified for ADB-4en-P-5Br-INACA and 10 metabolites for ADB-P-5Br-INACA. The observed biotransformations included dihydrodiol formation, terminal amide hydrolysis, hydroxylation, dehydrogenation, carbonyl formation, glucuronidation, and combinations thereof. The major metabolites were confirmed by in-house synthesized references. Recommended biomarkers for ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA are the terminal hydroxy and dihydrodiol metabolite respectively.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dayamin Martinez Brito, Patrizia Leogrande, Xavier de la Torre, Francesco Botrè
Recently, the trend of thyroid hormones (TH) consumption in the sports community has been published. It is known the capacity of the exogenously administered TH to enhance metabolism, being an attractive feature for athletes, who search for weight control and increased caloric expenditure. This paper aimed the validation of a method to measure TH and related compounds in urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was applied to urine samples collected before and after the administration of a diiodothyronine (3,5-T2) supplement. A method to detect nine TH included an enzymatic hydrolysis, liquid-liquid extraction, and solid-phase extraction. The extracts were analyzed by LC-MS/MS. Validated parameters showed good results for accuracy (85%-104%), precision (3%-16%), LOD (10-40 pg/mL, except for thyronacetic acids that was 200 pg/mL), and the combined uncertainty (2.2%-22%). Maximum concentration of 3,5-T2 in pre-administration samples was 0.71 ng/mL, and after 30 h of the last administration, concentrations returned to pre-administration values. Maximum values of ratios between the analyte and thyronine, T3, and T4 were 0.09, 0.19, and 0.12, respectively, and after 30 h of the last administration, the ratios reached back the basal values. Acidic or basic metabolites were not found in urine at least at the method LOD. A proposed method to assess TH in urine was validated, and as a proof of concept, its efficacy was demonstrated with an excretion study of 3,5-diiodothyronine. The consumption of 3,5-T2 was detected in urine measuring the analyte concentration and ratios between the analyte and thyronine, T3, and T4.
{"title":"Detection of thyroid hormones in urine by liquid chromatography coupled to tandem mass spectrometry.","authors":"Dayamin Martinez Brito, Patrizia Leogrande, Xavier de la Torre, Francesco Botrè","doi":"10.1002/dta.3764","DOIUrl":"https://doi.org/10.1002/dta.3764","url":null,"abstract":"<p><p>Recently, the trend of thyroid hormones (TH) consumption in the sports community has been published. It is known the capacity of the exogenously administered TH to enhance metabolism, being an attractive feature for athletes, who search for weight control and increased caloric expenditure. This paper aimed the validation of a method to measure TH and related compounds in urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was applied to urine samples collected before and after the administration of a diiodothyronine (3,5-T2) supplement. A method to detect nine TH included an enzymatic hydrolysis, liquid-liquid extraction, and solid-phase extraction. The extracts were analyzed by LC-MS/MS. Validated parameters showed good results for accuracy (85%-104%), precision (3%-16%), LOD (10-40 pg/mL, except for thyronacetic acids that was 200 pg/mL), and the combined uncertainty (2.2%-22%). Maximum concentration of 3,5-T2 in pre-administration samples was 0.71 ng/mL, and after 30 h of the last administration, concentrations returned to pre-administration values. Maximum values of ratios between the analyte and thyronine, T3, and T4 were 0.09, 0.19, and 0.12, respectively, and after 30 h of the last administration, the ratios reached back the basal values. Acidic or basic metabolites were not found in urine at least at the method LOD. A proposed method to assess TH in urine was validated, and as a proof of concept, its efficacy was demonstrated with an excretion study of 3,5-diiodothyronine. The consumption of 3,5-T2 was detected in urine measuring the analyte concentration and ratios between the analyte and thyronine, T3, and T4.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A number of synthetic cannabinoids have been appearing in the recreational drug market for more than a decade. Recent additions are so-called semi-synthetic cannabinoids, and they structurally closely resemble the main psychoactive component of cannabis, Δ9-tetrahydrocannabinol. Knowledge of new (semi-)synthetic cannabinoids is essential to help identify them in authentic forensic case samples. Therefore, the aim of the study was to examine two commercially available electronic cigarette liquid products claiming to contain cannabinoids and characterize the structures of the main compounds. The liquid products were analyzed by gas chromatography-mass spectrometry (GC-MS), GC-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). In product A, typical cannabinoids (cannabidiol, cannabigerol, and cannabinol) and terpenes (α-caryophyllene and β-caryophyllene) were identified by comparison with reference materials. An unknown peak was isolated by semi-preparative high-performance LC, analyzed by nuclear magnetic resonance (NMR) spectroscopy, and identified to be Δ9-tetrahydrocannabihexol acetate (Δ9-THCH-O). To the authors' knowledge, this is the first report of the identification of Δ9-THCH-O in commercially available products. Another compound estimated as cannabihexol acetate was also detected. In product B, cannabidiol, cannabinol, α-caryophyllene, and β-caryophyllene were identified, while two unknown peaks were estimated as tetrahydrocannabidiol isomers. Despite products A and B being labeled to contain "60% HHCPM" and "80% 10-OH-HHC," respectively, no such compounds were detected. The findings of this study could help detect Δ9-THCH-O in case samples and highlight the need to keep monitoring commercial products to identify new drugs, while warning that the package labels cannot be trusted.
十多年来,一些合成大麻素不断出现在娱乐药物市场上。最近出现的是所谓的半合成大麻素,它们在结构上与大麻的主要精神活性成分Δ9-四氢大麻酚非常相似。了解新型(半)合成大麻素对于帮助在真实的法医案件样本中识别它们至关重要。因此,本研究的目的是检查两种声称含有大麻素的市售电子香烟液体产品,并确定主要化合物的结构特征。研究人员采用气相色谱-质谱法(GC-MS)、气相色谱-四极杆飞行时间质谱法(GC-QTOF-MS)和液相色谱-高分辨质谱法(LC-HRMS)对这两种液体产品进行了分析。产品 A 中的典型大麻素(大麻二酚、大麻萜醇和大麻酚)和萜烯(α-石竹烯和β-石竹烯)是通过与参考材料进行比较而确定的。通过半制备高效液相色谱法分离出一个未知峰,并通过核磁共振(NMR)光谱进行分析,确定其为 Δ9-四氢大麻酚乙酸酯(Δ9-THCH-O)。据作者所知,这是第一份在市售产品中鉴定出 Δ9-THCH-O 的报告。还检测到另一种估计为大麻己醇醋酸酯的化合物。在产品 B 中,鉴定出了大麻二酚、大麻酚、α-石竹烯和β-石竹烯,而两个未知峰值估计为四氢大麻二酚异构体。尽管产品 A 和 B 分别标注含有 "60% HHCPM "和 "80% 10-OH-HHC",但并未检测到此类化合物。这项研究的结果有助于检测案例样本中的Δ9-THCH-O,并强调有必要继续监测商业产品以识别新药,同时警告人们不要轻信包装上的标签。
{"title":"Discrepancies between the stated contents and analytical findings for electronic cigarette liquid products: Identification of the new cannabinoid, Δ<sup>9</sup>-tetrahydrocannabihexol acetate.","authors":"Shimpei Watanabe, Takaya Murakami, Seiji Muratsu, Hiroyuki Fujiwara, Toshio Nakanishi, Yasuo Seto","doi":"10.1002/dta.3777","DOIUrl":"https://doi.org/10.1002/dta.3777","url":null,"abstract":"<p><p>A number of synthetic cannabinoids have been appearing in the recreational drug market for more than a decade. Recent additions are so-called semi-synthetic cannabinoids, and they structurally closely resemble the main psychoactive component of cannabis, Δ<sup>9</sup>-tetrahydrocannabinol. Knowledge of new (semi-)synthetic cannabinoids is essential to help identify them in authentic forensic case samples. Therefore, the aim of the study was to examine two commercially available electronic cigarette liquid products claiming to contain cannabinoids and characterize the structures of the main compounds. The liquid products were analyzed by gas chromatography-mass spectrometry (GC-MS), GC-quadrupole time-of-flight mass spectrometry (GC-QTOF-MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). In product A, typical cannabinoids (cannabidiol, cannabigerol, and cannabinol) and terpenes (α-caryophyllene and β-caryophyllene) were identified by comparison with reference materials. An unknown peak was isolated by semi-preparative high-performance LC, analyzed by nuclear magnetic resonance (NMR) spectroscopy, and identified to be Δ<sup>9</sup>-tetrahydrocannabihexol acetate (Δ<sup>9</sup>-THCH-O). To the authors' knowledge, this is the first report of the identification of Δ<sup>9</sup>-THCH-O in commercially available products. Another compound estimated as cannabihexol acetate was also detected. In product B, cannabidiol, cannabinol, α-caryophyllene, and β-caryophyllene were identified, while two unknown peaks were estimated as tetrahydrocannabidiol isomers. Despite products A and B being labeled to contain \"60% HHCPM\" and \"80% 10-OH-HHC,\" respectively, no such compounds were detected. The findings of this study could help detect Δ<sup>9</sup>-THCH-O in case samples and highlight the need to keep monitoring commercial products to identify new drugs, while warning that the package labels cannot be trusted.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bob Gray, Katy Lubbock, Catherine Love, Edward Ryder, Simon Hudson, James Scarth
The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.
{"title":"Analytical advances in horseracing medication and doping control from 2018 to 2023.","authors":"Bob Gray, Katy Lubbock, Catherine Love, Edward Ryder, Simon Hudson, James Scarth","doi":"10.1002/dta.3760","DOIUrl":"https://doi.org/10.1002/dta.3760","url":null,"abstract":"<p><p>The analytical approaches taken by laboratories to implement robust and efficient regulation of horseracing medication and doping control are complex and constantly evolving. Each laboratory's approach will be dictated by differences in regulatory, economic and scientific drivers specific to their local environment. However, in general, laboratories will all be undertaking developments and improvements to their screening strategies in order to meet new and emerging threats as well as provide improved service to their customers. In this paper, the published analytical advances in horseracing medication and doping control since the 22nd International Conference of Racing Analysts and Veterinarians will be reviewed. Due to the unprecedented impact of COVID-19 on the worldwide economy, the normal 2-year period of this review was extended to over 5 years. As such, there was considerable ground to cover, resulting in an increase in the number of relevant publications included from 107 to 307. Major trends in publications will be summarised and possible future directions highlighted. This will cover developments in the detection of 'small' and 'large' molecule drugs, sample preparation procedures and the use of alternative matrices, instrumental advances/applications, drug metabolism and pharmacokinetics, the detection and prevalence of 'endogenous' compounds and biomarker and OMICs approaches. Particular emphasis will be given to research into the potential threat of gene doping, which is a significant area of new and continued research for many laboratories. Furthermore, developments in analytical instrumentation relevant to equine medication and doping control will be discussed.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yat-Ming So, Fred Ka-Wai Kong, Wai Him Kwok, Karen Ying Kwok, Terence See Ming Wan, Emmie Ngai-Man Ho
This paper describes the detections of nonsteroidal and steroidal selective androgen receptor modulators (SARMs), namely, RAD140 and YK-11, in mane hair collected from horses having been orally administered with the respective drugs. SARMs are potent anabolic agents with a high potential of misuse in horseracing and equestrian sports, and the misuses of RAD140 and YK-11 in human sports have been reported. To better control the misuse of RAD140 and YK-11 in horses, two separate oral administration studies of RAD140 (0.3 mg/kg daily for 3 days) and YK-11 (0.2 mg/kg daily for 3 days) were previously conducted to investigate their metabolism and to identify target analyte(s) with the longest detection time in urine and plasma for doping control. In this work, segmental analyses of post-administration hair samples have revealed that (i) RAD140 and YK-11 could be detected in horse mane after oral administration and (ii) internal incorporation of RAD140 into hair via bloodstream and external incorporation through sweat or sebum were both observed, whereas YK-11 was primarily incorporated into hair via sweat or sebum.
{"title":"Detection of nonsteroidal and steroidal selective androgen receptor modulators in equine hair after oral administrations.","authors":"Yat-Ming So, Fred Ka-Wai Kong, Wai Him Kwok, Karen Ying Kwok, Terence See Ming Wan, Emmie Ngai-Man Ho","doi":"10.1002/dta.3772","DOIUrl":"https://doi.org/10.1002/dta.3772","url":null,"abstract":"<p><p>This paper describes the detections of nonsteroidal and steroidal selective androgen receptor modulators (SARMs), namely, RAD140 and YK-11, in mane hair collected from horses having been orally administered with the respective drugs. SARMs are potent anabolic agents with a high potential of misuse in horseracing and equestrian sports, and the misuses of RAD140 and YK-11 in human sports have been reported. To better control the misuse of RAD140 and YK-11 in horses, two separate oral administration studies of RAD140 (0.3 mg/kg daily for 3 days) and YK-11 (0.2 mg/kg daily for 3 days) were previously conducted to investigate their metabolism and to identify target analyte(s) with the longest detection time in urine and plasma for doping control. In this work, segmental analyses of post-administration hair samples have revealed that (i) RAD140 and YK-11 could be detected in horse mane after oral administration and (ii) internal incorporation of RAD140 into hair via bloodstream and external incorporation through sweat or sebum were both observed, whereas YK-11 was primarily incorporated into hair via sweat or sebum.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anne Checkouri, Laurie Gheddar, Nadia Arbouche, Jean-Sébastien Raul, Pascal Kintz
In a doping case, a top athlete challenged an anti-doping rule violation, involving molidustat. Molidustat is a stabilizing agent of the hypoxia-inducible factor (HIF) recently developed. It is currently undergoing clinical trials for anemia associated with chronic kidney disease. HIF stabilizers are banned at all times by the World Anti-Doping Agency (class S2). Because of their pharmacological proprieties, these new drugs can enhance athletic performance. The athlete's defense wanted to analyze multiple keratinized matrices as they allow long-term investigations. Requests concerning HIF stabilizers are constantly growing. We have therefore developed a liquid chromatography coupled with tandem mass spectrometry method to identify and quantify three molecules of this class: molidustat, vadadustat, and roxadustat. Thirty milligrams of keratinized matrices were incubated in 1 mL of pH 8.4 diammonium hydrogen phosphate buffer for 16 h at 40°C with 1 ng of testosterone-D3, used as internal standard. After extraction with ethyl acetate/diethyl ether (80/20), the organic phase was evaporated, and the dry residue was reconstituted in 30 μL of initial phase. The method was linear from 5 to 1000 pg/mg for the three analytes. Limits of quantification were 2, 0.5, and 5 pg/mg for molidustat, roxadustat, and vadadustat, respectively. The analysis of the athlete's head hair (collected 1 month after the urine test) showed a concentration of molidustat of 135 pg/mg, and his beard hair and his fingernails clippings contained 55 and 40 pg/mg, respectively.
{"title":"Simultaneous detection of three hypoxia-inducible factor stabilizers-molidustat, roxadustat, and vadadustat-in multiple keratinized matrices and its application in a doping context.","authors":"Anne Checkouri, Laurie Gheddar, Nadia Arbouche, Jean-Sébastien Raul, Pascal Kintz","doi":"10.1002/dta.3771","DOIUrl":"https://doi.org/10.1002/dta.3771","url":null,"abstract":"<p><p>In a doping case, a top athlete challenged an anti-doping rule violation, involving molidustat. Molidustat is a stabilizing agent of the hypoxia-inducible factor (HIF) recently developed. It is currently undergoing clinical trials for anemia associated with chronic kidney disease. HIF stabilizers are banned at all times by the World Anti-Doping Agency (class S2). Because of their pharmacological proprieties, these new drugs can enhance athletic performance. The athlete's defense wanted to analyze multiple keratinized matrices as they allow long-term investigations. Requests concerning HIF stabilizers are constantly growing. We have therefore developed a liquid chromatography coupled with tandem mass spectrometry method to identify and quantify three molecules of this class: molidustat, vadadustat, and roxadustat. Thirty milligrams of keratinized matrices were incubated in 1 mL of pH 8.4 diammonium hydrogen phosphate buffer for 16 h at 40°C with 1 ng of testosterone-D3, used as internal standard. After extraction with ethyl acetate/diethyl ether (80/20), the organic phase was evaporated, and the dry residue was reconstituted in 30 μL of initial phase. The method was linear from 5 to 1000 pg/mg for the three analytes. Limits of quantification were 2, 0.5, and 5 pg/mg for molidustat, roxadustat, and vadadustat, respectively. The analysis of the athlete's head hair (collected 1 month after the urine test) showed a concentration of molidustat of 135 pg/mg, and his beard hair and his fingernails clippings contained 55 and 40 pg/mg, respectively.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}