This paper presents a behavior-based approach to formation maneuvers for groups of mobile robots. Complex formation maneuvers are decomposed into a sequence of maneuvers between formation patterns. The paper presents three formation control strategies. The first strategy uses relative position information configured in a bidirectional ring topology to maintain the formation. The second strategy injects interrobot damping via passivity techniques. The third strategy accounts for actuator saturation. Hardware results demonstrate the effectiveness of the proposed control strategies.
{"title":"A decentralized approach to formation maneuvers","authors":"J. Lawton, R. Beard, B. Young","doi":"10.1109/TRA.2003.819598","DOIUrl":"https://doi.org/10.1109/TRA.2003.819598","url":null,"abstract":"This paper presents a behavior-based approach to formation maneuvers for groups of mobile robots. Complex formation maneuvers are decomposed into a sequence of maneuvers between formation patterns. The paper presents three formation control strategies. The first strategy uses relative position information configured in a bidirectional ring topology to maintain the formation. The second strategy injects interrobot damping via passivity techniques. The third strategy accounts for actuator saturation. Hardware results demonstrate the effectiveness of the proposed control strategies.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130158024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vicente Parra‐Vega, S. Arimoto, Yunhui Liu, G. Hirzinger, P. Akella
For a class of robot arms, a proportional-derivative (PD) controller plus gravity compensation yields the global asymptotic stability for regulation tasks, and some proportional-integral-derivative (PID) controllers guarantee local regulation without gravity cancellation. However, these controllers cannot render asymptotic stability for tracking tasks. In this paper, a simple decentralized continuous sliding PID controller for tracking tasks that yields semiglobal stability of all closed-loop signals with exponential convergence of tracking errors is proposed. A dynamic sliding mode without reaching phase is enforced, and terminal attractors, as well as saturated ones, are considered. A comparative experimental study versus PD control, PID control, and adaptive control for a rigid robot arm validates our design.
{"title":"Dynamic sliding PID control for tracking of robot manipulators: theory and experiments","authors":"Vicente Parra‐Vega, S. Arimoto, Yunhui Liu, G. Hirzinger, P. Akella","doi":"10.1109/TRA.2003.819600","DOIUrl":"https://doi.org/10.1109/TRA.2003.819600","url":null,"abstract":"For a class of robot arms, a proportional-derivative (PD) controller plus gravity compensation yields the global asymptotic stability for regulation tasks, and some proportional-integral-derivative (PID) controllers guarantee local regulation without gravity cancellation. However, these controllers cannot render asymptotic stability for tracking tasks. In this paper, a simple decentralized continuous sliding PID controller for tracking tasks that yields semiglobal stability of all closed-loop signals with exponential convergence of tracking errors is proposed. A dynamic sliding mode without reaching phase is enforced, and terminal attractors, as well as saturated ones, are considered. A comparative experimental study versus PD control, PID control, and adaptive control for a rigid robot arm validates our design.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130793863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article describes a new control scheme designed for a three-degree-of-freedom flexible arm. This arm has been built with light links, has most of its mass concentrated at the tip, and uses a special mechanical configuration to approximately decouple tip motions in spherical coordinates. This configuration facilitates the dynamic modeling and control of the arm. A compliance matrix can be used to model the oscillations of the structure. A consequence of this simple dynamic is that minimum sensing effort is required (only direct motor and tip measurements), and the use of complex observers is avoided because the state of the system can be very easily obtained from these measurements. A two-nested control-loop scheme is used to control the tip position by using joint position and tip acceleration feedbacks. The stability of the controlled system is analytically proven in the case of perfect dynamic modeling. Then, an analysis of stability in the case of modeling errors is carried out, and conditions for local stability are derived. Experimental results are presented for the cases of perturbation control and trajectory tracking. Comparative results between controlled and noncontrolled tip responses are also shown.
{"title":"Inverse dynamics based control system for a three-degree-of-freedom flexible arm","authors":"V. F. Batlle, J. A. Somolinos, Andres H. García","doi":"10.1109/TRA.2003.819596","DOIUrl":"https://doi.org/10.1109/TRA.2003.819596","url":null,"abstract":"This article describes a new control scheme designed for a three-degree-of-freedom flexible arm. This arm has been built with light links, has most of its mass concentrated at the tip, and uses a special mechanical configuration to approximately decouple tip motions in spherical coordinates. This configuration facilitates the dynamic modeling and control of the arm. A compliance matrix can be used to model the oscillations of the structure. A consequence of this simple dynamic is that minimum sensing effort is required (only direct motor and tip measurements), and the use of complex observers is avoided because the state of the system can be very easily obtained from these measurements. A two-nested control-loop scheme is used to control the tip position by using joint position and tip acceleration feedbacks. The stability of the controlled system is analytically proven in the case of perfect dynamic modeling. Then, an analysis of stability in the case of modeling errors is carried out, and conditions for local stability are derived. Experimental results are presented for the cases of perturbation control and trajectory tracking. Comparative results between controlled and noncontrolled tip responses are also shown.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116752663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the "Whittle relaxation" version of the continuous time, discrete, and continuous state space Restless Bandit problem under the discounted cost criterion. Explicit expressions of Whittle's priority indexes, which generalize the Gittins indexes, are derived. This formalism is then used in the context of flexible make-to-stock production to construct dynamic scheduling rules. These analytical results are finally compared with the optimal numerically derived policy, obtained for a server delivering two product types. It is observed that the Whittle relaxation version of the Restless Bandit model nearly yields optimal dynamic scheduling rules.
{"title":"Continuous-time restless bandit and dynamic scheduling for make-to-stock production","authors":"F. Dusonchet, M. Hongler","doi":"10.1109/TRA.2003.819728","DOIUrl":"https://doi.org/10.1109/TRA.2003.819728","url":null,"abstract":"We study the \"Whittle relaxation\" version of the continuous time, discrete, and continuous state space Restless Bandit problem under the discounted cost criterion. Explicit expressions of Whittle's priority indexes, which generalize the Gittins indexes, are derived. This formalism is then used in the context of flexible make-to-stock production to construct dynamic scheduling rules. These analytical results are finally compared with the optimal numerically derived policy, obtained for a server delivering two product types. It is observed that the Whittle relaxation version of the Restless Bandit model nearly yields optimal dynamic scheduling rules.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132600985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present a quantitative measure of multifingered grasps. The measure quantifies the capability of a grasp in firmly holding an object while resisting external loads and/or disturbances. It can also be used for qualitative test of closure properties (form closure and force closure). For planar grasps and frictionless three-dimensional (3-D) grasps, the quantitative measure can be computed efficiently by solving a set of linear programs, while for frictional 3-D grasps, it can be computed by solving nonlinear programs without linearization of the friction cone. By using the proposed quantitative measure, an algorithm for grasp synthesis on polygonal objects is developed. Rather than producing a single grasp configuration, the algorithm computes all grasps on a polygon that satisfy quantitative constraints, i.e., the value of the quantitative measure is greater than a predetermined positive constant. The approach has potential application in grasp planning with multiple optimality criteria.
{"title":"Grasp analysis and synthesis based on a new quantitative measure","authors":"Xiangyang Zhu, H. Ding, Jun Wang","doi":"10.1109/TRA.2003.819604","DOIUrl":"https://doi.org/10.1109/TRA.2003.819604","url":null,"abstract":"In this paper, we present a quantitative measure of multifingered grasps. The measure quantifies the capability of a grasp in firmly holding an object while resisting external loads and/or disturbances. It can also be used for qualitative test of closure properties (form closure and force closure). For planar grasps and frictionless three-dimensional (3-D) grasps, the quantitative measure can be computed efficiently by solving a set of linear programs, while for frictional 3-D grasps, it can be computed by solving nonlinear programs without linearization of the friction cone. By using the proposed quantitative measure, an algorithm for grasp synthesis on polygonal objects is developed. Rather than producing a single grasp configuration, the algorithm computes all grasps on a polygon that satisfy quantitative constraints, i.e., the value of the quantitative measure is greater than a predetermined positive constant. The approach has potential application in grasp planning with multiple optimality criteria.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115547283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virtual reality is becoming very important for training medical surgeons in various operations. Interfacing users with a virtual training environment requires the existence of a properly designed haptic device. This paper presents the design and implementation of a new force feedback haptic mechanism with five active degrees of freedom (DOFs), which is used as part of a training simulator for urological operations. The mechanism consists of a 2-DOF, 5-bar linkage, and a 3-DOF spherical joint, designed to present low friction, inertia and mass, and to be statically balanced. The device is suitable for the accurate application of small forces and moments. All five actuators of the haptic device are base-mounted dc motors and use a force transmission system based on capstan drives, pulleys, and tendons. The paper describes the overall design and sizing considerations, the resulting kinematics and dynamics, the force feedback control algorithm, and the hardware employed. Experimental results are provided.
{"title":"Design and implementation of a haptic device for training in urological operations","authors":"K. Vlachos, E. Papadopoulos, D. Mitropoulos","doi":"10.1109/TRA.2003.817064","DOIUrl":"https://doi.org/10.1109/TRA.2003.817064","url":null,"abstract":"Virtual reality is becoming very important for training medical surgeons in various operations. Interfacing users with a virtual training environment requires the existence of a properly designed haptic device. This paper presents the design and implementation of a new force feedback haptic mechanism with five active degrees of freedom (DOFs), which is used as part of a training simulator for urological operations. The mechanism consists of a 2-DOF, 5-bar linkage, and a 3-DOF spherical joint, designed to present low friction, inertia and mass, and to be statically balanced. The device is suitable for the accurate application of small forces and moments. All five actuators of the haptic device are base-mounted dc motors and use a force transmission system based on capstan drives, pulleys, and tendons. The paper describes the overall design and sizing considerations, the resulting kinematics and dynamics, the force feedback control algorithm, and the hardware employed. Experimental results are provided.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128676773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper reports the development of a new miniature force sensor designed to measure contact forces at the tip of a microsurgical instrument in three dimensions, and its application to scaled force feedback using a cooperatively manipulated microsurgical assistant robot. The principal features of the sensor are its small size of 12.5 mm in diameter and 15 mm in height, a novel configuration of flexure beams and strain gauges in order to measure forces isotropically at the instrument tip 40 mm from the sensor body, and sub-mN three-axis force-sensing resolution.
{"title":"A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation","authors":"P. Berkelman, L. Whitcomb, R. Taylor, P. Jensen","doi":"10.1109/TRA.2003.817526","DOIUrl":"https://doi.org/10.1109/TRA.2003.817526","url":null,"abstract":"This paper reports the development of a new miniature force sensor designed to measure contact forces at the tip of a microsurgical instrument in three dimensions, and its application to scaled force feedback using a cooperatively manipulated microsurgical assistant robot. The principal features of the sensor are its small size of 12.5 mm in diameter and 15 mm in height, a novel configuration of flexure beams and strain gauges in order to measure forces isotropically at the instrument tip 40 mm from the sensor body, and sub-mN three-axis force-sensing resolution.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125986397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper provides a broad overview of medical robot systems used in surgery. After introducing basic concepts of computer-integrated surgery, surgical CAD/CAM, and surgical assistants, it discusses some of the major design issues particular to medical robots. It then illustrates these issues and the broader themes introduced earlier with examples of current surgical CAD/CAM and surgical assistant systems. Finally, it provides a brief synopsis of current research challenges and closes with a few thoughts on the research/industry/clinician teamwork that is essential for progress in the field.
{"title":"Medical robotics in computer-integrated surgery","authors":"R. Taylor, D. Stoianovici","doi":"10.1109/TRA.2003.817058","DOIUrl":"https://doi.org/10.1109/TRA.2003.817058","url":null,"abstract":"This paper provides a broad overview of medical robot systems used in surgery. After introducing basic concepts of computer-integrated surgery, surgical CAD/CAM, and surgical assistants, it discusses some of the major design issues particular to medical robots. It then illustrates these issues and the broader themes introduced earlier with examples of current surgical CAD/CAM and surgical assistant systems. Finally, it provides a brief synopsis of current research challenges and closes with a few thoughts on the research/industry/clinician teamwork that is essential for progress in the field.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115252873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandre Krupa, J. Gangloff, C. Doignon, M. Mathelin, G. Morel, J. Leroy, L. Soler, J. Marescaux
This paper presents a robotic vision system that automatically retrieves and positions surgical instruments during robotized laparoscopic surgical operations. The instrument is mounted on the end-effector of a surgical robot which is controlled by visual servoing. The goal of the automated task is to safely bring the instrument at a desired three-dimensional location from an unknown or hidden position. Light-emitting diodes are attached on the tip of the instrument, and a specific instrument holder fitted with optical fibers is used to project laser dots on the surface of the organs. These optical markers are detected in the endoscopic image and allow localizing the instrument with respect to the scene. The instrument is recovered and centered in the image plane by means of a visual servoing algorithm using feature errors in the image. With this system, the surgeon can specify a desired relative position between the instrument and the pointed organ. The relationship between the velocity screw of the surgical instrument and the velocity of the markers in the image is estimated online and, for safety reasons, a multistages servoing scheme is proposed. Our approach has been successfully validated in a real surgical environment by performing experiments on living tissues in the surgical training room of the Institut de Recherche sur les Cancers de l'Appareil Digestif (IRCAD), Strasbourg, France.
{"title":"Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing","authors":"Alexandre Krupa, J. Gangloff, C. Doignon, M. Mathelin, G. Morel, J. Leroy, L. Soler, J. Marescaux","doi":"10.1109/TRA.2003.817086","DOIUrl":"https://doi.org/10.1109/TRA.2003.817086","url":null,"abstract":"This paper presents a robotic vision system that automatically retrieves and positions surgical instruments during robotized laparoscopic surgical operations. The instrument is mounted on the end-effector of a surgical robot which is controlled by visual servoing. The goal of the automated task is to safely bring the instrument at a desired three-dimensional location from an unknown or hidden position. Light-emitting diodes are attached on the tip of the instrument, and a specific instrument holder fitted with optical fibers is used to project laser dots on the surface of the organs. These optical markers are detected in the endoscopic image and allow localizing the instrument with respect to the scene. The instrument is recovered and centered in the image plane by means of a visual servoing algorithm using feature errors in the image. With this system, the surgeon can specify a desired relative position between the instrument and the pointed organ. The relationship between the velocity screw of the surgical instrument and the velocity of the markers in the image is estimated online and, for safety reasons, a multistages servoing scheme is proposed. Our approach has been successfully validated in a real surgical environment by performing experiments on living tissues in the surgical training room of the Institut de Recherche sur les Cancers de l'Appareil Digestif (IRCAD), Strasbourg, France.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131121572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A methodology for estimating the force distribution that occurs along a needle shaft during insertion is described. An experimental system for measuring planar tissue phantom deformation during needle insertions has been developed and is presented. A two-dimensional linear elastostatic material model, discretised using the finite element method, is used to derive contact force information that is not directly measurable. This approach provides a method for quantifying the needle forces and soft tissue deformations that occur during general needle trajectories in multiple dimensions. The needle force distribution is used for graphical and haptic real-time simulations of needle insertion. Since the force displacement relationship is required only along the needle, a condensation technique is shown to achieve very fast interactive simulations. Stiffness matrix changes corresponding to changes in boundary conditions and material coordinate frames are performed using low-rank matrix updates.
{"title":"Needle insertion modeling and simulation","authors":"S. DiMaio, S. Salcudean","doi":"10.1109/TRA.2003.817044","DOIUrl":"https://doi.org/10.1109/TRA.2003.817044","url":null,"abstract":"A methodology for estimating the force distribution that occurs along a needle shaft during insertion is described. An experimental system for measuring planar tissue phantom deformation during needle insertions has been developed and is presented. A two-dimensional linear elastostatic material model, discretised using the finite element method, is used to derive contact force information that is not directly measurable. This approach provides a method for quantifying the needle forces and soft tissue deformations that occur during general needle trajectories in multiple dimensions. The needle force distribution is used for graphical and haptic real-time simulations of needle insertion. Since the force displacement relationship is required only along the needle, a condensation technique is shown to achieve very fast interactive simulations. Stiffness matrix changes corresponding to changes in boundary conditions and material coordinate frames are performed using low-rank matrix updates.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131566809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}