Jong-Ha Chung, S. Ko, D. Kwon, Jung-Ju Lee, Y. Yoon, C. Won
This paper presents a gauge-based registration method, a femur-mountable robot for hip arthroplasty named ARTHROBOT, and the surgery procedure using this system. In the gauge-based registration, a reamer-shaped gauge is inserted into the femoral medulla for relative positional information of the femur to the robot. A mounting frame and a minirobot are then mounted on the patient's femur for accurate machining. This gauge-based registration method drastically reduces the processes in preoperative planning by eliminating the need of computer tomography scanning or other image processing methods, compared to other robotic systems that are used for hip surgery. Also, this surgical system reduces damage to the femur because only the metaphyseal region of the femoral canal needs to be machined, while leaving the diaphyseal hard bone untouched. Experiments were performed on 18 composite bones and 12 pig bones. In the composite bone group, orientation (anterversion, varus/valgus and flexion/extension) errors were made at 0.13/spl deg//spl plusmn/0.77/spl deg/, 0.14/spl deg//spl plusmn/0.38/spl deg/, and -0.27/spl deg//spl plusmn/0.33/spl deg/, and the maximum position error was at 1.00 mm. In the pig bone group, orientation errors were made at -0.03/spl deg//spl plusmn/0.65/spl deg/, 0.31/spl plusmn/0.27/spl deg/, and -0.36/spl deg//spl plusmn/0.36/spl deg/, and the maximum position error was at 1.12 mm. Also, 93% of the gaps between the bone and the implant surface were under 0.25 mm. The developed system shows sufficient machining accuracy and precision for clinical application.
{"title":"Robot-assisted femoral stem implantation using an intramedulla gauge","authors":"Jong-Ha Chung, S. Ko, D. Kwon, Jung-Ju Lee, Y. Yoon, C. Won","doi":"10.1109/TRA.2003.817508","DOIUrl":"https://doi.org/10.1109/TRA.2003.817508","url":null,"abstract":"This paper presents a gauge-based registration method, a femur-mountable robot for hip arthroplasty named ARTHROBOT, and the surgery procedure using this system. In the gauge-based registration, a reamer-shaped gauge is inserted into the femoral medulla for relative positional information of the femur to the robot. A mounting frame and a minirobot are then mounted on the patient's femur for accurate machining. This gauge-based registration method drastically reduces the processes in preoperative planning by eliminating the need of computer tomography scanning or other image processing methods, compared to other robotic systems that are used for hip surgery. Also, this surgical system reduces damage to the femur because only the metaphyseal region of the femoral canal needs to be machined, while leaving the diaphyseal hard bone untouched. Experiments were performed on 18 composite bones and 12 pig bones. In the composite bone group, orientation (anterversion, varus/valgus and flexion/extension) errors were made at 0.13/spl deg//spl plusmn/0.77/spl deg/, 0.14/spl deg//spl plusmn/0.38/spl deg/, and -0.27/spl deg//spl plusmn/0.33/spl deg/, and the maximum position error was at 1.00 mm. In the pig bone group, orientation errors were made at -0.03/spl deg//spl plusmn/0.65/spl deg/, 0.31/spl plusmn/0.27/spl deg/, and -0.36/spl deg//spl plusmn/0.36/spl deg/, and the maximum position error was at 1.12 mm. Also, 93% of the gaps between the bone and the implant surface were under 0.25 mm. The developed system shows sufficient machining accuracy and precision for clinical application.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115103819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper discusses the technology and developments behind transformations made to a commercial robotic surgical system, Computer Motion, Inc.'s Zeus/spl trade/, in order to make it possible to fully and safely support minimally-invasive human telesurgery performed over very large distances. Because human life is at stake, issues relating to safety, detection of errors, and fail-safe operation are principal in importance. Therefore, it was paramount that all of the safety features of the commercial product Zeus/spl trade/ remained intact during this transformation. This paper discusses the commercial robot and its safety features as well as the real-time communications system added to it as part of Operation Lindbergh, the first transatlantic human telesurgery. Particular attention is paid to the limiting effects of latency. Key techniques developed during this project are discussed, including the need to send the full robot state in each transmitted packet rather than incremental or modal data, thereby treating all telecom problems uniformly as dropped packets. The use of hierarchical design (incorporating Zeus as a drop-in component rather than modifying its internals) allowed the project to focus on the new issues arising due to teleoperation while gaining the robust, error checking, and fail-safe aspects of the design from the use of the unmodified commercial robot. The concept of local mode was created and used during initialization and during communications abnormalities and outages in order to keep the local and remote subsystems active and safely quiescent.
{"title":"Transforming a surgical robot for human telesurgery","authors":"S. Butner, Moji Ghodoussi","doi":"10.1109/TRA.2003.817214","DOIUrl":"https://doi.org/10.1109/TRA.2003.817214","url":null,"abstract":"This paper discusses the technology and developments behind transformations made to a commercial robotic surgical system, Computer Motion, Inc.'s Zeus/spl trade/, in order to make it possible to fully and safely support minimally-invasive human telesurgery performed over very large distances. Because human life is at stake, issues relating to safety, detection of errors, and fail-safe operation are principal in importance. Therefore, it was paramount that all of the safety features of the commercial product Zeus/spl trade/ remained intact during this transformation. This paper discusses the commercial robot and its safety features as well as the real-time communications system added to it as part of Operation Lindbergh, the first transatlantic human telesurgery. Particular attention is paid to the limiting effects of latency. Key techniques developed during this project are discussed, including the need to send the full robot state in each transmitted packet rather than incremental or modal data, thereby treating all telecom problems uniformly as dropped packets. The use of hierarchical design (incorporating Zeus as a drop-in component rather than modifying its internals) allowed the project to focus on the new issues arising due to teleoperation while gaining the robust, error checking, and fail-safe aspects of the design from the use of the unmodified commercial robot. The concept of local mode was created and used during initialization and during communications abnormalities and outages in order to keep the local and remote subsystems active and safely quiescent.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114941272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Jakopec, F. Baena, S. Harris, P. Gomes, J. Cobb, B. Davies
A "hands-on" robotic system for total knee replacement (TKR) surgery is presented. A computer tomography-based preoperative planning software is used to accurately plan the procedure. Intraoperatively, the surgeon guides a small special-purpose robot, called Acrobot, which is mounted on a gross positioning device. The Acrobot uses active constraint control, which constrains the motion to a predefined region, and thus allows the surgeon to safely cut the knee bones to fit a TKR prosthesis with high precision. A noninvasive anatomical registration method is described. The system has been successfully used in seven clinical trials with encouraging results.
{"title":"The hands-on orthopaedic robot \"acrobot\": Early clinical trials of total knee replacement surgery","authors":"M. Jakopec, F. Baena, S. Harris, P. Gomes, J. Cobb, B. Davies","doi":"10.1109/TRA.2003.817510","DOIUrl":"https://doi.org/10.1109/TRA.2003.817510","url":null,"abstract":"A \"hands-on\" robotic system for total knee replacement (TKR) surgery is presented. A computer tomography-based preoperative planning software is used to accurately plan the procedure. Intraoperatively, the surgeon guides a small special-purpose robot, called Acrobot, which is mounted on a gross positioning device. The Acrobot uses active constraint control, which constrains the motion to a predefined region, and thus allows the surgeon to safely cut the knee bones to fit a TKR prosthesis with high precision. A noninvasive anatomical registration method is described. The system has been successfully used in seven clinical trials with encouraging results.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123463067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most research so far in robot control has assumed either kinematics or Jacobian matrix of the robots from joint space to Cartesian space is known exactly. Unfortunately, no physical parameters can be derived exactly. In addition, when the robot picks up objects of uncertain lengths, orientations, or gripping points, the overall kinematics from the robot's base to the tip of the object becomes uncertain and changes according to different tasks. Consequently, it is unknown whether stability of the robot could be guaranteed in the presence of uncertain kinematics. In order to overcome these drawbacks, in this paper, we propose simple feedback control laws for setpoint control without exact knowledge of kinematics, Jacobian matrix, and dynamics. Lyapunov functions are presented for stability analysis of feedback control problem with uncertain kinematics. We shall show that the end-effector's position converges to a desired position in a finite task space even when the kinematics and Jacobian matrix are uncertain. Experimental results are presented to illustrate the performance of the proposed controllers.
{"title":"Approximate Jacobian control for robots with uncertain kinematics and dynamics","authors":"C. Cheah, M. Hirano, S. Kawamura, S. Arimoto","doi":"10.1109/TRA.2003.814517","DOIUrl":"https://doi.org/10.1109/TRA.2003.814517","url":null,"abstract":"Most research so far in robot control has assumed either kinematics or Jacobian matrix of the robots from joint space to Cartesian space is known exactly. Unfortunately, no physical parameters can be derived exactly. In addition, when the robot picks up objects of uncertain lengths, orientations, or gripping points, the overall kinematics from the robot's base to the tip of the object becomes uncertain and changes according to different tasks. Consequently, it is unknown whether stability of the robot could be guaranteed in the presence of uncertain kinematics. In order to overcome these drawbacks, in this paper, we propose simple feedback control laws for setpoint control without exact knowledge of kinematics, Jacobian matrix, and dynamics. Lyapunov functions are presented for stability analysis of feedback control problem with uncertain kinematics. We shall show that the end-effector's position converges to a desired position in a finite task space even when the kinematics and Jacobian matrix are uncertain. Experimental results are presented to illustrate the performance of the proposed controllers.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116346177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In many applications, the manipulations require only part of the degrees of freedom (DOFs) of the end-effector, or some DOFs are more important than the rest. We name these applications prioritized manipulations. The end-effector's DOFs are divided into those which are critical and must be controlled as precisely as possible, and those which have loose specifications, so their tracking performance can be traded off to achieve other needs. In this paper, for the class of general constrained rigid multibody systems (including passive joints and multiple closed kinematic loops), we derive a formulation for partitioning the task space into major and secondary task directions, and finding the velocity and static force mappings that precisely accomplish the major task and optimize some secondary goals such as reliability enhancement, obstacle and singularity avoidance, fault tolerance, or joint limit avoidance. The major task and secondary goals need to be specified in term of velocities/forces. In addition, a framework is developed to handle two kinds of common actuator failures, torque failure and position failure, by reconfiguring the differential kinematics and static force models. The techniques are tested on a 6-DOF parallel robot. Experimental results illustrate that the approach is practical and yields good performance.
{"title":"Optimal, fault-tolerant mappings to achieve secondary goals without compromising primary performance","authors":"Yixin Chen, J. McInroy, Yong-Sub Yi","doi":"10.1109/TRA.2003.814515","DOIUrl":"https://doi.org/10.1109/TRA.2003.814515","url":null,"abstract":"In many applications, the manipulations require only part of the degrees of freedom (DOFs) of the end-effector, or some DOFs are more important than the rest. We name these applications prioritized manipulations. The end-effector's DOFs are divided into those which are critical and must be controlled as precisely as possible, and those which have loose specifications, so their tracking performance can be traded off to achieve other needs. In this paper, for the class of general constrained rigid multibody systems (including passive joints and multiple closed kinematic loops), we derive a formulation for partitioning the task space into major and secondary task directions, and finding the velocity and static force mappings that precisely accomplish the major task and optimize some secondary goals such as reliability enhancement, obstacle and singularity avoidance, fault tolerance, or joint limit avoidance. The major task and secondary goals need to be specified in term of velocities/forces. In addition, a framework is developed to handle two kinds of common actuator failures, torque failure and position failure, by reconfiguring the differential kinematics and static force models. The techniques are tested on a 6-DOF parallel robot. Experimental results illustrate that the approach is practical and yields good performance.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121538018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper describes the design of a two-level hierarchical production scheduling engine, which captures the industrial practice of mass production semiconductor fabrication factories (fabs). The two levels of the hierarchy consist of a mid-term scheduler and a short-term scheduler, and are aimed at achieving coordination between the fab-wide objectives and local shop-floor operations. The mid-term scheduler maximizes weighted production flow to reduce the fab-wide cycle time and ensure on-time delivery by properly setting daily production target volumes and reference work-in-process (WIP) levels for individual part types and stages. Mid-term scheduling results are further broken down into more detailed schedules by the short-term scheduler. In addition to the same set of operational constraints in mid-term scheduling, the short-term scheduler includes the consideration of batching effects. It maximizes weighted production flow while tracking the daily production targets and the reference WIP levels specified by mid-term scheduling. The schedulers adopt a solution methodology with three ingredients; the Lagrange relaxation approach, network flow optimization, and Frank-Wolfe method. The scheduling tool is reasonably efficient in computation.
{"title":"Design of a Lagrangian relaxation-based hierarchical production scheduling environment for semiconductor wafer fabrication","authors":"T.-K. Hwang, Shi-Chung Chang","doi":"10.1109/TRA.2003.814512","DOIUrl":"https://doi.org/10.1109/TRA.2003.814512","url":null,"abstract":"This paper describes the design of a two-level hierarchical production scheduling engine, which captures the industrial practice of mass production semiconductor fabrication factories (fabs). The two levels of the hierarchy consist of a mid-term scheduler and a short-term scheduler, and are aimed at achieving coordination between the fab-wide objectives and local shop-floor operations. The mid-term scheduler maximizes weighted production flow to reduce the fab-wide cycle time and ensure on-time delivery by properly setting daily production target volumes and reference work-in-process (WIP) levels for individual part types and stages. Mid-term scheduling results are further broken down into more detailed schedules by the short-term scheduler. In addition to the same set of operational constraints in mid-term scheduling, the short-term scheduler includes the consideration of batching effects. It maximizes weighted production flow while tracking the daily production targets and the reference WIP levels specified by mid-term scheduling. The schedulers adopt a solution methodology with three ingredients; the Lagrange relaxation approach, network flow optimization, and Frank-Wolfe method. The scheduling tool is reasonably efficient in computation.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121684613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parallel mechanisms frequently contain an unstable type of singularity that has no counterpart in serial mechanisms. When the mechanism is at or near this type of singularity, it loses the ability to counteract external forces in certain directions. The determination of unstable singular configurations in parallel robots is challenging in general, and is usually tackled via an exhaustive search of the workspace using an accurate analytical model of the mechanism kinematics. This paper considers the singularity determination problem from a geometric perspective for planar and spatial three-legged parallel mechanisms. By using the constraints on the passive joint velocities, we derive a necessary condition for the unstable singularities. Using this condition, certain singularities can be found for certain type of platforms. As an example, new singular poses are discovered using this approach for a six-degree-of-freedom machining center.
{"title":"Singularities in three-legged platform-type parallel mechanisms","authors":"J. Wen, J. O’Brien","doi":"10.1109/TRA.2003.814518","DOIUrl":"https://doi.org/10.1109/TRA.2003.814518","url":null,"abstract":"Parallel mechanisms frequently contain an unstable type of singularity that has no counterpart in serial mechanisms. When the mechanism is at or near this type of singularity, it loses the ability to counteract external forces in certain directions. The determination of unstable singular configurations in parallel robots is challenging in general, and is usually tackled via an exhaustive search of the workspace using an accurate analytical model of the mechanism kinematics. This paper considers the singularity determination problem from a geometric perspective for planar and spatial three-legged parallel mechanisms. By using the constraints on the passive joint velocities, we derive a necessary condition for the unstable singularities. Using this condition, certain singularities can be found for certain type of platforms. As an example, new singular poses are discovered using this approach for a six-degree-of-freedom machining center.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127433355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Comments submitted for publication must be typed doublespaced, and text length must not exceed 500 words. Complete references must be furnished, as specified in "Information for Authors'* (page 1-6). Specific permission to publish should be appended as a postscript. Publication depends on availability of space: we give preference to comment on recent content and to new information. Letters for this section should be concise—the Editor reserves the right to shorten them and make changes that accord with our style.
{"title":"Comments and corrections","authors":"J. Lenarcic, M. Stanisic","doi":"10.1109/TRA.2003.816234","DOIUrl":"https://doi.org/10.1109/TRA.2003.816234","url":null,"abstract":"Comments submitted for publication must be typed doublespaced, and text length must not exceed 500 words. Complete references must be furnished, as specified in \"Information for Authors'* (page 1-6). Specific permission to publish should be appended as a postscript. Publication depends on availability of space: we give preference to comment on recent content and to new information. Letters for this section should be concise—the Editor reserves the right to shorten them and make changes that accord with our style.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130954424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The synthesis of force-closure grasps on three-dimensional (3-D) objects is a fundamental issue in robotic grasping and dextrous manipulation. In this paper, a numerical force-closure test is developed based on the concept of Q distance. With some mild and realistic assumptions, the proposed test criterion is differentiable almost everywhere and its derivative can be calculated exactly. On this basis, we present an algorithm for planning force-closure grasps, which is implemented by applying descent search to the proposed numerical test in the grasp configuration space. The algorithm is generally applicable to planning optimal force-closure grasps on 3-D objects with curved surfaces and with arbitrary number of contact points. The effectiveness and efficiency of the algorithm are demonstrated by using simulation examples.
{"title":"Synthesis of force-closure grasps on 3-D objects based on the Q distance","authors":"Xiangyang Zhu, Jun Wang","doi":"10.1109/TRA.2003.814499","DOIUrl":"https://doi.org/10.1109/TRA.2003.814499","url":null,"abstract":"The synthesis of force-closure grasps on three-dimensional (3-D) objects is a fundamental issue in robotic grasping and dextrous manipulation. In this paper, a numerical force-closure test is developed based on the concept of Q distance. With some mild and realistic assumptions, the proposed test criterion is differentiable almost everywhere and its derivative can be calculated exactly. On this basis, we present an algorithm for planning force-closure grasps, which is implemented by applying descent search to the proposed numerical test in the grasp configuration space. The algorithm is generally applicable to planning optimal force-closure grasps on 3-D objects with curved surfaces and with arbitrary number of contact points. The effectiveness and efficiency of the algorithm are demonstrated by using simulation examples.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126755376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.
{"title":"Orthogonal Gough-Stewart platforms for micromanipulation","authors":"F. Jafari, J. McInroy","doi":"10.1109/TRA.2003.814506","DOIUrl":"https://doi.org/10.1109/TRA.2003.814506","url":null,"abstract":"Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122938648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}