{"title":"Diagnosis of Osteosarcoma Based on Multimodal Microscopic Imaging and Deep Learning","authors":"Zihan Wang, Jinjin Wu, Chenbei Li, Bing Wang, Qingxia Wu, Lan Li, Huijie Wang, Chao Tu, Jianhua Yin","doi":"10.1142/s1793545823430010","DOIUrl":"https://doi.org/10.1142/s1793545823430010","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"257 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139243205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-17DOI: 10.1142/s1793545823500293
Xuelin Gu, Xiaoou Li, Banghua Yang
{"title":"Comparison of brain functions between healthy participants and methamphetamine users with various addiction histories: data analysis based on EEG and fNIRS","authors":"Xuelin Gu, Xiaoou Li, Banghua Yang","doi":"10.1142/s1793545823500293","DOIUrl":"https://doi.org/10.1142/s1793545823500293","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"89 2","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139263965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1142/s1793545823020066
Sergio Fantini, Ling Fu, Sabrina Brigadoi
{"title":"Editorial: Introduction to Special Issue on Neurophotonics","authors":"Sergio Fantini, Ling Fu, Sabrina Brigadoi","doi":"10.1142/s1793545823020066","DOIUrl":"https://doi.org/10.1142/s1793545823020066","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139280905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.1142/s179354582350027x
Minghua Zhao, Yahui Xiao, Jiaqi Zhang, Xin Cao, Lin Wang
Optical molecular tomography (OMT) is a potential pre-clinical molecular imaging technique with applications in a variety of biomedical areas, which can provide non-invasive quantitative three-dimensional (3D) information regarding tumor distribution in living animals. The construction of optical transmission models and the application of reconstruction algorithms in traditional model-based reconstruction processes have affected the reconstruction results, resulting in problems such as low accuracy, poor robustness, and long-time consumption. Here, a gates joint locally connected network (GLCN) method is proposed by establishing the mapping relationship between the inside source distribution and the photon density on surface directly, thus avoiding the extra time consumption caused by iteration and the reconstruction errors caused by model inaccuracy. Moreover, gates module was composed of the concatenation and multiplication operators of three different gates. It was embedded into the network aiming at remembering input surface photon density over a period and allowing the network to capture neurons connected to the true source selectively by controlling three different gates. To evaluate the performance of the proposed method, numerical simulations were conducted, whose results demonstrated good performance in terms of reconstruction positioning accuracy and robustness.
{"title":"Gates joint locally connected network for accurate and robust reconstruction in optical molecular tomography","authors":"Minghua Zhao, Yahui Xiao, Jiaqi Zhang, Xin Cao, Lin Wang","doi":"10.1142/s179354582350027x","DOIUrl":"https://doi.org/10.1142/s179354582350027x","url":null,"abstract":"Optical molecular tomography (OMT) is a potential pre-clinical molecular imaging technique with applications in a variety of biomedical areas, which can provide non-invasive quantitative three-dimensional (3D) information regarding tumor distribution in living animals. The construction of optical transmission models and the application of reconstruction algorithms in traditional model-based reconstruction processes have affected the reconstruction results, resulting in problems such as low accuracy, poor robustness, and long-time consumption. Here, a gates joint locally connected network (GLCN) method is proposed by establishing the mapping relationship between the inside source distribution and the photon density on surface directly, thus avoiding the extra time consumption caused by iteration and the reconstruction errors caused by model inaccuracy. Moreover, gates module was composed of the concatenation and multiplication operators of three different gates. It was embedded into the network aiming at remembering input surface photon density over a period and allowing the network to capture neurons connected to the true source selectively by controlling three different gates. To evaluate the performance of the proposed method, numerical simulations were conducted, whose results demonstrated good performance in terms of reconstruction positioning accuracy and robustness.","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"13 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135728100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A refined analytical model for reconstruction problems in diffuse reflectance spectroscopy","authors":"Ekaterina Sergeeva, Daria Kurakina, Ilya Turchin, Mikhail Kirillin","doi":"10.1142/s1793545823420026","DOIUrl":"https://doi.org/10.1142/s1793545823420026","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"12 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1142/s1793545823990018
{"title":"Author index Volume 16 (2023)","authors":"","doi":"10.1142/s1793545823990018","DOIUrl":"https://doi.org/10.1142/s1793545823990018","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"61 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139297992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1142/s1793545823420014
Petr Ermolinskiy, Matvey Maksimov, Andrei Lugovtsov, Alexey Muravyov, Irina Tikhomirova, Alexander Priezzhev
{"title":"Effect of sodium nitroprusside on the microrheological properties of red blood cells in different media","authors":"Petr Ermolinskiy, Matvey Maksimov, Andrei Lugovtsov, Alexey Muravyov, Irina Tikhomirova, Alexander Priezzhev","doi":"10.1142/s1793545823420014","DOIUrl":"https://doi.org/10.1142/s1793545823420014","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"24 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136312438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescence imaging in the second near-infrared window (NIR-II, 900–1880[Formula: see text]nm) with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution. However, the traditional NIR-II fluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal efficiency, as well as difficultly to adjust. Two types of upgraded NIR-II fluorescence confocal microscopes, sharing the same pinhole by excitation and emission focus, leading to higher confocal efficiency, are built in this work. One type is fiber-pinhole-based confocal microscope applicable to CW laser excitation. It is constructed for fluorescence intensity imaging with large depth, high stabilization and low cost, which could replace multiphoton fluorescence microscopy in some applications (e.g., cerebrovascular and hepatocellular imaging). The other type is air-pinhole-based confocal microscope applicable to femtosecond (fs) laser excitation. It can be employed not only for NIR-II fluorescence intensity imaging, but also for multi-channel fluorescence lifetime imaging to recognize different structures with similar fluorescence spectrum. Moreover, it can be facilely combined with multiphoton fluorescence microscopy. A single fs pulsed laser is utilized to achieve up-conversion (visible multiphoton fluorescence) and down-conversion (NIR-II one-photon fluorescence) excitation simultaneously, extending imaging spectral channels, and thus facilitates multi-structure and multi-functional observation.
{"title":"Self-Confocal NIR-II fluorescence microscopy for multifunctional <i>in vivo</i> imaging","authors":"Jing Zhou, Tianxiang Wu, Runze Chen, Liang Zhu, Hequn Zhang, Yifei Li, Liying Chen, Jun Qian","doi":"10.1142/s1793545823500256","DOIUrl":"https://doi.org/10.1142/s1793545823500256","url":null,"abstract":"Fluorescence imaging in the second near-infrared window (NIR-II, 900–1880[Formula: see text]nm) with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution. However, the traditional NIR-II fluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal efficiency, as well as difficultly to adjust. Two types of upgraded NIR-II fluorescence confocal microscopes, sharing the same pinhole by excitation and emission focus, leading to higher confocal efficiency, are built in this work. One type is fiber-pinhole-based confocal microscope applicable to CW laser excitation. It is constructed for fluorescence intensity imaging with large depth, high stabilization and low cost, which could replace multiphoton fluorescence microscopy in some applications (e.g., cerebrovascular and hepatocellular imaging). The other type is air-pinhole-based confocal microscope applicable to femtosecond (fs) laser excitation. It can be employed not only for NIR-II fluorescence intensity imaging, but also for multi-channel fluorescence lifetime imaging to recognize different structures with similar fluorescence spectrum. Moreover, it can be facilely combined with multiphoton fluorescence microscopy. A single fs pulsed laser is utilized to achieve up-conversion (visible multiphoton fluorescence) and down-conversion (NIR-II one-photon fluorescence) excitation simultaneously, extending imaging spectral channels, and thus facilitates multi-structure and multi-functional observation.","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}