首页 > 最新文献

Journal of molecular graphics & modelling最新文献

英文 中文
Investigating the multifaceted characteristics of Ba2FeWO6 double perovskite: Insights from density functional theory 研究 Ba2FeWO6 双包晶石的多方面特性:密度泛函理论的启示
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-26 DOI: 10.1016/j.jmgm.2024.108834

This study undertook a comprehensive examination of the double perovskite complex Ba2FeWO6, investigating its structural, electrical, magnetic, thermal and elastic characteristics. The study used density functional theory (DFT), specifically the full potential linearized augmented plane wave (FP-LAPW) method. It also used different approximations, including the generalized gradient approximation (GGA) and the modified Trans-Blaha (TB-mBJ) approach, to improve the accuracy of the band gap estimation more accurate. Additionlly, the GGA + U approach, incorporating the Hubbard correction term (U), was utilized. Our findings indicate that Ba2FeWO6 exhibits indirect half-metallic band gaps in the (L-X) direction, with value of 0.91 eV and a net magnetic moment of 4 μB, predominatly influenced by the iron atom. The compound demonstrated exceptional characteristics suitable for thermoelectric applications, particularly at lower temperatures. Furthermore, the elasticity analysis revealed low brittleness, facilitates its manipulation in manufacturing procedures.

本研究对双包晶复合物 Ba2FeWO6 进行了全面研究,调查了其结构、电学、磁学、热学和弹性特性。研究采用了密度泛函理论(DFT),特别是全势线性化增强平面波(FP-LAPW)方法。它还使用了不同的近似方法,包括广义梯度近似(GGA)和改进的跨布拉哈(TB-mBJ)方法,以提高带隙估计的准确性。此外,我们还采用了包含哈伯德修正项(U)的 GGA + U 方法。我们的研究结果表明,Ba2FeWO6 在(L-X)方向表现出间接半金属带隙,带隙值为 0.91 eV,净磁矩为 4 μB,主要受铁原子的影响。该化合物具有适合热电应用的优异特性,尤其是在较低温度下。此外,弹性分析表明该化合物的脆性很低,有利于在制造过程中对其进行操作。
{"title":"Investigating the multifaceted characteristics of Ba2FeWO6 double perovskite: Insights from density functional theory","authors":"","doi":"10.1016/j.jmgm.2024.108834","DOIUrl":"10.1016/j.jmgm.2024.108834","url":null,"abstract":"<div><p>This study undertook a comprehensive examination of the double perovskite complex Ba<sub>2</sub>FeWO<sub>6</sub>, investigating its structural, electrical, magnetic, thermal and elastic characteristics. The study used density functional theory (DFT), specifically the full potential linearized augmented plane wave (FP-LAPW) method. It also used different approximations, including the generalized gradient approximation (GGA) and the modified Trans-Blaha (TB-mBJ) approach, to improve the accuracy of the band gap estimation more accurate. Additionlly, the GGA + U approach, incorporating the Hubbard correction term (U), was utilized. Our findings indicate that Ba<sub>2</sub>FeWO<sub>6</sub> exhibits indirect half-metallic band gaps in the (L-X) direction, with value of 0.91 eV and a net magnetic moment of 4 <em>μ</em><sub>B</sub>, predominatly influenced by the iron atom. The compound demonstrated exceptional characteristics suitable for thermoelectric applications, particularly at lower temperatures. Furthermore, the elasticity analysis revealed low brittleness, facilitates its manipulation in manufacturing procedures.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141843759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BC6NA monolayer as an ideal anode material for high-performance sodium-ion batteries BC6NA 单层作为高性能钠离子电池的理想阳极材料。
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-19 DOI: 10.1016/j.jmgm.2024.108832

Selecting an appropriate anode material (AM) has been considered to be a crucial initial step in advancing high-performance batteries. Within this piece of research, we examine the suitability of the BC6NA monolayer (referred to as BC6NAML) as an AM by first-principles calculations. The BC6NAML exhibits metallic behavior consistently, even with varying concentrations of Na atoms, making it an ideal choice for battery usages. Our findings revealed that the theoretical storage capacity for Na-adhered BC6NAML was 406.36 mAhg−1, surpassing graphite, TiO2, BC6NA, and numerous other 2D materials. The BC6NAML also demonstrates a diffusion barrier of 0.39 eV and favorable diffusivity of Na-ions. Although the open-circuit voltage (OCV) of BC6NAML was temperate and lower compared to the OCV of other AMs like TiO2, our results suggested that it is possible to utilize BC6NAML as one of the encouraging host materials for sodium-ion batteries (SIBs). Consequently, this investigation into the potential anodic application of BC6NAML proves valuable for future experimental studies into sodium storage for SIBs.

选择合适的阳极材料(AM)一直被认为是推动高性能电池发展的关键第一步。在这项研究中,我们通过第一原理计算研究了 BC6NA 单层(简称 BC6NAML)作为 AM 的适用性。即使 Na 原子的浓度不同,BC6NAML 也始终表现出金属特性,因此是电池应用的理想选择。我们的研究结果表明,Na 粘附 BC6NAML 的理论存储容量为 406.36 mAhg-1,超过了石墨、TiO2、BC6NA 和许多其他二维材料。BC6NAML 还具有 0.39 eV 的扩散势垒和良好的 Na 离子扩散性。虽然 BC6NAML 的开路电压(OCV)较低,与其他 AMs(如 TiO2)的 OCV 相比也较低,但我们的研究结果表明,BC6NAML 有可能成为钠离子电池(SIBs)的理想宿主材料之一。因此,这次对 BC6NAML 潜在阳极应用的调查证明了它对未来钠离子电池储钠实验研究的价值。
{"title":"BC6NA monolayer as an ideal anode material for high-performance sodium-ion batteries","authors":"","doi":"10.1016/j.jmgm.2024.108832","DOIUrl":"10.1016/j.jmgm.2024.108832","url":null,"abstract":"<div><p>Selecting an appropriate anode material (AM) has been considered to be a crucial initial step in advancing high-performance batteries. Within this piece of research, we examine the suitability of the BC<sub>6</sub>NA monolayer (referred to as BC<sub>6</sub>NAML) as an AM by first-principles calculations. The BC<sub>6</sub>NAML exhibits metallic behavior consistently, even with varying concentrations of Na atoms, making it an ideal choice for battery usages. Our findings revealed that the theoretical storage capacity for Na-adhered BC<sub>6</sub>NAML was 406.36 mAhg<sup>−1</sup>, surpassing graphite, TiO<sub>2</sub>, BC<sub>6</sub>NA, and numerous other 2D materials. The BC<sub>6</sub>NAML also demonstrates a diffusion barrier of 0.39 eV and favorable diffusivity of Na-ions. Although the open-circuit voltage (OCV) of BC6NAML was temperate and lower compared to the OCV of other AMs like TiO<sub>2</sub>, our results suggested that it is possible to utilize BC<sub>6</sub>NAML as one of the encouraging host materials for sodium-ion batteries (SIBs). Consequently, this investigation into the potential anodic application of BC<sub>6</sub>NAML proves valuable for future experimental studies into sodium storage for SIBs.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the formation and evolution mechanism of cracks in laser stealth dicing of silicon carbide crystals 碳化硅晶体激光隐形切割中裂纹的形成与演化机理研究
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-18 DOI: 10.1016/j.jmgm.2024.108830

In this study, to enhance the cutting efficiency and precision of the chip while minimizing waste from cutting damage, molecular dynamics simulation is used to investigate the formation mechanism of defects and cracks of silicon carbide crystals during the laser stealth dicing. The results showed that the high thermal stress generated by the laser scanning induced the production and expansion of cracks. Thus, the crack propagates in the direction of [100], and subsequently forms branches in the directions of [101] and [101]. It also can be found that the silicon carbide crystals produced dislocation slip, and the dislocation lines moved along the slip surface, which impeded the crack extension in the directions of [101] and [101]. In addition, atomic phase transformation and loss is occurred under the high-temperature environment of the laser heating process. Cubic diamond crystal structure atoms are partially transformed into amorphous structure, while a small portion transformed into hexagonal diamond structure. The crystal structural arranged orderliness temporarily increased and then rapidly decreased due to prefabrication defects, and new unknown crystal structures are produced.

为了提高切削效率和切削精度,同时最大限度地减少切削损伤造成的浪费,本研究采用分子动力学模拟研究了激光隐形切割过程中碳化硅晶体缺陷和裂纹的形成机理。结果表明,激光扫描产生的高热应力诱导了裂纹的产生和扩展。因此,裂纹沿[100]方向扩展,随后在[101]和[101‾]方向形成分支。研究还发现,碳化硅晶体产生位错滑移,位错线沿滑移面移动,阻碍了裂纹向[101‾]和[1‾01‾]方向扩展。此外,在激光加热过程的高温环境下,还发生了原子相变和损耗。立方金刚石晶体结构原子部分转化为无定形结构,小部分转化为六方金刚石结构。由于预制缺陷,晶体结构排列的有序性暂时提高,然后迅速降低,并产生了新的未知晶体结构。
{"title":"Research on the formation and evolution mechanism of cracks in laser stealth dicing of silicon carbide crystals","authors":"","doi":"10.1016/j.jmgm.2024.108830","DOIUrl":"10.1016/j.jmgm.2024.108830","url":null,"abstract":"<div><p>In this study, to enhance the cutting efficiency and precision of the chip while minimizing waste from cutting damage, molecular dynamics simulation is used to investigate the formation mechanism of defects and cracks of silicon carbide crystals during the laser stealth dicing. The results showed that the high thermal stress generated by the laser scanning induced the production and expansion of cracks. Thus, the crack propagates in the direction of <span><math><mrow><mo>[</mo><mn>100</mn><mo>]</mo></mrow></math></span>, and subsequently forms branches in the directions of <span><math><mrow><mo>[</mo><mn>101</mn><mo>]</mo></mrow></math></span> and <span><math><mrow><mo>[</mo><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mo>]</mo></mrow></math></span>. It also can be found that the silicon carbide crystals produced dislocation slip, and the dislocation lines moved along the slip surface, which impeded the crack extension in the directions of <span><math><mrow><mo>[</mo><mn>10</mn><mover><mn>1</mn><mo>‾</mo></mover><mo>]</mo></mrow></math></span> and <span><math><mrow><mo>[</mo><mover><mn>1</mn><mo>‾</mo></mover><mn>0</mn><mover><mn>1</mn><mo>‾</mo></mover><mo>]</mo></mrow></math></span>. In addition, atomic phase transformation and loss is occurred under the high-temperature environment of the laser heating process. Cubic diamond crystal structure atoms are partially transformed into amorphous structure, while a small portion transformed into hexagonal diamond structure. The crystal structural arranged orderliness temporarily increased and then rapidly decreased due to prefabrication defects, and new unknown crystal structures are produced.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust superhydrophobic self-cleaning coating prepared by silane modified multi-walled carbon nanotubes: A combined experimental and molecular dynamics study 硅烷改性多壁碳纳米管制备的坚固超疏水自清洁涂层:实验和分子动力学综合研究
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-17 DOI: 10.1016/j.jmgm.2024.108831

As a functional material, superhydrophobic coating has been widely studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with robustness through simple preparation processes remains a challenge. In this paper, a robust superhydrophobic coating is prepared based on multi-walled carbon nanotubes modified by octyltrimethoxysilane, and its performance and hydrophobic mechanism are studied by experiments and molecular dynamics simulation. The superhydrophobic coating is prepared by one-step spraying method. The coating is characterized and analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy, and the properties of the coating are tested by experiments. Molecular dynamics simulation is used in the study to construct a molecular model system, and the molecular modification mechanism and coating wettability are simulated under the COMPASSII force field. The results show that octyltrimethoxysilane successfully modified carbon nanotubes, and the hydroxyl groups at the head of the molecular chain are bound to the surface of the carbon nanotubes in the form of hydrogen bonds, while the tail of the molecular chain is far away from the surface. After modification, the surface of carbon nanotubes changed from hydrophilic to hydrophobic. The prepared superhydrophobic coating not only has excellent self-cleaning properties, but also exhibits corrosion resistance to acid and alkali solutions. The coating still has superhydrophobic when the wear length is in the range of 400 cm. It can be seen that a robust superhydrophobic self-cleaning coating is successfully prepared by a simple one-step spraying method. The modification mechanism and the hydrophobic mechanism of the coating were obtained by the combination of experiment and molecular dynamics simulation, which provided theoretical support for the superhydrophobic of the coating at the micro level.

作为一种功能性材料,超疏水涂层在自清洁领域得到了广泛的研究。然而,通过简单的制备工艺获得坚固耐用的超疏水涂层仍然是一项挑战。本文基于辛基三甲氧基硅烷修饰的多壁碳纳米管制备了一种坚固的超疏水涂层,并通过实验和分子动力学模拟研究了其性能和疏水机理。采用一步喷涂法制备了超疏水涂层。利用扫描电子显微镜和傅立叶变换红外光谱对涂层进行了表征和分析,并通过实验测试了涂层的性能。研究采用分子动力学模拟构建了分子模型体系,并在 COMPASSII 力场下模拟了分子修饰机理和涂层润湿性。结果表明,辛基三甲氧基硅烷成功改性了碳纳米管,分子链头部的羟基以氢键的形式与碳纳米管表面结合,而分子链尾部则远离碳纳米管表面。改性后,碳纳米管表面由亲水变为疏水。制备出的超疏水涂层不仅具有优异的自清洁性能,还能耐酸碱溶液的腐蚀。当磨损长度在 400 厘米范围内时,涂层仍具有超疏水性。由此可见,简单的一步喷涂法就能成功制备出坚固的超疏水自清洁涂层。通过实验和分子动力学模拟相结合的方法获得了涂层的改性机理和疏水机理,为涂层在微观层面的超疏水性提供了理论支持。
{"title":"Robust superhydrophobic self-cleaning coating prepared by silane modified multi-walled carbon nanotubes: A combined experimental and molecular dynamics study","authors":"","doi":"10.1016/j.jmgm.2024.108831","DOIUrl":"10.1016/j.jmgm.2024.108831","url":null,"abstract":"<div><p>As a functional material, superhydrophobic coating has been widely studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with robustness through simple preparation processes remains a challenge. In this paper, a robust superhydrophobic coating is prepared based on multi-walled carbon nanotubes modified by octyltrimethoxysilane, and its performance and hydrophobic mechanism are studied by experiments and molecular dynamics simulation. The superhydrophobic coating is prepared by one-step spraying method. The coating is characterized and analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy, and the properties of the coating are tested by experiments. Molecular dynamics simulation is used in the study to construct a molecular model system, and the molecular modification mechanism and coating wettability are simulated under the COMPASSII force field. The results show that octyltrimethoxysilane successfully modified carbon nanotubes, and the hydroxyl groups at the head of the molecular chain are bound to the surface of the carbon nanotubes in the form of hydrogen bonds, while the tail of the molecular chain is far away from the surface. After modification, the surface of carbon nanotubes changed from hydrophilic to hydrophobic. The prepared superhydrophobic coating not only has excellent self-cleaning properties, but also exhibits corrosion resistance to acid and alkali solutions. The coating still has superhydrophobic when the wear length is in the range of 400 cm. It can be seen that a robust superhydrophobic self-cleaning coating is successfully prepared by a simple one-step spraying method. The modification mechanism and the hydrophobic mechanism of the coating were obtained by the combination of experiment and molecular dynamics simulation, which provided theoretical support for the superhydrophobic of the coating at the micro level.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic understanding on desalination performance of pristine graphenylene nanosheet membrane at high applied pressures 对原始石墨烯纳米片膜在高压下海水淡化性能的原子论理解。
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-17 DOI: 10.1016/j.jmgm.2024.108833

Molecular dynamics (MD) simulations are conducted to assess pristine graphenylene membranes' effectiveness in seawater desalination, explicitly focusing on their salt rejection and water permeability capabilities. This study investigates the potential of the graphenylene for separation of the Na+ as monovalent cation, in order to evaluate its further application for separation of the other type of contaminants. To this end, the pristine graphenylene nanosheet is introduced into the simulation box which included the water molecules, sodium and chlorine ions. Subsequently, MD simulations were conducted by applying different amounts of external pressures in which the temperature changes are investigated as another effective parameter in water permeability and salt rejection properties. Furthermore, the water density map, radial distribution functions, and water density elucidate the performance of the considered membrane in the presence of water molecules, Na+ ions, and Cl ions. The optimum performance of the pristine graphenylene for seawater desalination is achieved at P = 400 MPa and T = 298 K that results in the water flux of 2920 L/m2 h bar and 98.8 % salt rejection. The pristine graphenylene nanosheet shows significant potential in effectively separating salt ions, which has elucidated its importance and subsequently, the functionalized membrane for this application.

分子动力学(MD)模拟评估了原始石墨烯膜在海水淡化中的有效性,重点明确在其盐排斥和水渗透能力上。本研究调查了石墨烯分离 Na+ 单价阳离子的潜力,以评估其在分离其他类型污染物方面的进一步应用。为此,将原始的石墨烯纳米片引入包含水分子、钠离子和氯离子的模拟框中。随后,通过施加不同的外部压力进行 MD 模拟,其中温度变化是影响透水性和排盐性的另一个有效参数。此外,水密度图、径向分布函数和水密度阐明了所考虑的膜在水分子、Na+ 离子和 Cl- 离子存在时的性能。在 P = 400 MPa 和 T = 298 K 的条件下,原始石墨烯实现了海水淡化的最佳性能,使水通量达到 2920 L/m2 h bar,盐排斥率达到 98.8%。原始石墨烯纳米片在有效分离盐离子方面显示出巨大的潜力,这阐明了它的重要性,以及功能化膜在这一应用中的重要性。
{"title":"Atomistic understanding on desalination performance of pristine graphenylene nanosheet membrane at high applied pressures","authors":"","doi":"10.1016/j.jmgm.2024.108833","DOIUrl":"10.1016/j.jmgm.2024.108833","url":null,"abstract":"<div><p>Molecular dynamics (MD) simulations are conducted to assess pristine graphenylene membranes' effectiveness in seawater desalination, explicitly focusing on their salt rejection and water permeability capabilities. This study investigates the potential of the graphenylene for separation of the Na<sup>+</sup> as monovalent cation, in order to evaluate its further application for separation of the other type of contaminants. To this end, the pristine graphenylene nanosheet is introduced into the simulation box which included the water molecules, sodium and chlorine ions. Subsequently, MD simulations were conducted by applying different amounts of external pressures in which the temperature changes are investigated as another effective parameter in water permeability and salt rejection properties. Furthermore, the water density map, radial distribution functions, and water density elucidate the performance of the considered membrane in the presence of water molecules, Na<sup>+</sup> ions, and Cl<sup>−</sup> ions. The optimum performance of the pristine graphenylene for seawater desalination is achieved at <em>P</em> = 400 MPa and <em>T</em> = 298 K that results in the water flux of 2920 L/m<sup>2</sup> h bar and 98.8 % salt rejection. The pristine graphenylene nanosheet shows significant potential in effectively separating salt ions, which has elucidated its importance and subsequently, the functionalized membrane for this application.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water dissociation and COOH formation on Fe modified Cu(100) surface: A density functional theory study 铁修饰的铜(100)表面的水解离和 COOH 形成:密度泛函理论研究
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-16 DOI: 10.1016/j.jmgm.2024.108829

Water splitting has emerged as a promising route for sustainable hydrogen production. In this research paper, adsorption and dissociation of H2O accompanied with dissociated constituents reactions with CO2 and CO have been investigated on Fe modified Cu(100) surface employing density functional theory (DFT) at GGA-PW91 level. The adsorption and other reactions carried out on Fe2–Cu(100) surfaces gave very promising results. The adsorption of H2O on Fe top of this surface occurs yielding Eads −1.73 eV, which highlights a favorable adsorption on the Fe-modified Cu(100) surface. The activation energy for the water splitting reaction is found to be 0.65 eV, suggesting a feasible pathway for hydrogen evolution. The process also accompanies reaction energy of −0.54 eV. Furthermore, the interaction between carbon dioxide (CO2) and the H-atom on the surface lead to the formation of COOH through surmounting an activation barrier of 1.09 eV. The final position of COOH gets further stabilization having exothermicity of −0.43 eV. Another route for COOH formation from CO + OH operates on the Cu(100) part of the surface with a small activation barrier of 0.14 eV through exothermic process of −0.29 eV, however, diffusion of CO and OH from Fe to Cu is energetically expensive. This study signifies the consumption of CO and CO2 in addition to water splitting giving birth to useful products.

水分裂已成为可持续制氢的一条可行途径。本文采用 GGA-PW91 水平的密度泛函理论(DFT),研究了铁修饰的铜(100)表面对 H2O 的吸附和解离以及与 CO2 和 CO 的解离成分反应。在 Fe2-Cu(100)表面上进行的吸附和其他反应得出了非常有前景的结果。H2O 在该表面的 Fe 顶部发生吸附时的 Eads 值为 -1.73 eV,这表明 Fe 修饰的 Cu(100)表面具有良好的吸附性。水分裂反应的活化能为 0.65 eV,这表明氢进化的途径是可行的。该过程的反应能也为-0.54 eV。此外,二氧化碳(CO2)与表面上的 H 原子相互作用,通过克服 1.09 eV 的活化势垒形成了 COOH。COOH 的最终位置进一步稳定,放热系数为 -0.43 eV。CO + OH 形成 COOH 的另一条途径是在表面的 Cu(100)部分进行,通过-0.29 eV 的放热过程,活化势垒为 0.14 eV,但 CO 和 OH 从 Fe 扩散到 Cu 的能量消耗很大。这项研究表明,除了产生有用产物的水分裂外,还消耗了 CO 和 CO2。
{"title":"Water dissociation and COOH formation on Fe modified Cu(100) surface: A density functional theory study","authors":"","doi":"10.1016/j.jmgm.2024.108829","DOIUrl":"10.1016/j.jmgm.2024.108829","url":null,"abstract":"<div><p>Water splitting has emerged as a promising route for sustainable hydrogen production. In this research paper, adsorption and dissociation of H<sub>2</sub>O accompanied with dissociated constituents reactions with CO<sub>2</sub> and CO have been investigated on Fe modified Cu(100) surface employing density functional theory (DFT) at GGA-PW91 level. The adsorption and other reactions carried out on Fe2–Cu(100) surfaces gave very promising results. The adsorption of H<sub>2</sub>O on Fe top of this surface occurs yielding E<sub>ads</sub> −1.73 eV, which highlights a favorable adsorption on the Fe-modified Cu(100) surface. The activation energy for the water splitting reaction is found to be 0.65 eV, suggesting a feasible pathway for hydrogen evolution. The process also accompanies reaction energy of −0.54 eV. Furthermore, the interaction between carbon dioxide (CO<sub>2</sub>) and the H-atom on the surface lead to the formation of COOH through surmounting an activation barrier of 1.09 eV. The final position of COOH gets further stabilization having exothermicity of −0.43 eV. Another route for COOH formation from CO + OH operates on the Cu(100) part of the surface with a small activation barrier of 0.14 eV through exothermic process of −0.29 eV, however, diffusion of CO and OH from Fe to Cu is energetically expensive. This study signifies the consumption of CO and CO<sub>2</sub> in addition to water splitting giving birth to useful products.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the mechanism, selectivity, and substituent effects in the Diels-Alder reaction of azatrienes with electron-rich dienophiles: An MEDT study 揭示氮杂三烯与富电子亲二烯的 Diels-Alder 反应的机理、选择性和取代基效应:MEDT 研究
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-14 DOI: 10.1016/j.jmgm.2024.108819

The reactivity and mechanistic intricacies of azatrienes in Diels-Alder reactions have been relatively unexplored despite their intriguing potential applications. In this study, we employ Molecular Electron Density Theory to theoretically investigate the hetero-Diels–Alder reaction involving azatrienes with ethyl vinyl ether and allenyl methyl ether. Analysis of Conceptual Density Functional Theory, energetic profiles, and the topological characteristics is conducted to elucidate the reactions. The revealed mechanism manifests as a polar one-step two-stages process under kinetic control. We establish a clear relationship of between the periselectivity, regioselectivity, and stereoselectivity on one hand and the characteristics of the reactions mechanism on the other hand. The influence of weak interactions on reaction activation barriers and bonding evolution are discussed in detail. We demonstrate that substituents enhancing the reverse electron density flux facilitate the feasibility of the reactions. The results lay ground for a meticulous control of the reaction of azatriene in similar synthetic scenarios.

尽管氮杂三烯在 Diels-Alder 反应中具有引人入胜的潜在应用价值,但其反应性和机理的复杂性相对而言尚未得到研究。在本研究中,我们采用分子电子密度理论,从理论上研究了氮杂三烯与乙烯基乙醚和烯丙基甲醚的杂环-Diels-Alder 反应。通过对概念密度泛函理论、能量曲线和拓扑特征的分析,阐明了反应的机理。所揭示的机理表现为动力学控制下的极性一步两阶段过程。我们在过选择性、区域选择性和立体选择性与反应机理特征之间建立了明确的关系。我们详细讨论了弱相互作用对反应活化障碍和键合演化的影响。我们证明,增强反向电子密度通量的取代基有助于提高反应的可行性。这些结果为在类似的合成方案中细致地控制偶氮三烯的反应奠定了基础。
{"title":"Insights into the mechanism, selectivity, and substituent effects in the Diels-Alder reaction of azatrienes with electron-rich dienophiles: An MEDT study","authors":"","doi":"10.1016/j.jmgm.2024.108819","DOIUrl":"10.1016/j.jmgm.2024.108819","url":null,"abstract":"<div><p>The reactivity and mechanistic intricacies of azatrienes in Diels-Alder reactions have been relatively unexplored despite their intriguing potential applications. In this study, we employ Molecular Electron Density Theory to theoretically investigate the hetero-Diels–Alder reaction involving azatrienes with ethyl vinyl ether and allenyl methyl ether. Analysis of Conceptual Density Functional Theory, energetic profiles, and the topological characteristics is conducted to elucidate the reactions. The revealed mechanism manifests as a polar one-step two-stages process under kinetic control. We establish a clear relationship of between the periselectivity, regioselectivity, and stereoselectivity on one hand and the characteristics of the reactions mechanism on the other hand. The influence of weak interactions on reaction activation barriers and bonding evolution are discussed in detail. We demonstrate that substituents enhancing the reverse electron density flux facilitate the feasibility of the reactions. The results lay ground for a meticulous control of the reaction of azatriene in similar synthetic scenarios.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering substrate specificity determinants of class IIb aminoacyl-tRNA synthetases with machine learning 利用机器学习揭示 IIb 类氨基酰-tRNA 合成酶的底物特异性决定因素
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-14 DOI: 10.1016/j.jmgm.2024.108818

Specific amino acid (AA) binding by aminoacyl-tRNA synthetases (aaRSs) is necessary for correct translation of the genetic code. Sequence and structure analyses have revealed the main specificity determinants and allowed a partitioning of aaRSs into two classes and several subclasses. However, the information contributed by each determinant has not been precisely quantified, and other, minor determinants may still be unidentified. Growth of genomic data and development of machine learning classification methods allow us to revisit these questions. This work considered the subclass IIb, formed by the three enzymes aspartyl-, asparaginyl-, and lysyl-tRNA synthetase (LysRS). Over 35,000 sequences from the Pfam database were considered, and used to train a machine-learning model based on ensembles of decision trees. The model was trained to reproduce the existing classification of each sequence as AspRS, AsnRS, or LysRS, and to identify which sequence positions were most important for the classification. A few positions (5–8 depending on the AA substrate) sufficed for accurate classification. Most but not all of them were well-known specificity determinants. The machine learning models thus identified sets of mutations that distinguish the three subclass members, which might be targeted in engineering efforts to alter or swap the AA specificities for biotechnology applications.

氨基酰-tRNA 合成酶(aaRSs)的特异性氨基酸(AA)结合是正确翻译遗传密码的必要条件。序列和结构分析揭示了主要的特异性决定因素,并将 aaRS 分成两类和若干亚类。然而,每个决定因素所贡献的信息尚未精确量化,其他次要决定因素可能仍未确定。基因组数据的增长和机器学习分类方法的发展使我们能够重新审视这些问题。这项工作研究了由天冬氨酰、天冬氨酰和赖氨酰-tRNA 合成酶(LysRS)三种酶组成的 IIb 亚类。研究考虑了 Pfam 数据库中的 35,000 多个序列,并利用这些序列训练了一个基于决策树集合的机器学习模型。训练该模型的目的是重现每个序列作为 AspRS、AsnRS 或 LysRS 的现有分类,并确定哪些序列位置对分类最重要。有几个位置(5-8 个,取决于 AA 底物)足以进行准确分类。其中大部分(但不是全部)是众所周知的特异性决定因素。因此,机器学习模型确定了区分三个亚类成员的突变集,这些突变集可能是改变或交换 AA 特异性的生物技术应用工程中的目标。
{"title":"Uncovering substrate specificity determinants of class IIb aminoacyl-tRNA synthetases with machine learning","authors":"","doi":"10.1016/j.jmgm.2024.108818","DOIUrl":"10.1016/j.jmgm.2024.108818","url":null,"abstract":"<div><p>Specific amino acid (AA) binding by aminoacyl-tRNA synthetases (aaRSs) is necessary for correct translation of the genetic code. Sequence and structure analyses have revealed the main specificity determinants and allowed a partitioning of aaRSs into two classes and several subclasses. However, the information contributed by each determinant has not been precisely quantified, and other, minor determinants may still be unidentified. Growth of genomic data and development of machine learning classification methods allow us to revisit these questions. This work considered the subclass IIb, formed by the three enzymes aspartyl-, asparaginyl-, and lysyl-tRNA synthetase (LysRS). Over 35,000 sequences from the Pfam database were considered, and used to train a machine-learning model based on ensembles of decision trees. The model was trained to reproduce the existing classification of each sequence as AspRS, AsnRS, or LysRS, and to identify which sequence positions were most important for the classification. A few positions (5–8 depending on the AA substrate) sufficed for accurate classification. Most but not all of them were well-known specificity determinants. The machine learning models thus identified sets of mutations that distinguish the three subclass members, which might be targeted in engineering efforts to alter or swap the AA specificities for biotechnology applications.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141699041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational workflow to determine drug candidates alternative to aminoglycosides targeting the decoding center of E. coli ribosome 确定以大肠杆菌核糖体解码中心为靶点的氨基糖苷类药物候选药物的计算工作流程。
IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-07-03 DOI: 10.1016/j.jmgm.2024.108817
Merve Yuce , Beril Ates , Nesrin Isil Yasar , Fethiye Aylin Sungur , Ozge Kurkcuoglu

The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for in vitro studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.

全球抗生素耐药性问题要求我们采用快速有效的方法寻找新型抑制剂来治疗细菌感染。在本研究中,我们提出了一种计算工作流程,从美国食品药物管理局批准的、研究性的和实验性的化合物库中,针对大肠杆菌核糖体小亚基 30S 上的解码中心,找出可信的高亲和力化合物。工作流程主要包括对完整的 30S 进行两次分子对接计算,然后对截短的核糖体结构进行分子动力学(MD)模拟和 MM-GBSA 计算。为获得配体-rRNA 复合物的预期相互作用,对分子对接软件 Glide 和 AutoDock Vina 以及使用 Desmond 进行 MD 模拟时使用的参数进行了仔细调整。根据氨基糖苷与 30S 结合位点的指纹图谱进行筛选,得到了 7 个命中化合物,这些化合物或具有不同的临床用途,或具有正在研究的氨基糖苷衍生物,建议用于体外研究。本研究开发的详细工作流程有望成为估算大型蛋白质-RNA 和配体复合物结合自由能的有效而快速的方法。
{"title":"A computational workflow to determine drug candidates alternative to aminoglycosides targeting the decoding center of E. coli ribosome","authors":"Merve Yuce ,&nbsp;Beril Ates ,&nbsp;Nesrin Isil Yasar ,&nbsp;Fethiye Aylin Sungur ,&nbsp;Ozge Kurkcuoglu","doi":"10.1016/j.jmgm.2024.108817","DOIUrl":"10.1016/j.jmgm.2024.108817","url":null,"abstract":"<div><p>The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the <em>E. coli</em> ribosome. The workflow basically consists of two molecular docking calculations on the intact 30S, followed by molecular dynamics (MD) simulations coupled with MM-GBSA calculations on a truncated ribosome structure. The parameters used in the molecular docking suits, Glide and AutoDock Vina, as well as in the MD simulations with Desmond were carefully adjusted to obtain expected interactions for the ligand-rRNA complexes. A filtering procedure was followed, considering a fingerprint based on aminoglycoside's binding site on the 30S to obtain seven hit compounds either with different clinical usages or aminoglycoside derivatives under investigation, suggested for <em>in vitro</em> studies. The detailed workflow developed in this study promises an effective and fast approach for the estimation of binding free energies of large protein-RNA and ligand complexes.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural, magnetic, electronic, optical and mechanical properties of actinide perovskite oxides XAnO3 [X = Cs+, Ba2+; An = Np5+, Np4+]: GGA, GGA+U and GGA+U+mBJ investigations 锕系元素包晶氧化物 XAnO3 [X = Cs+, Ba2+; An = Np5+, Np4+] 的结构、磁性、电子、光学和机械特性:GGA、GGA+U 和 GGA+U+mBJ 研究
IF 2.7 4区 生物学 Q1 Computer Science Pub Date : 2024-06-20 DOI: 10.1016/j.jmgm.2024.108815
M. Musa Saad H.-E. , B.O. Alsobhi

First-principles density functional theory (DFT)-based calculations were performed to investigate the structural, magnetic, electronic, optical and mechanical properties of two actinide perovskite oxides XAnO3, where [X = Cs+, Ba2+; An = Np5+, Np4+]. Wien2k software is utilized with GGA, GGA + U and GGA + U + mBJ potentials. The unit cell volumes for cubic (Pm-3m) structure of XAnO3 are optimized to achieve the ground state energy and equilibrium parameters. Substitution of X- and An-sites increases the lattice constant, a0 = 4.3998 Å (X = Cs+) and a0 = 4.4378 Å (X = Ba2+). The calculated band structure plus total and partial density of states using these methods confirm the 100 % spin-polarization and half-metallic (HM) nature of XAnO3 with Eg = 2.731, 3.896 and 3.787 eV (X = Cs+); 3.891, 3.929 and 4.329 eV (X = Cs+). Total magnetic moment per unit cell of XAnO3 is respectively MTot = 2.0 and 3.0 μB revealing their ferromagnetic (FM) behavior with high Curie temperature (TC) within GGA, GGA + U and GGA + U + mBJ. Mechanical and thermodynamic stability of XAnO3 have been proved via the elastic parameters, sound velocity, Debye and melting temperatures, and enthalpy of formation. In addition, XAnO3 show amazing optical responses include high absorption, conductivity, refractivity, and reflectivity. These investigated properties confirm that XAnO3 materials have FM-HM and high optical characteristics and they perfectly suitable for many spintronics and optoelectronics applications such as sensors, storage devices and photodiodes.

基于第一原理密度泛函理论(DFT)的计算研究了两种锕系元素包晶氧化物 XAnO3(其中 [X = Cs+, Ba2+; An = Np5+, Np4+])的结构、磁性、电子、光学和机械特性。Wien2k 软件使用了 GGA、GGA + U 和 GGA + U + mBJ 电位。对 XAnO3 立方(Pm-3m)结构的单元格体积进行了优化,以获得基态能量和平衡参数。X- 和 An-位点的替代增加了晶格常数,a0 = 4.3998 Å(X = Cs+)和 a0 = 4.4378 Å(X = Ba2+)。利用这些方法计算出的带状结构以及总态密度和部分态密度证实了 XAnO3 具有 100% 的自旋极化和半金属 (HM) 性质,其 Eg↓ = 2.731、3.896 和 3.787 eV(X = Cs+);3.891、3.929 和 4.329 eV(X = Cs+)。XAnO3 的单位晶胞总磁矩分别为 MTot = 2.0 和 3.0 μB,这揭示了它们在 GGA、GGA + U 和 GGA + U + mBJ 内具有高居里温度 (TC) 的铁磁 (FM) 行为。通过弹性参数、声速、Debye 和熔化温度以及形成焓,证明了 XAnO3 的机械和热力学稳定性。此外,XAnO3 还显示出惊人的光学响应,包括高吸收率、高导电率、高折射率和高反射率。这些研究特性证实,XAnO3 材料具有调频-调相和高光学特性,完全适用于许多自旋电子学和光电子学应用,如传感器、存储设备和光电二极管。
{"title":"Structural, magnetic, electronic, optical and mechanical properties of actinide perovskite oxides XAnO3 [X = Cs+, Ba2+; An = Np5+, Np4+]: GGA, GGA+U and GGA+U+mBJ investigations","authors":"M. Musa Saad H.-E. ,&nbsp;B.O. Alsobhi","doi":"10.1016/j.jmgm.2024.108815","DOIUrl":"https://doi.org/10.1016/j.jmgm.2024.108815","url":null,"abstract":"<div><p>First-principles density functional theory (DFT)-based calculations were performed to investigate the structural, magnetic, electronic, optical and mechanical properties of two actinide perovskite oxides XAnO<sub>3</sub>, where [X = Cs<sup>+</sup>, Ba<sup>2+</sup>; An = Np<sup>5+</sup>, Np<sup>4+</sup>]. Wien2k software is utilized with GGA, GGA + U and GGA + U + mBJ potentials. The unit cell volumes for cubic (Pm-3m) structure of XAnO<sub>3</sub> are optimized to achieve the ground state energy and equilibrium parameters. Substitution of X- and An-sites increases the lattice constant, <span><math><mrow><msub><mi>a</mi><mn>0</mn></msub></mrow></math></span> = 4.3998 Å (X = Cs<sup>+</sup>) and <span><math><mrow><msub><mi>a</mi><mn>0</mn></msub></mrow></math></span> = 4.4378 Å (X = Ba<sup>2+</sup>). The calculated band structure plus total and partial density of states using these methods confirm the 100 % spin-polarization and half-metallic (HM) nature of XAnO<sub>3</sub> with <span><math><mrow><msubsup><mi>E</mi><mi>g</mi><mo>↓</mo></msubsup></mrow></math></span> = 2.731, 3.896 and 3.787 eV (X = Cs<sup>+</sup>); 3.891, 3.929 and 4.329 eV (X = Cs<sup>+</sup>). Total magnetic moment per unit cell of XAnO<sub>3</sub> is respectively <span><math><mrow><msup><mi>M</mi><mrow><mi>T</mi><mi>o</mi><mi>t</mi></mrow></msup></mrow></math></span> = 2.0 and 3.0 μ<sub>B</sub> revealing their ferromagnetic (FM) behavior with high Curie temperature (<span><math><mrow><msub><mi>T</mi><mi>C</mi></msub></mrow></math></span>) within GGA, GGA + U and GGA + U + mBJ. Mechanical and thermodynamic stability of XAnO<sub>3</sub> have been proved via the elastic parameters, sound velocity, Debye and melting temperatures, and enthalpy of formation. In addition, XAnO<sub>3</sub> show amazing optical responses include high absorption, conductivity, refractivity, and reflectivity. These investigated properties confirm that XAnO<sub>3</sub> materials have FM-HM and high optical characteristics and they perfectly suitable for many spintronics and optoelectronics applications such as sensors, storage devices and photodiodes.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of molecular graphics & modelling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1