Pub Date : 2024-11-01DOI: 10.1016/j.jmgm.2024.108901
Valerii V. Isaev , Yury Minenkov
Predicting molecular properties with the help of Neural Networks is a common way to substitute or enhance comprehensive quantum-chemical calculations. One of the problems facing researchers is the choice of vectorization approach to representing the solvent and the solute for the estimator model. In this work, 10 different approaches have been investigated for both organic solute and solvent including vectorizers that relied on macroscopic parameters, functional groups classification, molecular graphs, or atomic coordinates. A variation of the Bag of Bonds approach called JustBonds, trained on the MNSol database, showed the best overall performance resulting in RMSD <2 kcal/mol for the blind dataset that contains the solutes not presented in the training subset and <1 kcal/mol on records from Solv@TUM database, which is close to contemporary continuum models. We have also demonstrated that the most important bags usually contain heteroatom and play a key role in the solvation process. Furthermore, the small role of solvent vectorization was demonstrated and revealed that approaches based on functional groups or macroscopic solvent parameters are often enough to efficiently represent solvent media.
{"title":"Comparative study of various molecular feature representations for solvation free energy predictions of neutral species","authors":"Valerii V. Isaev , Yury Minenkov","doi":"10.1016/j.jmgm.2024.108901","DOIUrl":"10.1016/j.jmgm.2024.108901","url":null,"abstract":"<div><div>Predicting molecular properties with the help of Neural Networks is a common way to substitute or enhance comprehensive quantum-chemical calculations. One of the problems facing researchers is the choice of vectorization approach to representing the solvent and the solute for the estimator model. In this work, 10 different approaches have been investigated for both organic solute and solvent including vectorizers that relied on macroscopic parameters, functional groups classification, molecular graphs, or atomic coordinates. A variation of the Bag of Bonds approach called JustBonds, trained on the MNSol database, showed the best overall performance resulting in RMSD <2 kcal/mol for the blind dataset that contains the solutes not presented in the training subset and <1 kcal/mol on records from Solv@TUM database, which is close to contemporary continuum models. We have also demonstrated that the most important bags usually contain heteroatom and play a key role in the solvation process. Furthermore, the small role of solvent vectorization was demonstrated and revealed that approaches based on functional groups or macroscopic solvent parameters are often enough to efficiently represent solvent media.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108901"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1016/j.jmgm.2024.108899
Yabing Li , Ali B.M. Ali , Nelly Esther Flores Tapia , Nargiza Kamolova , Soheil Salahshour , Rozbeh Sabetvand
Innovative technology and methods are crucial for making pure and refreshing water. Two main methods are present to delete soluble salts from water: membrane processes and thermal processes. A beneficial membrane technique is reverse electrodialysis. This research used molecular dynamics (MD) simulation to investigate how channel roughness affected particle diffusion and permeability in carbon nanotubes (CNTs) via the reverse electrodialysis process. The results indicate that adding roughness in the CNT duct increased the force between the primary fluid and the duct. Using an armchair-edged CNT structure maximized the electric current in the sample. Furthermore, the roughness increased the intensity of force in the channel, which was due to gravity, leading to a decrease in the mobility of fluid particles. Additionally, several broken hydrogen bonds inside the simulation box increased from 116 to 128 in the duct sample with roughness.
{"title":"Effect of channel roughness on the particle diffusion and permeability of carbon nanotubes in reverse electrodialysis process applying molecular dynamics simulation","authors":"Yabing Li , Ali B.M. Ali , Nelly Esther Flores Tapia , Nargiza Kamolova , Soheil Salahshour , Rozbeh Sabetvand","doi":"10.1016/j.jmgm.2024.108899","DOIUrl":"10.1016/j.jmgm.2024.108899","url":null,"abstract":"<div><div>Innovative technology and methods are crucial for making pure and refreshing water. Two main methods are present to delete soluble salts from water: membrane processes and thermal processes. A beneficial membrane technique is reverse electrodialysis. This research used molecular dynamics (MD) simulation to investigate how channel roughness affected particle diffusion and permeability in carbon nanotubes (CNTs) via the reverse electrodialysis process. The results indicate that adding roughness in the CNT duct increased the force between the primary fluid and the duct. Using an armchair-edged CNT structure maximized the electric current in the sample. Furthermore, the roughness increased the intensity of force in the channel, which was due to gravity, leading to a decrease in the mobility of fluid particles. Additionally, several broken hydrogen bonds inside the simulation box increased from 116 to 128 in the duct sample with roughness.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108899"},"PeriodicalIF":2.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.jmgm.2024.108898
Chandra Jyoti Singha, Ramadas Krishna
Antibiotic resistance in Mycobacterium tuberculosis, the primary causative agent of the tuberculosis disease is an ever growing threat especially in developing and underdeveloped countries. Isoniazid is a commonly used first line anti-tuberculosis drug used during the first phase of tuberculosis treatment. However, due to its improper use, many strains of Mycobacterium tuberculosis have acquired resistance to the drug. Advancements in next generation sequencing technologies, such as transcriptomics have paved way for identifying alternative drug targets based on the differential expression pattern of genes. Therefore, this study makes use of RNA-Seq data of Mycobacterium tuberculosis isolates treated with different concentrations of isoniazid to identify genes that can be proposed as drug targets. From the differential expression analysis, it was observed that four genes were significantly upregulated under all the conditions. Among the four genes, accD6 was selected as the drug target for virtual screening and molecular dynamics studies, because of its role in fatty acid elongation and contribution to the synthesis of mycolic acids. The protein-protein interaction network and gene ontology based functional enrichment studies show an enrichment in fatty acid biosynthesis related pathways. Furthermore, virtual screening studies successfully screened the top three natural inhibitor molecules with satisfactory ADME properties and a better glide score than the reference compound, NCI-172033. The trajectory analysis, essential dynamics studies and MMPBSA analysis, concluded that among the hit molecules, NPC41982, a thiazole derivative showed the most promising results and can be considered as a potential drug candidate.
{"title":"Molecular dynamics simulations, essential dynamics and MMPBSA to evaluate natural compounds as potential inhibitors for AccD6, a key drug target in the fatty acid biosynthesis pathway in Mycobacterium tuberculosis","authors":"Chandra Jyoti Singha, Ramadas Krishna","doi":"10.1016/j.jmgm.2024.108898","DOIUrl":"10.1016/j.jmgm.2024.108898","url":null,"abstract":"<div><div>Antibiotic resistance in <em>Mycobacterium tuberculosis</em>, the primary causative agent of the tuberculosis disease is an ever growing threat especially in developing and underdeveloped countries. Isoniazid is a commonly used first line anti-tuberculosis drug used during the first phase of tuberculosis treatment. However, due to its improper use, many strains of <em>Mycobacterium tuberculosis</em> have acquired resistance to the drug. Advancements in next generation sequencing technologies, such as transcriptomics have paved way for identifying alternative drug targets based on the differential expression pattern of genes. Therefore, this study makes use of RNA-Seq data of <em>Mycobacterium tuberculosis</em> isolates treated with different concentrations of isoniazid to identify genes that can be proposed as drug targets. From the differential expression analysis, it was observed that four genes were significantly upregulated under all the conditions. Among the four genes, <em>accD6</em> was selected as the drug target for virtual screening and molecular dynamics studies, because of its role in fatty acid elongation and contribution to the synthesis of mycolic acids. The protein-protein interaction network and gene ontology based functional enrichment studies show an enrichment in fatty acid biosynthesis related pathways. Furthermore, virtual screening studies successfully screened the top three natural inhibitor molecules with satisfactory ADME properties and a better glide score than the reference compound, NCI-172033. The trajectory analysis, essential dynamics studies and MMPBSA analysis, concluded that among the hit molecules, NPC41982, a thiazole derivative showed the most promising results and can be considered as a potential drug candidate.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108898"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.jmgm.2024.108894
Cihat Güleryüz , Duha M. Hasan , Masar A. Awad , Azal S. Waheeb , Abrar U. Hassan , Ayesha Mohyuddin , Hussein A.K. Kyhoiesh , Mohammed T. Alotaibi
In this research, molecular modification is employed to see the enhancement in the efficiency of Tyrian Purple (TP), a natural dye, for organic photovoltaic materials. By using Density Functional Theory (DFT) based molecular modeling, seven new structures are designed with pi spacer to extend electron donor moieties. Teheir Frontier Molecular Orbital (FMO) analysis demonstartes their charges with a similar pattern of distributions over their Highest Occupied and Lowed Unocuupied Molecular Orbitals (HOMO/lUMO). This analysls also show their energy gaps (Egaps) to range around 2.97–3.02 eV. Their maximum absorption wavelength (λmax) demosntartes 486–490 nm range to indicate their tendency of absorbing light efficiently. Their Transition Density Matrix (TDM) analysis also reveals their facile electronic transitions without a significant charges over spacers. From calculating their photovoltaic paramters, their Light Harvesting Efficiency (LHE) reaches to 72.4–95.5 %. Also their Open Circuit Voltage (Voc) varies across 1.16–1.34 V. It is found that dyes actively adsorb onto TiO2 clusters to demonstrate their promise for tuning their Conduction Band (CB). This research is an effort for to evaluate the structural correlations to the develop photovoltaic materials through molecular-level design and optimization.
本研究采用分子修饰技术来提高天然染料泰利安紫(TP)用于有机光伏材料的效率。通过使用基于密度泛函理论(DFT)的分子建模,设计出了七种带有π间隔物的新结构,以扩展电子供体分子。它们的前沿分子轨道(FMO)分析表明,它们的电荷在最高占位和最低未占位分子轨道(HOMO/lUMO)上的分布模式相似。该分析还显示它们的能隙(Egaps)在 2.97-3.02 eV 左右。它们的最大吸收波长(λmax)介于 486-490 纳米之间,表明它们具有高效吸收光的倾向。它们的跃迁密度矩阵(TDM)分析也表明,它们的电子跃迁非常容易,不会在间隔物上产生大量电荷。通过计算它们的光伏参数,它们的光收集效率(LHE)达到 72.4-95.5%。此外,它们的开路电压(Voc)在 1.16-1.34 V 之间变化。研究发现,染料会主动吸附到二氧化钛团簇上,这证明它们有望调整其传导带(CB)。这项研究旨在通过分子层面的设计和优化,评估开发光伏材料的结构相关性。
{"title":"Molecular engineering on tyrian puprle natural dye as TiO2 based fined tuned photovoltaic dye material: DFT molecular analysis","authors":"Cihat Güleryüz , Duha M. Hasan , Masar A. Awad , Azal S. Waheeb , Abrar U. Hassan , Ayesha Mohyuddin , Hussein A.K. Kyhoiesh , Mohammed T. Alotaibi","doi":"10.1016/j.jmgm.2024.108894","DOIUrl":"10.1016/j.jmgm.2024.108894","url":null,"abstract":"<div><div>In this research, molecular modification is employed to see the enhancement in the efficiency of Tyrian Purple (TP), a natural dye, for organic photovoltaic materials. By using Density Functional Theory (DFT) based molecular modeling, seven new structures are designed with pi spacer to extend electron donor moieties. Teheir Frontier Molecular Orbital (FMO) analysis demonstartes their charges with a similar pattern of distributions over their Highest Occupied and Lowed Unocuupied Molecular Orbitals (HOMO/lUMO). This analysls also show their energy gaps (E<sub>gaps</sub>) to range around 2.97–3.02 eV. Their maximum absorption wavelength (<em>λ<sub>max</sub></em>) demosntartes 486–490 nm range to indicate their tendency of absorbing light efficiently. Their Transition Density Matrix (TDM) analysis also reveals their facile electronic transitions without a significant charges over spacers. From calculating their photovoltaic paramters, their Light Harvesting Efficiency (LHE) reaches to 72.4–95.5 %. Also their Open Circuit Voltage (V<sub>oc</sub>) varies across 1.16–1.34 V. It is found that dyes actively adsorb onto TiO<sub>2</sub> clusters to demonstrate their promise for tuning their Conduction Band (CB). This research is an effort for to evaluate the structural correlations to the develop photovoltaic materials through molecular-level design and optimization.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108894"},"PeriodicalIF":2.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.jmgm.2024.108897
Fengfeng Gao
Understanding the adsorption behavior of heavy oil components on reservoir solids is crucial for improving oil recovery, yet the molecular mechanism remains unclear. This study used molecular dynamics simulations to explore the adsorption kinetics and thermodynamics of asphaltene molecules on silica surfaces. The adsorption process was divided into three stages: free, adsorption, and equilibrium. In the adsorption stage, asphaltenes must pass through two dense hydration layers and adhere to the silica surface in a flat configuration. Carboxyl groups increase asphaltene hydrophilicity, raising interaction energy with water molecules and hindering adsorption. In addition, two distinct hydration layers of water molecules on the silica surface. The first hydration layer, with a peak density of 2000 kg m−3, was located around 0.6 nm from the surface, driven by hydrogen bonding between Si-OH groups and water molecules. The second layer, found at 1.44–1.80 nm, had a lower density of 1200 kg m−3, formed through hydrogen bonding between water molecules. This study aims to enhance the understanding of the physicochemical mechanisms governing oil droplet adsorption on silica surfaces, potentially informing the design of improved oil recovery strategies.
了解重油成分在储层固体上的吸附行为对提高石油采收率至关重要,但其分子机理仍不清楚。本研究利用分子动力学模拟来探索沥青质分子在二氧化硅表面的吸附动力学和热力学。吸附过程分为三个阶段:自由阶段、吸附阶段和平衡阶段。在吸附阶段,沥青质必须穿过两个致密的水合层,以平面构型附着在二氧化硅表面。羧基增加了沥青质的亲水性,提高了与水分子的相互作用能,阻碍了吸附。此外,二氧化硅表面有两个不同的水分子水合层。第一层水合层的峰值密度为 2000 kg m-3,位于距离表面 0.6 nm 左右的位置,由 Si-OH 基团和水分子之间的氢键驱动。第二层位于 1.44-1.80 纳米处,密度较低,为 1200 kg m-3,由水分子之间的氢键形成。这项研究旨在加深人们对硅表面吸附油滴的物理化学机制的了解,从而为改进采油战略的设计提供潜在的信息。
{"title":"Unraveling the adsorption dynamics of asphaltene molecules on silica surfaces","authors":"Fengfeng Gao","doi":"10.1016/j.jmgm.2024.108897","DOIUrl":"10.1016/j.jmgm.2024.108897","url":null,"abstract":"<div><div>Understanding the adsorption behavior of heavy oil components on reservoir solids is crucial for improving oil recovery, yet the molecular mechanism remains unclear. This study used molecular dynamics simulations to explore the adsorption kinetics and thermodynamics of asphaltene molecules on silica surfaces. The adsorption process was divided into three stages: free, adsorption, and equilibrium. In the adsorption stage, asphaltenes must pass through two dense hydration layers and adhere to the silica surface in a flat configuration. Carboxyl groups increase asphaltene hydrophilicity, raising interaction energy with water molecules and hindering adsorption. In addition, two distinct hydration layers of water molecules on the silica surface. The first hydration layer, with a peak density of 2000 kg m<sup>−3</sup>, was located around 0.6 nm from the surface, driven by hydrogen bonding between Si-OH groups and water molecules. The second layer, found at 1.44–1.80 nm, had a lower density of 1200 kg m<sup>−3</sup>, formed through hydrogen bonding between water molecules. This study aims to enhance the understanding of the physicochemical mechanisms governing oil droplet adsorption on silica surfaces, potentially informing the design of improved oil recovery strategies.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108897"},"PeriodicalIF":2.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A robust Quantitative Structure-Property Relationship (QSPR) model was presented to predict the surface tension property of psychoanaleptic (psychostimulant and antidepressant) drugs. A dataset of 112 molecules was utilized, and three feature selection methods were applied: genetic algorithm combined with Ordinary Least Squares (GA-OLS), Partial Least Squares (GA-PLS), and Support Vector Machines (GA-SVM), each identifying ten pertinent AlvaDesc descriptors. The models were constructed using the Dragonfly Algorithm combined with the Support Vector Regressor (DA-SVR), with the GA-SVM-based model emerging as the top performer. Rigorous statistical metrics validate its superior predictive accuracy (R2 = 0.98142, Q2LOO = 0.98142, RMSE = 1.12836, AARD = 0.78746). Furthermore, an external test set of ten compounds was employed for model validation and extrapolation, along with assessing the applicability domain, further underscoring the model’s reliability. The selected descriptors (X0Av, VE1sign_B(e), ATSC1e, MATS6v, P_VSA_ppp_A, TDB01u, E1s, R2m+, N-067, SssO) collectively elucidate the key structural factors influencing surface tension in the studied drugs. The model provides excellent predictions and can be used to determine the surface tension of new psychoanaleptic drugs. Its outcomes will guide the design of novel medications with targeted surface tension properties.
{"title":"QSPR modeling to predict surface tension of psychoanaleptic drugs using the hybrid DA-SVR algorithm","authors":"Meriem Ouaissa , Maamar Laidi , Othmane Benkortbi , Hasmerya Maarof","doi":"10.1016/j.jmgm.2024.108896","DOIUrl":"10.1016/j.jmgm.2024.108896","url":null,"abstract":"<div><div>A robust Quantitative Structure-Property Relationship (QSPR) model was presented to predict the surface tension property of psychoanaleptic (psychostimulant and antidepressant) drugs. A dataset of 112 molecules was utilized, and three feature selection methods were applied: genetic algorithm combined with Ordinary Least Squares (GA-OLS), Partial Least Squares (GA-PLS), and Support Vector Machines (GA-SVM), each identifying ten pertinent AlvaDesc descriptors. The models were constructed using the Dragonfly Algorithm combined with the Support Vector Regressor (DA-SVR), with the GA-SVM-based model emerging as the top performer. Rigorous statistical metrics validate its superior predictive accuracy (<em>R</em><sup><em>2</em></sup> = 0.98142, <em>Q</em><sup><em>2</em></sup><sub><em>LOO</em></sub> = 0.98142, <em>RMSE</em> = 1.12836, <em>AARD</em> = 0.78746). Furthermore, an external test set of ten compounds was employed for model validation and extrapolation, along with assessing the applicability domain, further underscoring the model’s reliability. The selected descriptors (X0Av, VE1sign_B(e), ATSC1e, MATS6v, P_VSA_ppp_A, TDB01u, E1s, R2m+, N-067, SssO) collectively elucidate the key structural factors influencing surface tension in the studied drugs. The model provides excellent predictions and can be used to determine the surface tension of new psychoanaleptic drugs. Its outcomes will guide the design of novel medications with targeted surface tension properties.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108896"},"PeriodicalIF":2.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1016/j.jmgm.2024.108895
Murillo H. Queiroz , Suelen A. Santos , Joel L. Nascimento , Bruno S. Sampaio , Tiago V. Alves , Roberto Rivelino
We investigate the computational effects on the relationships between interaction energy (ΔE) and electron density (ρ), at the critical point obtained from 19 intermolecular H-bonded dimers, to estimate inter and intramolecular interactions of larger H-bonded systems. Our analysis examines basis set superposition error (BSSE) effects, dispersion energy corrections, and the exchange-correlation energy model on the ΔE vs. ρ linear regressions. The calculations were carried out within density functional theory (DFT) combined with the 6-31+G(d,p) and def2-TZVPP basis sets. This procedure quantifies the average effects of BSSE for different levels of approximation, and underscore the sensitivity of the ΔE estimation together with dispersion corrections. This is valuable for the development of DFT-based estimators of multiple interaction energies of large H-bonded systems with low computational cost. We have applied this procedure by analyzing H-bonded biological molecules, such as DNA base pairs, an asparagine side chain, and an AZT molecule. Our estimated H-bond interaction energies are in agreement with previous studies, and emphasize the importance of methodological considerations for accurately predicting interaction energies using DFT combined with topological parameters.
我们研究了从 19 个分子间 H 键二聚体得到的临界点上的相互作用能(ΔE)和电子密度(ρ)之间关系的计算影响,以估计较大 H 键体系的分子间和分子内相互作用。我们的分析考察了基集叠加误差 (BSSE) 效应、色散能修正以及交换相关能模型对 ΔE 与 ρ 线性回归的影响。计算是在密度泛函理论(DFT)中结合 6-31+G(d,p) 和 def2-TZVPP 基集进行的。这一过程量化了不同近似水平的 BSSE 平均效应,并强调了 ΔE 估计与弥散修正的敏感性。这对于以较低的计算成本开发基于 DFT 的大型 H 键体系多重相互作用能量估算器非常有价值。我们通过分析 DNA 碱基对、天冬酰胺侧链和 AZT 分子等 H 键生物分子应用了这一程序。我们估算的 H 键相互作用能与之前的研究结果一致,并强调了使用 DFT 结合拓扑参数准确预测相互作用能的方法论因素的重要性。
{"title":"Evaluating interaction energy versus electron density relationships to estimate inter and intramolecular H-bonding","authors":"Murillo H. Queiroz , Suelen A. Santos , Joel L. Nascimento , Bruno S. Sampaio , Tiago V. Alves , Roberto Rivelino","doi":"10.1016/j.jmgm.2024.108895","DOIUrl":"10.1016/j.jmgm.2024.108895","url":null,"abstract":"<div><div>We investigate the computational effects on the relationships between interaction energy (ΔE) and electron density (ρ), at the critical point obtained from 19 intermolecular H-bonded dimers, to estimate inter and intramolecular interactions of larger H-bonded systems. Our analysis examines basis set superposition error (BSSE) effects, dispersion energy corrections, and the exchange-correlation energy model on the ΔE vs. ρ linear regressions. The calculations were carried out within density functional theory (DFT) combined with the 6-31+G(d,p) and def2-TZVPP basis sets. This procedure quantifies the average effects of BSSE for different levels of approximation, and underscore the sensitivity of the ΔE estimation together with dispersion corrections. This is valuable for the development of DFT-based estimators of multiple interaction energies of large H-bonded systems with low computational cost. We have applied this procedure by analyzing H-bonded biological molecules, such as DNA base pairs, an asparagine side chain, and an AZT molecule. Our estimated H-bond interaction energies are in agreement with previous studies, and emphasize the importance of methodological considerations for accurately predicting interaction energies using DFT combined with topological parameters.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108895"},"PeriodicalIF":2.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.jmgm.2024.108893
Pakuna Panbo , Uthen Thubsuang , Apirak Payaka
The crucial role of the amine functional group at the Mannich bridge of polybenzoxazines (PBZs) has been reported to be responsible for their hydrogen-bonded network structures. However, they have not been thoroughly studied in an aqueous solution and at the atomistic level. In this study, molecular dynamics simulations were applied to investigate the formation of hydrogen bond interactions of PBZs prepared from bisphenol A/methylamine (m-PBZ), bisphenol A/aniline-based (a-PBZ), and bisphenol A/2-(methylamino)ethylamine (e-PBZ). Based on the simulation results, the hydrogen-bonded network structures of the PBZs interfered with water molecules, leading to less compaction of the PBZ structure in the aqueous solution. The hydrogen bonding species of the m-PBZ and a-PBZ structures consisted of the –OH…N (Mannich) and –OH…O intramolecular interactions. However, for e-PBZ, the –OH…O species was not present, but the 2-(ethylamino)ethylamine substituent formed more hydrogen bonding species than those of m-PBZ and a-PBZ. Additionally, the intermolecular hydrogen bond interactions of the PBZs and water molecules were not detected in any of the aqueous solution simulations.
{"title":"Molecular dynamics simulations of hydrogen-bonded network structures of polybenzoxazines in the gas phase and aqueous solution","authors":"Pakuna Panbo , Uthen Thubsuang , Apirak Payaka","doi":"10.1016/j.jmgm.2024.108893","DOIUrl":"10.1016/j.jmgm.2024.108893","url":null,"abstract":"<div><div>The crucial role of the amine functional group at the Mannich bridge of polybenzoxazines (PBZs) has been reported to be responsible for their hydrogen-bonded network structures. However, they have not been thoroughly studied in an aqueous solution and at the atomistic level. In this study, molecular dynamics simulations were applied to investigate the formation of hydrogen bond interactions of PBZs prepared from bisphenol A/methylamine (m-PBZ), bisphenol A/aniline-based (a-PBZ), and bisphenol A/2-(methylamino)ethylamine (e-PBZ). Based on the simulation results, the hydrogen-bonded network structures of the PBZs interfered with water molecules, leading to less compaction of the PBZ structure in the aqueous solution. The hydrogen bonding species of the m-PBZ and a-PBZ structures consisted of the –OH<sup>…</sup>N (Mannich) and –OH<sup>…</sup>O intramolecular interactions. However, for e-PBZ, the –OH<sup>…</sup>O species was not present, but the 2-(ethylamino)ethylamine substituent formed more hydrogen bonding species than those of m-PBZ and a-PBZ. Additionally, the intermolecular hydrogen bond interactions of the PBZs and water molecules were not detected in any of the aqueous solution simulations.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108893"},"PeriodicalIF":2.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To promote the development of new functionalized ionic liquids, it is necessary to get a deeper insight into their features of physicochemical and electronic and molecular structure. In this study, the interaction energies and structural and vibrational frequencies parameters in accompanied with some of the physiochemical, electronic and optic attributes of ionic liquids designed by the covalently attachement of imidazolium to anthracene derivatives ([X-AnMIM][A2] and [X-AnMIM][A3], X: NH2, OH, OMe, H, Cl, CHO, CN and NO2) ILs have been evaluated. Two conjugate bases of acids 1,3,5-pentanetriol (A2) and 3-(2-hydroxyethyl)-1,3,5-pentanetriol (A3) are used as anions which have two and three intramolecular hydrogen bonds, respectively. Based on the results of calculations at M06-2X-GD3/6–311++(d,p) level of theory, the differences in these properties in addition to the structural type of anions and cations can be attributed to the cation-anion, intra and intermolecular hydrogen bonding, interactions in ionic liquids. The results depict that the ILs based on A2 anions form stronger hydrogen bonds with [X-AnMIM]+ cations. The potency of interaction between cations and anion reduces with the increasement in the number of intramolecular hydrogen bonds and also decreasement in the basic strength in the anionic part. A clear red shift is observed between [X-AnMIM][A2] and [X-AnMIM][A3] ILs and isolated anthracene, which is a clear manifestation of the effect of the imidazolium cation on the electronic energy levels of anthracene. It can be expected that the studied ILs are not electrochemically stable during the electrochemistry applications.
为了促进新型功能化离子液体的开发,有必要深入了解其物理化学特征以及电子和分子结构。本研究评估了咪唑与蒽衍生物([X-AnMIM][A2] 和 [X-AnMIM][A3],X:NH2、OH、OMe、H、Cl、CHO、CN 和 NO2)共价连接设计的离子液体的相互作用能、结构和振动频率参数,以及一些物理化学、电子和光学属性。以 1,3,5-戊三醇(A2)和 3-(2-羟乙基)-1,3,5-戊三醇(A3)这两种酸的共轭碱作为阴离子,它们分别有两个和三个分子内氢键。根据 M06-2X-GD3/6-311++(d,p) 理论水平的计算结果,除了阴离子和阳离子的结构类型外,这些性质的差异还可归因于离子液体中阳离子-阴离子、分子内和分子间氢键的相互作用。结果表明,基于 A2 阴离子的离子液体能与 [X-AnMIM]+ 阳离子形成更强的氢键。阳离子和阴离子之间相互作用的效力随着分子内氢键数量的增加而降低,阴离子部分的碱性强度也随之降低。在[X-AnMIM][A2]和[X-AnMIM][A3] IL 与分离的蒽之间观察到明显的红移,这清楚地表明了咪唑阳离子对蒽电子能级的影响。可以预见,所研究的 IL 在电化学应用中并不具有电化学稳定性。
{"title":"Designing of new functionalized imidazolium based ionic liquids attached to the antracene derivatives and investigation on the influence of intramolecular hydrogen bondings in anions on their intermolecular hydrogen bondings and some of the other properties: A DFT M06-2X-GD3 study","authors":"Farzad Alijani Chakoli, Khatereh Ghauri, Farhad Shirini","doi":"10.1016/j.jmgm.2024.108885","DOIUrl":"10.1016/j.jmgm.2024.108885","url":null,"abstract":"<div><div>To promote the development of new functionalized ionic liquids, it is necessary to get a deeper insight into their features of physicochemical and electronic and molecular structure. In this study, the interaction energies and structural and vibrational frequencies parameters in accompanied with some of the physiochemical, electronic and optic attributes of ionic liquids designed by the covalently attachement of imidazolium to anthracene derivatives ([X-AnMIM][A2] and [X-AnMIM][A3], X: NH<sub>2</sub>, OH, OMe, H, Cl, CHO, CN and NO<sub>2</sub>) ILs have been evaluated. Two conjugate bases of acids 1,3,5-pentanetriol (A2) and 3-(2-hydroxyethyl)-1,3,5-pentanetriol (A3) are used as anions which have two and three intramolecular hydrogen bonds, respectively. Based on the results of calculations at M06-2X-GD3/6–311++(d,p) level of theory, the differences in these properties in addition to the structural type of anions and cations can be attributed to the cation-anion, intra and intermolecular hydrogen bonding, interactions in ionic liquids. The results depict that the ILs based on A2 anions form stronger hydrogen bonds with [X-AnMIM]<sup>+</sup> cations. The potency of interaction between cations and anion reduces with the increasement in the number of intramolecular hydrogen bonds and also decreasement in the basic strength in the anionic part. A clear red shift is observed between [X-AnMIM][A2] and [X-AnMIM][A3] ILs and isolated anthracene, which is a clear manifestation of the effect of the imidazolium cation on the electronic energy levels of anthracene. It can be expected that the studied ILs are not electrochemically stable during the electrochemistry applications.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108885"},"PeriodicalIF":2.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10−8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering.
{"title":"Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations","authors":"Thanathat Pamonsupornwichit , Kanchanok Kodchakorn , Piyachat Udomwong , Kanokporn Sornsuwan , Anuwat Weechan , On-anong Juntit , Piyarat Nimmanpipug , Chatchai Tayapiwatana","doi":"10.1016/j.jmgm.2024.108884","DOIUrl":"10.1016/j.jmgm.2024.108884","url":null,"abstract":"<div><div>This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in <em>E. coli</em> for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9<sup>L1:N32Y</sup> exhibited a 1.66-fold increase in binding affinity, with a K<sub>D</sub> of 1.75 × 10<sup>−8</sup> M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"133 ","pages":"Article 108884"},"PeriodicalIF":2.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}